
Xiangxi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7484917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 2022, 602, 657-663.	27.8	1,350
2	Development of an inactivated vaccine candidate for SARS-CoV-2. Science, 2020, 369, 77-81.	12.6	1,180
3	Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infectious Diseases, The, 2021, 21, 181-192.	9.1	1,104
4	BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature, 2022, 608, 593-602.	27.8	889
5	Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science, 2020, 369, 1505-1509.	12.6	358
6	A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nature Structural and Molecular Biology, 2012, 19, 424-429.	8.2	347
7	Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell, 2022, 185, 860-871.e13.	28.9	310
8	Architecture of African swine fever virus and implications for viral assembly. Science, 2019, 366, 640-644.	12.6	252
9	SARS-CoV-2 spike protein interacts with and activates TLR41. Cell Research, 2021, 31, 818-820.	12.0	225
10	Hepatitis A virus and the origins of picornaviruses. Nature, 2015, 517, 85-88.	27.8	158
11	Picornavirus uncoating intermediate captured in atomic detail. Nature Communications, 2013, 4, 1929.	12.8	148
12	Human-IgG-Neutralizing Monoclonal Antibodies Block the SARS-CoV-2 Infection. Cell Reports, 2020, 32, 107918.	6.4	148
13	Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants. Nature, 2022, 603, 919-925.	27.8	146
14	Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19. Cell Host and Microbe, 2021, 29, 222-235.e4.	11.0	145
15	The architecture of the SARS-CoV-2 RNA genome inside virion. Nature Communications, 2021, 12, 3917.	12.8	122
16	Near-atomic structure of Japanese encephalitis virus reveals critical determinants of virulence and stability. Nature Communications, 2017, 8, 14.	12.8	117
17	Enhancement versus neutralization by SARS-CoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD. Cell Reports, 2021, 34, 108699.	6.4	110
18	Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71. Protein and Cell, 2014, 5, 692-703.	11.0	95

XIANGXI WANG

#	Article	IF	CITATIONS
19	Cryo-EM structure of a herpesvirus capsid at 3.1 Ã Science, 2018, 360, .	12.6	93
20	Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 0, , .	27.8	90
21	Characterization and structural basis of a lethal mouse-adapted SARS-CoV-2. Nature Communications, 2021, 12, 5654.	12.8	89
22	More-powerful virus inhibitors from structure-based analysis of HEV71 capsid-binding molecules. Nature Structural and Molecular Biology, 2014, 21, 282-288.	8.2	88
23	Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions. Nature Communications, 2018, 9, 1552.	12.8	83
24	Rational development of a human antibody cocktail that deploys multiple functions to confer Pan-SARS-CoVs protection. Cell Research, 2021, 31, 25-36.	12.0	76
25	Structure-based development of human antibody cocktails against SARS-CoV-2. Cell Research, 2021, 31, 101-103.	12.0	75
26	Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2. Nature Microbiology, 2019, 4, 414-419.	13.3	73
27	Structures of Coxsackievirus A16 Capsids with Native Antigenicity: Implications for Particle Expansion, Receptor Binding, and Immunogenicity. Journal of Virology, 2015, 89, 10500-10511.	3.4	58
28	Architecture of the herpesvirus genome-packaging complex and implications for DNA translocation. Protein and Cell, 2020, 11, 339-351.	11.0	53
29	Structures of Coxsackievirus A10 unveil the molecular mechanisms of receptor binding and viral uncoating. Nature Communications, 2018, 9, 4985.	12.8	52
30	Double Lock of a Human Neutralizing and Protective Monoclonal Antibody Targeting the Yellow Fever Virus Envelope. Cell Reports, 2019, 26, 438-446.e5.	6.4	49
31	Structure of Ljungan virus provides insight into genome packaging of this picornavirus. Nature Communications, 2015, 6, 8316.	12.8	43
32	Potent neutralization of hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 770-775.	7.1	42
33	Structural basis for neutralization of Japanese encephalitis virus by two potent therapeutic antibodies. Nature Microbiology, 2018, 3, 287-294.	13.3	42
34	Structure of human Aichi virus and implications for receptor binding. Nature Microbiology, 2016, 1, 16150.	13.3	36
35	A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2. National Science Review, 2021, 8, nwab053.	9.5	36
36	Structures of the portal vertex reveal essential protein-protein interactions for Herpesvirus assembly and maturation. Protein and Cell, 2020, 11, 366-373.	11.0	33

XIANGXI WANG

#	Article	IF	CITATIONS
37	Structure of the herpes simplex virus type 2 C-capsid with capsid-vertex-specific component. Nature Communications, 2018, 9, 3668.	12.8	31
38	Nanometer-resolution in situ structure of the SARS-CoV-2 postfusion spike protein. Proceedings of the United States of America, 2021, 118, .	7.1	30
39	Hand-foot-and-mouth disease virus receptor KREMEN1 binds the canyon of Coxsackie Virus A10. Nature Communications, 2020, 11, 38.	12.8	28
40	Neutralization Mechanisms of Two Highly Potent Antibodies against Human Enterovirus 71. MBio, 2018, 9, .	4.1	26
41	Structure-based development of three- and four-antibody cocktails against SARS-CoV-2 via multiple mechanisms. Cell Research, 2021, 31, 597-600.	12.0	26
42	Double lock of a potent human therapeutic monoclonal antibody against SARS-CoV-2. National Science Review, 2021, 8, nwaa297.	9.5	24
43	<scp>Cryoâ€</scp> electron microscopy structure of human <scp>ABCB6</scp> transporter. Protein Science, 2020, 29, 2363-2374.	7.6	22
44	Cryo-EM structure of Type III-A CRISPR effector complex. Cell Research, 2018, 28, 1195-1197.	12.0	21
45	Structure Elucidation of Coxsackievirus A16 in Complex with GPP3 Informs a Systematic Review of Highly Potent Capsid Binders to Enteroviruses. PLoS Pathogens, 2015, 11, e1005165.	4.7	20
46	Structural and molecular basis for foot-and-mouth disease virus neutralization by two potent protective antibodies. Protein and Cell, 2022, 13, 446-453.	11.0	19
47	The binding of a monoclonal antibody to the apical region of SCARB2 blocks EV71 infection. Protein and Cell, 2017, 8, 590-600.	11.0	18
48	Hepatitis A Virus Capsid Structure. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a031807.	6.2	18
49	Structures of Echovirus 30 in complex with its receptors inform a rational prediction for enterovirus receptor usage. Nature Communications, 2020, 11, 4421.	12.8	18
50	Assembly of complex viruses exemplified by a halophilic euryarchaeal virus. Nature Communications, 2019, 10, 1456.	12.8	17
51	Sequential immunizations confer cross-protection against variants of SARS-CoV-2, including Omicron in Rhesus macaques. Signal Transduction and Targeted Therapy, 2022, 7, 124.	17.1	15
52	Selection and structural bases of potent broadly neutralizing antibodies from 3-dose vaccinees that are highly effective against diverse SARS-CoV-2 variants, including Omicron sublineages. Cell Research, 2022, 32, 691-694.	12.0	14
53	Serotype specific epitopes identified by neutralizing antibodies underpin immunogenic differences in Enterovirus B. Nature Communications, 2020, 11, 4419.	12.8	13
54	Structural basis for neutralization of hepatitis A virus informs a rational design of highly potent inhibitors. PLoS Biology, 2019, 17, e3000229.	5.6	12

XIANGXI WANG

#	Article	IF	CITATIONS
55	Design, Synthesis, and Evaluation of Novel Enterovirus 71 Inhibitors as Therapeutic Drug Leads for the Treatment of Human Hand, Foot, and Mouth Disease. Journal of Medicinal Chemistry, 2020, 63, 1233-1244.	6.4	12
56	Replication is the key barrier during the dual-host adaptation of mosquito-borne flaviviruses. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110491119.	7.1	7
57	A single residue in the αB helix of the E protein is critical for Zika virus thermostability. Emerging Microbes and Infections, 2018, 7, 1-15.	6.5	6
58	A Heat-Induced Mutation on VP1 of Foot-and-Mouth Disease Virus Serotype O Enhanced Capsid Stability and Immunogenicity. Journal of Virology, 2021, 95, e0017721.	3.4	5
59	A highly immunogenic live-attenuated vaccine candidate prevents SARS-CoV-2 infection and transmission in hamsters. Innovation(China), 2022, 3, 100221.	9.1	5
60	Atomic Structures of Coxsackievirus B5 Provide Key Information on Viral Evolution and Survival. Journal of Virology, 2022, , e0010522.	3.4	5
61	Structural basis for neutralization of an anicteric hepatitis associated echovirus by a potent neutralizing antibody. Cell Discovery, 2021, 7, 35.	6.7	2
62	Uncovering Drug Mechanism of Action by Proteome Wide- Identification of Drug-Binding Proteins. Medicinal Chemistry, 2017, 13, 526-535.	1.5	2
63	Structural Insights into Alphavirus Assembly Revealed by the Cryo-EM Structure of Getah Virus. Viruses, 2022, 14, 327.	3.3	2
64	Virion Assembly: From Small Picornaviruses (Picornaviridae) to Large Herpesviruses (Herpesviridae). , 2021, , 480-487.		0