Lars-Eric Heimbürger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7483616/publications.pdf

Version: 2024-02-01

59 papers

3,873 citations

33 h-index 58 g-index

64 all docs

64 docs citations

64 times ranked 4529 citing authors

#	Article	IF	CITATIONS
1	A global ocean inventory of anthropogenic mercury based on water column measurements. Nature, 2014, 512, 65-68.	27.8	404
2	Marine ecosystems' responses to climatic and anthropogenic forcings in the Mediterranean. Progress in Oceanography, 2011, 91, 97-166.	3.2	385
3	The GEOTRACES Intermediate Data Product 2017. Chemical Geology, 2018, 493, 210-223.	3.3	257
4	Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition. Environmental Science & Envir	10.0	218
5	Mercury in the Southern Ocean. Geochimica Et Cosmochimica Acta, 2011, 75, 4037-4052.	3.9	209
6	Methyl mercury distributions in relation to the presence of nano- and picophytoplankton in an oceanic water column (Ligurian Sea, North-western Mediterranean). Geochimica Et Cosmochimica Acta, 2010, 74, 5549-5559.	3.9	149
7	Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018. Environmental Science & Environmental Science & Envi	10.0	125
8	Mercury Stable Isotope Signatures of World Coal Deposits and Historical Coal Combustion Emissions. Environmental Science & Env	10.0	118
9	A mass budget for mercury and methylmercury in the Arctic Ocean. Global Biogeochemical Cycles, 2016, 30, 560-575.	4.9	110
10	Widespread microbial mercury methylation genes in the global ocean. Environmental Microbiology Reports, 2020, 12, 277-287.	2.4	96
11	A double-stage tube furnaceâ€"acid-trapping protocol for the pre-concentration of mercury from solid samples for isotopic analysis. Analytical and Bioanalytical Chemistry, 2013, 405, 6771-6781.	3.7	92
12	Mercury stable isotopes constrain atmospheric sources to the ocean. Nature, 2021, 597, 678-682.	27.8	92
13	Mercury stable isotope fractionation in six utility boilers of two large coal-fired power plants. Chemical Geology, 2013, 336, 103-111.	3.3	91
14	Collection of atmospheric gaseous mercury for stable isotope analysis using iodine- and chlorine-impregnated activated carbon traps. Journal of Analytical Atomic Spectrometry, 2014, 29, 841.	3.0	81
15	Holocene Atmospheric Mercury Levels Reconstructed from Peat Bog Mercury Stable Isotopes. Environmental Science & Technology, 2017, 51, 5899-5906.	10.0	81
16	The Transpolar Drift as a Source of Riverine and Shelfâ€Derived Trace Elements to the Central Arctic Ocean. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015920.	2.6	80
17	How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere? – Implications for evaluating the effectiveness of the Minamata Convention. Science of the Total Environment, 2019, 674, 58-70.	8.0	7 5
18	Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean. Scientific Reports, 2015, 5, 10318.	3.3	70

#	Article	IF	CITATIONS
19	Eurasian river spring flood observations support net Arctic Ocean mercury export to the atmosphere and Atlantic Ocean. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11586-E11594.	7.1	68
20	Arctic mercury cycling. Nature Reviews Earth & Environment, 2022, 3, 270-286.	29.7	60
21	Hydrothermal impacts on trace element and isotope ocean biogeochemistry. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160035.	3.4	59
22	Mercury(II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry including a chloride desorption step. Talanta, 2015, 141, 26-32.	5 . 5	51
23	Mass-Independent Fractionation of Even and Odd Mercury Isotopes during Atmospheric Mercury Redox Reactions. Environmental Science & Environmental Scie	10.0	51
24	Trace metal concentrations in the North-western Mediterranean atmospheric aerosol between 1986 and 2008: Seasonal patterns and decadal trends. Science of the Total Environment, 2010, 408, 2629-2638.	8.0	48
25	Quantifying the impacts of artisanal gold mining on a tropical river system using mercury isotopes. Chemosphere, 2019, 219, 684-694.	8.2	48
26	Methylmercury Mass Budgets and Distribution Characteristics in the Western Pacific Ocean. Environmental Science & Environmenta	10.0	46
27	Global Ocean Sediment Composition and Burial Flux in the Deep Sea. Global Biogeochemical Cycles, 2021, 35, e2020GB006769.	4.9	46
28	Atmospheric mercury speciation dynamics at the high-altitude Pic du Midi Observatory, southern France. Atmospheric Chemistry and Physics, 2016, 16, 5623-5639.	4.9	42
29	Climate change and mercury in the Arctic: Abiotic interactions. Science of the Total Environment, 2022, 824, 153715.	8.0	42
30	Mercury biogeochemistry: Paradigm shifts, outstanding issues and research needs. Comptes Rendus - Geoscience, 2013, 345, 213-224.	1.2	41
31	Temporal variability of vertical export flux at the DYFAMED time-series station (Northwestern) Tj ETQq $1\ 1\ 0.7843$	14 rgBT /0 3.2	Overlock 10 T
32	Natural and anthropogenic trace metals in sediments of the Ligurian Sea (Northwestern) Tj ETQq0 0 0 rgBT /Ove	ogk 10 T	f 50,222 Td (I
33	Impact of atmospheric deposition of anthropogenic and natural trace metals on Northwestern Mediterranean surface waters: A box model assessment. Environmental Pollution, 2011, 159, 1629-1634.	7.5	35
34	Mediterranean Mercury Assessment 2022: An Updated Budget, Health Consequences, and Research Perspectives. Environmental Science & Environmental Scienc	10.0	31
35	Mercury distribution and transport in the North Atlantic Ocean along the GEOTRACES-GA01 transect. Biogeosciences, 2018, 15, 2309-2323.	3.3	29
36	A risk assessment review of mercury exposure in Arctic marine and terrestrial mammals. Science of the Total Environment, 2022, 829, 154445.	8.0	29

#	Article	IF	Citations
37	Mercury in the Black Sea: New Insights From Measurements and Numerical Modeling. Global Biogeochemical Cycles, 2018, 32, 529-550.	4.9	25
38	Evidence that Pacific tuna mercury levels are driven by marine methylmercury production and anthropogenic inputs. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	25
39	Mercury Export Flux in the Arctic Ocean Estimated from ²³⁴ Th/ ²³⁸ U Disequilibria. ACS Earth and Space Chemistry, 2020, 4, 795-801.	2.7	22
40	Nanogold-Decorated Silica Monoliths as Highly Efficient Solid-Phase Adsorbent for Ultratrace Mercury Analysis in Natural Waters. Analytical Chemistry, 2015, 87, 11122-11129.	6.5	21
41	Sources, cycling and transfer of mercury in the Labrador Sea (Geotraces-Geovide cruise). Marine Chemistry, 2018, 198, 64-69.	2.3	21
42	Human mercury exposure levels and fish consumption at the French Riviera. Chemosphere, 2020, 258, 127232.	8.2	21
43	Vertical export flux of metals in the Mediterranean Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 87, 14-23.	1.4	20
44	Mercury species export from the Arctic to the Atlantic Ocean. Marine Chemistry, 2020, 225, 103855.	2.3	19
45	Mercury in flux. Nature Geoscience, 2012, 5, 447-448.	12.9	17
46	The Solomon Sea: its circulation, chemistry, geochemistry and biology explored during two oceanographic cruises. Elementa, 2017, 5, .	3.2	17
47	Influence of the Arctic Sea-Ice Regime Shift on Sea-Ice Methylated Mercury Trends. Environmental Science and Technology Letters, 2020, 7, 708-713.	8.7	17
48	A comprehensive assessment of the mercury budget in the Marano–Grado Lagoon (Adriatic Sea) using a combined observational modeling approach. Marine Chemistry, 2015, 177, 742-752.	2.3	16
49	Introduction to the French GEOTRACES North Atlantic Transect (GA01): GEOVIDE cruise. Biogeosciences, 2018, 15, 7097-7109.	3.3	10
50	Mangrove microbiota along the urban-to-rural gradient of the Cayenne estuary (French Guiana, South) Tj ETQq0	0	Overlock 10 T
51	Chemical composition and inÂvitro aryl hydrocarbon receptor-mediated activity of atmospheric particulate matter at an urban, agricultural and industrial site in North Africa (Bizerte, Tunisia). Chemosphere, 2020, 258, 127312.	8.2	9
52	Arctic – Atlantic Exchange of the Dissolved Micronutrients Iron, Manganese, Cobalt, Nickel, Copper and Zinc With a Focus on Fram Strait. Global Biogeochemical Cycles, 2022, 36, .	4.9	9
53	Temporal variability of dissolved trace metals at the DYFAMED time-series station, Northwestern Mediterranean. Marine Chemistry, 2020, 225, 103846.	2.3	7
54	Characterization of the submarine disposal of a Bayer effluent (Gardanne alumina plant, southern) Tj ETQq0 0 0 0	rgBT /Over 8.2	rlock 10 Tf 50 6

outfall. Chemosphere, 2021, 263, 127695.

#	Article	IF	CITATIONS
55	First Assessment of the Benthic Meiofauna Sensitivity to Low Human-Impacted Mangroves in French Guiana. Forests, 2021, 12, 338.	2.1	6
56	Searching for the Record of Historical Earthquakes, Floods and Anthropogenic Activities in the Var Sedimentary Ridge (NW Mediterranean). Advances in Natural and Technological Hazards Research, 2014, , 571-581.	1.1	6
57	Arctic Ocean's wintertime mercury concentrations limited by seasonal loss on the shelf. Nature Geoscience, 2022, 15, 621-626.	12.9	3
58	Approaches to evaluate spatial and temporal variability of deep marine sediment characteristics under the impact of dense water formation events. Mediterranean Marine Science, 0, , .	1.6	1
59	Mercury in the Cryosphere. , 2021, , 459-502.		0