Luis Aragon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7484644/publications.pdf Version: 2024-02-01

Ι μις Δραςονι

#	Article	IF	CITATIONS
1	Cryo-EM structures of holo condensin reveal a subunit flip-flop mechanism. Nature Structural and Molecular Biology, 2020, 27, 743-751.	8.2	90
2	Purified Smc5/6 Complex Exhibits DNA Substrate Recognition and Compaction. Molecular Cell, 2020, 80, 1039-1054.e6.	9.7	51
3	FACT mediates cohesin function on chromatin. Nature Structural and Molecular Biology, 2019, 26, 970-979.	8.2	43
4	Synthetic studies on the reverse antibiotic natural products, the nybomycins. MedChemComm, 2019, 10, 1438-1444.	3.4	3
5	Sumoylation of Smc5 Promotes Error-free Bypass at Damaged Replication Forks. Cell Reports, 2019, 29, 3160-3172.e4.	6.4	19
6	The Smc5/6 Complex: New and Old Functions of the Enigmatic Long-Distance Relative. Annual Review of Genetics, 2018, 52, 89-107.	7.6	112
7	Cdc14 and Chromosome Condensation: Evaluation of the Recruitment of Condensin to Genomic Regions. Methods in Molecular Biology, 2017, 1505, 229-243.	0.9	1
8	Smc5/6 complex regulates Sgs1 recombination functions. Current Genetics, 2017, 63, 381-388.	1.7	16
9	Detection of Cohesin SUMOylation In Vivo. Methods in Molecular Biology, 2017, 1515, 55-64.	0.9	1
10	Identification of SUMO conjugation sites in the budding yeast proteome. Microbial Cell, 2017, 4, 331-341.	3.2	19
11	Sgs1's roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes and Development, 2016, 30, 1339-1356.	5.9	61
12	Physical Proximity of Sister Chromatids Promotes Top2-Dependent Intertwining. Molecular Cell, 2016, 64, 134-147.	9.7	47
13	Condensin Relocalization from Centromeres to Chromosome Arms Promotes Top2 Recruitment during Anaphase. Cell Reports, 2015, 13, 2336-2344.	6.4	30
14	Chromosome Conformation Capture (3C) of Tandem Arrays in Yeast. Methods in Molecular Biology, 2014, 1205, 219-229.	0.9	1
15	SUMOylation of the α-Kleisin Subunit of Cohesin Is Required for DNA Damage-Induced Cohesion. Current Biology, 2012, 22, 1564-1575.	3.9	64
16	A model for chromosome condensation based on the interplay between condensin and topoisomerase II. Trends in Genetics, 2012, 28, 110-117.	6.7	50
17	A Double Lock on Sister Chromatids by Cohesin. Molecular Cell, 2011, 44, 5-6.	9.7	2
18	Rtt107 Phosphorylation Promotes Localisation to DNA Double-Stranded Breaks (DSBs) and Recombinational Repair between Sister Chromatids. PLoS ONE, 2011, 6, e20152.	2.5	12

Luis Aragon

#	Article	IF	CITATIONS
19	The Smc5–Smc6 Complex Is Required to Remove Chromosome Junctions in Meiosis. PLoS ONE, 2011, 6, e20948.	2.5	28
20	Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription. Nature Cell Biology, 2011, 13, 1450-1456.	10.3	67
21	Ribosomal Genes: Safety in Numbers. Current Biology, 2010, 20, R368-R370.	3.9	2
22	The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. Nucleic Acids Research, 2010, 38, 6502-6512.	14.5	70
23	Cis-interactions between non-coding ribosomal spacers dependent on RNAP-II separate RNAP-I and RNAP-III transcription domains. Cell Cycle, 2010, 9, 4328-4337.	2.6	34
24	The unnamed complex: what do we know about Smc5-Smc6?. Chromosome Research, 2009, 17, 251-263.	2.2	112
25	Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature, 2009, 458, 219-222.	27.8	115
26	Anaphase Onset Before Complete DNA Replication with Intact Checkpoint Responses. Science, 2007, 315, 1411-1415.	12.6	121
27	The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nature Cell Biology, 2007, 9, 923-931.	10.3	345
28	Smc5–Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nature Cell Biology, 2006, 8, 1032-1034.	10.3	170
29	Ribosomal DNA Transcription-Dependent Processes Interfere with Chromosome Segregation. Molecular and Cellular Biology, 2006, 26, 6239-6247.	2.3	38
30	SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nature Cell Biology, 2005, 7, 412-419.	10.3	178
31	Spindle-independent condensation-mediated segregation of yeast ribosomal DNA in late anaphase. Journal of Cell Biology, 2005, 168, 209-219.	5.2	75
32	Sumoylation: A new wrestler in the DNA repair ring. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4661-4662.	7.1	9
33	Nucleolar Segregation Lags Behind the Rest of the Genome and Requires Cdc14p Activation by the FEAR Network. Cell Cycle, 2004, 3, 494-500.	2.6	58