
Antonio Augusto Franco Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7484472/publications.pdf Version: 2024-02-01

Antonio Augusto Franco

#	Article	IF	CITATIONS
1	OneMap: software for genetic mapping in outcrossing species. Hereditas, 2007, 144, 78-79.	1.4	326
2	Linking rhizosphere microbiome composition of wild and domesticated <i>Phaseolus vulgaris</i> to genotypic and root phenotypic traits. ISME Journal, 2017, 11, 2244-2257.	9.8	298
3	Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genetics and Molecular Biology, 2004, 27, 579-588.	1.3	162
4	AGHmatrix: R Package to Construct Relationship Matrices for Autotetraploid and Diploid Species: A Blueberry Example. Plant Genome, 2016, 9, plantgenome2016.01.0009.	2.8	158
5	Genotyping Polyploids from Messy Sequencing Data. Genetics, 2018, 210, 789-807.	2.9	157
6	Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theoretical and Applied Genetics, 2002, 104, 30-38.	3.6	141
7	Quantitative Trait Loci Mapping and The Genetic Basis of Heterosis in Maize and Rice. Genetics, 2008, 180, 1707-1724.	2.9	141
8	Efficiency of multi-trait, indirect, and trait-assisted genomic selection for improvement of biomass sorghum. Theoretical and Applied Genetics, 2018, 131, 747-755.	3.6	139
9	Building the sugarcane genome for biotechnology and identifying evolutionary trends. BMC Genomics, 2014, 15, 540.	2.8	136
10	Efficient Exact Maximum a Posteriori Computation for Bayesian SNP Genotyping in Polyploids. PLoS ONE, 2012, 7, e30906.	2.5	129
11	SNP genotyping allows an in-depth characterisation of the genome of sugarcane and other complex autopolyploids. Scientific Reports, 2013, 3, 3399.	3.3	129
12	De Novo Assembly and Transcriptome Analysis of Contrasting Sugarcane Varieties. PLoS ONE, 2014, 9, e88462.	2.5	129
13	Duplicate and Conquer: Multiple Homologs of <i>PHOSPHORUS-STARVATION TOLERANCE1</i> Enhance Phosphorus Acquisition and Sorghum Performance on Low-Phosphorus Soils Â. Plant Physiology, 2014, 166, 659-677.	4.8	117
14	Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome, 2004, 47, 795-804.	2.0	113
15	Comparison of similarity coefficients used for cluster analysis with dominant markers in maize (Zea) Tj ETQq 11	0.784314 1.3	$rg_{104}^{BT}/Overloo$
16	Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theoretical and Applied Genetics, 2006, 112, 298-314.	3.6	101
17	Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theoretical and Applied Genetics, 2012, 124, 1389-1402.	3.6	98
18	Sugarcane improvement: how far can we go?. Current Opinion in Biotechnology, 2012, 23, 265-270.	6.6	92

#	Article	IF	CITATIONS
19	GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genomics, 2017, 18, 72.	2.8	91
20	Genome-Wide Association Studies of Anthracnose and Angular Leaf Spot Resistance in Common Bean (Phaseolus vulgaris L.). PLoS ONE, 2016, 11, e0150506.	2.5	89
21	Characterization of new polymorphic functional markers for sugarcane. Genome, 2009, 52, 191-209.	2.0	87
22	Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breeding, 2006, 125, 378-384.	1.9	84
23	Biological activity of nine recombinant AtRALF peptides: Implications for their perception and function in Arabidopsis. Plant Physiology and Biochemistry, 2014, 75, 45-54.	5.8	81
24	Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Molecular Breeding, 2007, 20, 189-208.	2.1	79
25	Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 2. Quantitative trait loci (QTL) for grain yield, plant heigth, ear height and grain moisture. Hereditas, 2004, 139, 107-115.	1.4	77
26	Linkage Analysis and Haplotype Phasing in Experimental Autopolyploid Populations with High Ploidy Level Using Hidden Markov Models. G3: Genes, Genomes, Genetics, 2019, 9, 3297-3314.	1.8	75
27	A mixed model QTL analysis for sugarcane multiple-harvest-location trial data. Theoretical and Applied Genetics, 2012, 124, 835-849.	3.6	73
28	QTL Mapping of Growth-Related Traits in a Full-Sib Family of Rubber Tree (Hevea brasiliensis) Evaluated in a Sub-Tropical Climate. PLoS ONE, 2013, 8, e61238.	2.5	72
29	Genetic diversity in tropical maize inbred lines: heterotic group assignment and hybrid performance determined by RFLP markers. Plant Breeding, 2000, 119, 491-496.	1.9	70
30	Tropical maize germplasm: what can we say about its genetic diversity in the light of molecular markers?. Theoretical and Applied Genetics, 2005, 111, 1288-1299.	3.6	69
31	Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials. Heredity, 2018, 121, 24-37.	2.6	68
32	The Biotechnology Roadmap for Sugarcane Improvement. Tropical Plant Biology, 2010, 3, 75-87.	1.9	62
33	A fully automated pipeline for quantitative genotype calling from next generation sequencing data in autopolyploids. BMC Bioinformatics, 2018, 19, 398.	2.6	62
34	Title is missing!. Euphytica, 2003, 130, 87-99.	1.2	57
35	Genomic Selection with Allele Dosage in <i>Panicum maximum</i> Jacq G3: Genes, Genomes, Genetics, 2019, 9, 2463-2475.	1.8	57

 $_{36}$ A genome-wide association study identified loci for yield component traits in sugarcane (Saccharum) Tj ETQq0 0 0 gBT /Overlock 10 Tf

#	Article	IF	CITATIONS
37	Multiple interval QTL mapping and searching for PSTOL1 homologs associated with root morphology, biomass accumulation and phosphorus content in maize seedlings under low-P. BMC Plant Biology, 2015, 15, 172.	3.6	53
38	Functional markers for gene mapping and genetic diversity studies in sugarcane. BMC Research Notes, 2011, 4, 264.	1.4	51
39	QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas, 2008, 145, 194-203.	1.4	49
40	Mapping of angular leaf spot resistance QTL in common bean (Phaseolus vulgaris L.) under different environments. BMC Genetics, 2012, 13, 50.	2.7	48
41	Common bean cultivars and lines interactions with environments. Scientia Agricola, 2004, 61, 169-177.	1.2	46
42	Analysis of genomic and functional RFLP derived markers associated with sucrose content, fiber and yield QTLs in a sugarcane (Saccharum spp.) commercial cross. Euphytica, 2010, 172, 313-327.	1.2	46
43	Mapping of QTLs associated with biological nitrogen fixation traits in soybean. Hereditas, 2013, 150, 17-25.	1.4	45
44	Identification of QTLs associated with citrus resistance toPhytophthora gummosis. Journal of Applied Genetics, 2006, 47, 23-28.	1.9	44
45	An Integrated Molecular Map of Yellow Passion Fruit Based on Simultaneous Maximum-likelihood Estimation of Linkage and Linkage Phases. Journal of the American Society for Horticultural Science, 2008, 133, 35-41.	1.0	44
46	Mapping QTLs for kernel oil content in a tropical maize population. Euphytica, 2004, 137, 251-259.	1.2	43
47	Evaluation of algorithms used to order markers on genetic maps. Heredity, 2009, 103, 494-502.	2.6	41
48	QTL mapping including codominant SNP markers with ploidy level information in a sugarcane progeny. Euphytica, 2016, 211, 1-16.	1.2	39
49	Evidence of Allopolyploidy in Urochloa humidicola Based on Cytological Analysis and Genetic Linkage Mapping. PLoS ONE, 2016, 11, e0153764.	2.5	39
50	Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 1. Map construction and localization of loci showing distorted segregation. Hereditas, 2004, 139, 96-106.	1.4	37
51	Accurate genomic prediction of Coffea canephora in multiple environments using whole-genome statistical models. Heredity, 2019, 122, 261-275.	2.6	36
52	Quantitative analysis of race-specific resistance to Colletotrichum lindemuthianum in common bean. Molecular Breeding, 2014, 34, 1313-1329.	2.1	35
53	A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers. BMC Genetics, 2012, 13, 51.	2.7	34
54	A model for quantitative trait loci mapping, linkage phase, and segregation pattern estimation for a full-sib progeny. Tree Genetics and Genomes, 2014, 10, 791-801.	1.6	34

#	Article	IF	CITATIONS
55	Mixed Modeling of Yield Components and Brown Rust Resistance in Sugarcane Families. Agronomy Journal, 2016, 108, 1824-1837.	1.8	34
56	Inheritance of growth habit detected by genetic linkage analysis using microsatellites in the common bean (Phaseolus vulgaris L.). Molecular Breeding, 2011, 27, 549-560.	2.1	33
57	Genetic Architecture of Phosphorus Use Efficiency in Tropical Maize Cultivated in a Lowâ€P Soil. Crop Science, 2014, 54, 1530-1538.	1.8	33
58	Genetic diversity in cultivated carioca common beans based on molecular marker analysis. Genetics and Molecular Biology, 2011, 34, 88-102.	1.3	32
59	Evidence for Strong Kinship Influence on the Extent of Linkage Disequilibrium in Cultivated Common Beans. Genes, 2019, 10, 5.	2.4	32
60	Genetic Mapping With Allele Dosage Information in Tetraploid Urochloa decumbens (Stapf) R. D. Webster Reveals Insights Into Spittlebug (Notozulia entreriana Berg) Resistance. Frontiers in Plant Science, 2019, 10, 92.	3.6	32
61	Seleção de descritores botânico-agronômicos para caracterização de germoplasma de cupuaçuzeiro. Pesquisa Agropecuaria Brasileira, 2003, 38, 807-818.	0.9	31
62	Characterization of rust, early and late leaf spot resistance in wild and cultivated peanut germplasm. Scientia Agricola, 2009, 66, 110-117.	1.2	31
63	Molecular polymorphism and linkage analysis in sweet passion fruit, an outcrossing species. Annals of Applied Biology, 2013, 162, 347-361.	2.5	29
64	Developing a common bean core collection suitable for association mapping studies. Genetics and Molecular Biology, 2015, 38, 67-78.	1.3	29
65	The Relationship between Population Structure and Aluminum Tolerance in Cultivated Sorghum. PLoS ONE, 2011, 6, e20830.	2.5	29
66	Combining ability of inbred lines of maize and stability of their respective single-crosses. Scientia Agricola, 2003, 60, 83-89.	1.2	27
67	High-Resolution Genetic Map and QTL Analysis of Growth-Related Traits of Hevea brasiliensis Cultivated Under Suboptimal Temperature and Humidity Conditions. Frontiers in Plant Science, 2018, 9, 1255.	3.6	27
68	Evaluating genetic relationships between tropical maize inbred lines by means of AFLP profiling. Hereditas, 2004, 140, 24-33.	1.4	26
69	Genotypic characterization of microsatellite markers in broiler and layer selected chicken lines and their reciprocal F1s. Scientia Agricola, 2009, 66, 150-158.	1.2	26
70	Quantitative trait loci analysis of citrus leprosis resistance in an interspecific backcross family of (Citrus reticulata BlancoÂĂ—ÂC. sinensis L. Osbeck)ÂĂ—ÂC. sinensis L. Osb. Euphytica, 2009, 169, 101-111.	1.2	25
71	Novel Bayesian Networks for Genomic Prediction of Developmental Traits in Biomass Sorghum. G3: Genes, Genomes, Genetics, 2020, 10, 769-781.	1.8	25
72	A mixed model to multiple harvest-location trials applied to genomic prediction in Coffea canephora. Tree Genetics and Genomes, 2017, 13, 1.	1.6	23

#	Article	IF	CITATIONS
73	Gene Duplication in the Sugarcane Genome: A Case Study of Allele Interactions and Evolutionary Patterns in Two Genic Regions. Frontiers in Plant Science, 2019, 10, 553.	3.6	23
74	Sugarcane Underground Organs: Going Deep for Sustainable Production. Tropical Plant Biology, 2011, 4, 22-30.	1.9	22
75	QTL mapping and identification of corresponding genomic regions for black pod disease resistance to three Phytophthora species in Theobroma cacao L Euphytica, 2018, 214, 1.	1.2	22
76	Novel strategies for genomic prediction of untested single-cross maize hybrids using unbalanced historical data. Theoretical and Applied Genetics, 2020, 133, 443-455.	3.6	22
77	High-Resolution Linkage Map With Allele Dosage Allows the Identification of Regions Governing Complex Traits and Apospory in Guinea Grass (Megathyrsus maximus). Frontiers in Plant Science, 2020, 11, 15.	3.6	22
78	Comparação de Ãndices de seleção não paramétricos para a seleção de cultivares. Bragantia, 1999, 5 253-267.	⁸ 1.3	22
79	Influência do sistema de criação sobre o desempenho, a condição fisiológica e o comportamento de linhagens de frangos para corte. Revista Brasileira De Zootecnia, 2003, 32, 208-213.	0.8	20
80	Linkage Disequilibrium and Population Structure in Wild and Cultivated Populations of Rubber Tree (Hevea brasiliensis). Frontiers in Plant Science, 2018, 9, 815.	3.6	20
81	Multi-trait multi-environment quantitative trait loci mapping for a sugarcane commercial cross provides insights on the inheritance of important traits. Molecular Breeding, 2015, 35, 175.	2.1	19
82	QTL detection for growth and latex production in a full-sib rubber tree population cultivated under suboptimal climate conditions. BMC Plant Biology, 2018, 18, 223.	3.6	18
83	Improving yield and fruit quality traits in sweet passion fruit: Evidence for genotype by environment interaction and selection of promising genotypes. PLoS ONE, 2020, 15, e0232818.	2.5	16
84	Boosting predictive ability of tropical maize hybrids via genotypeâ€byâ€environment interaction under multivariate GBLUP models. Crop Science, 2020, 60, 3049-3065.	1.8	15
85	Marker-trait association and epistasis for brown rust resistance in sugarcane. Euphytica, 2015, 203, 533-547.	1.2	13
86	Estimation of Molecular Pairwise Relatedness in Autopolyploid Crops. G3: Genes, Genomes, Genetics, 2020, 10, 4579-4589.	1.8	11
87	Angular Leaf Spot Resistance Loci Associated With Different Plant Growth Stages in Common Bean. Frontiers in Plant Science, 2021, 12, 647043.	3.6	11
88	Development of a genetic linkage map of rubber tree (Hevea braziliensis) based on microsatellite markers. BMC Proceedings, 2011, 5, .	1.6	10
89	Alocação de linhagens de milho derivadas das populações BR-105 e BR-106 em grupos heteróticos. Scientia Agricola, 2001, 58, 541-548.	1.2	9
90	Genetic Variability, Correlation among Agronomic Traits, and Genetic Progress in a Sugarcane Diversity Panel. Agriculture (Switzerland), 2021, 11, 533.	3.1	9

#	Article	IF	CITATIONS
91	Leveraging probability concepts for cultivar recommendation in multi-environment trials. Theoretical and Applied Genetics, 2022, 135, 1385-1399.	3.6	8
92	The Sweet Passion Fruit (Passiflora alata) Crop: Genetic and Phenotypic Parameter Estimates and QTL Mapping for Fruit Traits. Tropical Plant Biology, 2017, 10, 18-29.	1.9	7
93	A first genetic map of Acca sellowiana based on ISSR, AFLP and SSR markers. Scientia Horticulturae, 2014, 169, 138-146.	3.6	6
94	Ascertainment bias from imputation methods evaluation in wheat. BMC Genomics, 2016, 17, 773.	2.8	5
95	New Developments in Sugarcane Genetics and Genomics. , 2017, , 159-174.		5
96	A molecular linkage map for <i>Drosophila mediopunctata</i> confirms synteny with <i>Drosophila melanogaster</i> and suggests a region that controls the variation in the number of abdominal spots. Insect Molecular Biology, 2012, 21, 89-95.	2.0	4
97	Genomic Selection: State of theÂArt. , 2017, , 19-54.		4
98	Comparison of different selection methods in the seedling stage of sugarcane breeding. Agronomy Journal, 2020, 112, 4879-4897.	1.8	4
99	Precision of distances and ordering of microsatellite markers in consensus linkage maps of chromosomes 1, 3 and 4 from two reciprocal chicken populations using bootstrap sampling. Genetics and Molecular Research, 2010, 9, 1357-1376.	0.2	4
100	Genetic mapping reveals complex architecture and candidate genes involved in common bean response to <i>Meloidogyne incognita</i> infection. Plant Genome, 2022, 15, e20161.	2.8	4
101	Genome-wide association studies dissect the genetic architecture of seed shape and size in common bean. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	4
102	Significance of linkage disequilibrium and epistasis on genetic variances in noninbred and inbred populations. BMC Genomics, 2022, 23, 286.	2.8	4
103	Phenotypic recurrent selection to improve protein quality in non-opaque maize populations. Scientia Agricola, 2002, 59, 743-748.	1.2	3
104	Decomposição ortogonal de graus de liberdade de tratamentos utilizando variáveis auxiliares e o PROC GLM do SAS. Bragantia, 2005, 64, 157-167.	1.3	3
105	Construction of a High-Density Genetic Map of Acca sellowiana (Berg.) Burret, an Outcrossing Species, Based on Two Connected Mapping Populations. Frontiers in Plant Science, 2021, 12, 626811.	3.6	3
106	QTL mapping for bioenergy traits in sweet sorghum recombinant inbred lines. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	3
107	Regiões genômicas associadas a caracterÃsticas de desempenho e carcaça no cromossomo 5 de linhagens Brasileiras de galinha. Pesquisa Agropecuaria Brasileira, 2011, 46, 229-238.	0.9	2
108	Composite interval mapping and mixed models reveal QTL associated with performance and carcass traits on chicken chromosomes 1, 3, and 4. Journal of Applied Genetics, 2014, 55, 97-103.	1.9	1

#	Article	IF	CITATIONS
109	Comparação dos algoritmos delineação rápida em cadeia e seriação, para a construção de mapas genéticos. Pesquisa Agropecuaria Brasileira, 2008, 43, 505-512.	0.9	1
110	Allele expression biases in mixed-ploid sugarcane accessions. Scientific Reports, 2022, 12, .	3.3	1