Ralf Heermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7483183/publications.pdf

Version: 2024-02-01

236925 223800 2,475 72 25 46 citations h-index g-index papers 82 82 82 3159 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Defect-controlled halogenating properties of lanthanide-doped ceria nanozymes. Nanoscale, 2022, 14, 4740-4752.	5.6	6
2	High-throughput synthesis of CeO2 nanoparticles for transparent nanocomposites repelling Pseudomonas aeruginosa biofilms. Scientific Reports, 2022, 12, 3935.	3.3	7
3	High-throughput sequencing analysis reveals genomic similarity in phenotypic heterogeneous Photorhabdus luminescens cell populations. Annals of Microbiology, 2022, 72, .	2.6	2
4	ldentification of <i>Pseudomonas asiatica</i> subsp. <i>bavariensis</i> str. <scp>JM1</scp> as the first <i>N</i> _{<i>Îμ</i>} â€carboxy(m)ethyllysineâ€degrading soil bacterium. Environmental Microbiology, 2022, 24, 3229-3241.	3.8	4
5	The Insect Pathogen Photorhabdus luminescens Protects Plants from Phytopathogenic Fusarium graminearum via Chitin Degradation. Applied and Environmental Microbiology, 2022, 88, .	3.1	4
6	Transcriptional regulation of the <i>N</i> _ε â€fructoselysine metabolism in <i>Escherichia coli</i> by global and substrateâ€specific cues. Molecular Microbiology, 2021, 115, 175-190.	2.5	10
7	Two novel XRE-like transcriptional regulators control phenotypic heterogeneity in Photorhabdus luminescens cell populations. BMC Microbiology, 2021, 21, 63.	3.3	8
8	Identification of Gip as a novel phageâ€encoded gyrase inhibitor protein of <i>Corynebacterium glutamicum</i> . Molecular Microbiology, 2021, 116, 1268-1280.	2.5	3
9	Transparent polycarbonate coated with CeO ₂ nanozymes repel <i>Pseudomonas aeruginosa</i> PA14 biofilms. Nanoscale, 2021, 14, 86-98.	5.6	11
10	New Vocabulary for Bacterial Communication. ChemBioChem, 2020, 21, 759-768.	2.6	29
11	Nanocomposite antimicrobials prevent bacterial growth through the enzyme-like activity of Bi-doped cerium dioxide (Ce _{1â°'x} Bi _x O _{2â°'Î}). Nanoscale, 2020, 12, 21344-21358.	5. 6	20
12	The great potential of entomopathogenic bacteria Xenorhabdus and Photorhabdus for mosquito control: a review. Parasites and Vectors, 2020, 13, 376.	2.5	44
13	Deciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of Corynebacterium glutamicum as a Model. MBio, 2020, 11, .	4.1	15
14	The Biocontrol Agent and Insect Pathogen Photorhabdus luminescens Interacts with Plant Roots. Applied and Environmental Microbiology, 2020, 86, .	3.1	18
15	Small <scp>RNA</scp> â€binding protein RapZ mediates cell envelope precursor sensing and signaling in <i>Escherichia coli</i> . EMBO Journal, 2020, 39, e103848.	7.8	23
16	Anti-Trypanosoma activity of bioactive metabolites from Photorhabdus luminescens and Xenorhabdus nematophila. Experimental Parasitology, 2019, 204, 107724.	1.2	8
17	T Cell Transfection: Coming in and Finding Out: Blending Receptor‶argeted Delivery and Efficient Endosomal Escape in a Novel Bioâ€Responsive siRNA Delivery System for Gene Knockdown in Pulmonary T Cells (Adv. Therap. 7/2019). Advanced Therapeutics, 2019, 2, 1970015.	3.2	2
18	Variants of the Bacillus subtilis LysR-Type Regulator GltC With Altered Activator and Repressor Function. Frontiers in Microbiology, 2019, 10, 2321.	3.5	7

#	Article	IF	Citations
19	Promoter Activation in î" hfq Mutants as an Efficient Tool for Specialized Metabolite Production Enabling Direct Bioactivity Testing. Angewandte Chemie, 2019, 131, 19133-19139.	2.0	16
20	Promoter Activation in \hat{l} 'i>hfq Mutants as an Efficient Tool for Specialized Metabolite Production Enabling Direct Bioactivity Testing. Angewandte Chemie - International Edition, 2019, 58, 18957-18963.	13.8	40
21	Phenotypic Heterogeneity of the Insect Pathogen Photorhabdus luminescens: Insights into the Fate of Secondary Cells. Applied and Environmental Microbiology, 2019, 85, .	3.1	16
22	Characterization of the pleiotropic LysR-type transcription regulator LeuO of Escherichia coli. Nucleic Acids Research, 2019, 47, 7363-7379.	14.5	13
23	Coming in and Finding Out: Blending Receptorâ€Targeted Delivery and Efficient Endosomal Escape in a Novel Bioâ€Responsive siRNA Delivery System for Gene Knockdown in Pulmonary T Cells. Advanced Therapeutics, 2019, 2, 1900047.	3.2	21
24	Regulation of Phenotypic Switching and Heterogeneity in Photorhabdus luminescens Cell Populations. Journal of Molecular Biology, 2019, 431, 4559-4568.	4.2	17
25	Rücktitelbild: Promoter Activation in Δ <i>hfq</i> Mutants as an Efficient Tool for Specialized Metabolite Production Enabling Direct Bioactivity Testing (Angew. Chem. 52/2019). Angewandte Chemie, 2019, 131, 19288-19288.	2.0	0
26	Phosphorylation of the outer membrane mitochondrial protein OM64 influences protein import into mitochondria. Mitochondrion, 2019, 44, 93-102.	3.4	15
27	Entomopathogenic bacteriaPhotorhabdus luminescensas drug source againstLeishmania amazonensis. Parasitology, 2018, 145, 1065-1074.	1.5	16
28	The small RNA RssR regulates myo-inositol degradation by Salmonella enterica. Scientific Reports, 2018, 8, 17739.	3.3	11
29	Phenotypic and genomic comparison of Photorhabdus luminescens subsp. laumondii TT01 and a widely used rifampicin-resistant Photorhabdus luminescens laboratory strain. BMC Genomics, 2018, 19, 854.	2.8	22
30	TOM9.2 Is a Calmodulin-Binding Protein Critical for TOM Complex Assembly but Not for Mitochondrial Protein Import in Arabidopsis thaliana. Molecular Plant, 2017, 10, 575-589.	8.3	9
31	Larvicidal and Growth-Inhibitory Activity of Entomopathogenic Bacteria Culture Fluids Against <i>Aedes aegypti</i> (Diptera: Culicidae). Journal of Economic Entomology, 2017, 110, tow224.	1.8	12
32	CipA and CipB as Scaffolds To Organize Proteins into Crystalline Inclusions. ACS Synthetic Biology, 2017, 6, 826-836.	3.8	28
33	Structure-function analysis of the DNA-binding domain of a transmembrane transcriptional activator. Scientific Reports, 2017, 7, 1051.	3.3	46
34	Insulation and wiring specificity of BceRâ€ike response regulators and their target promoters in ⟨i⟩Bacillus subtilis⟨/i⟩. Molecular Microbiology, 2017, 104, 16-31.	2.5	7
35	Genetic Characterization of the Galactitol Utilization Pathway of Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2017, 199, .	2.2	22
36	Nonâ€canonical activation of histidine kinase KdpD by phosphotransferase protein PtsN through interaction with the transmitter domain. Molecular Microbiology, 2017, 106, 54-73.	2.5	26

#	Article	IF	Citations
37	High binding affinity of repressor lolR avoids costs of untimely induction of myo-inositol utilization by Salmonella Typhimurium. Scientific Reports, 2017, 7, 44362.	3.3	11
38	HexA is a versatile regulator involved in the control of phenotypic heterogeneity of Photorhabdus luminescens. PLoS ONE, 2017, 12, e0176535.	2.5	15
39	Interaction Analysis of a Two-Component System Using Nanodiscs. PLoS ONE, 2016, 11, e0149187.	2.5	15
40	Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood, 2016, 128, 2435-2449.	1.4	219
41	Heterogeneous regulation of bacterial natural product biosynthesis via a novel transcription factor. Heliyon, 2016, 2, e00197.	3.2	13
42	Insights into the DNA-binding mechanism of a LytTR-type transcription regulator. Bioscience Reports, 2016, 36, .	2.4	14
43	A Dual-Sensing Receptor Confers Robust Cellular Homeostasis. Cell Reports, 2016, 16, 213-221.	6.4	32
44	Quorum Sensing and LuxR Solos in Photorhabdus. Current Topics in Microbiology and Immunology, 2016, 402, 103-119.	1.1	10
45	A novel tool for stable genomic reporter gene integration to analyze heterogeneity in <i>Photorhabdus luminescens</i> at the single-cell level. BioTechniques, 2015, 59, 74-81.	1.8	14
46	Dialkylresorcinols as bacterial signaling molecules. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 572-577.	7.1	117
47	Languages and dialects: bacterial communication beyond homoserine lactones. Trends in Microbiology, 2015, 23, 521-523.	7.7	46
48	Specificity of Signal-Binding via Non-AHL LuxR-Type Receptors. PLoS ONE, 2015, 10, e0124093.	2.5	32
49	LuxR solos in Photorhabdus species. Frontiers in Cellular and Infection Microbiology, 2014, 4, 166.	3.9	35
50	A Sensory Complex Consisting of an ATP-binding Cassette Transporter and a Two-component Regulatory System Controls Bacitracin Resistance in Bacillus subtilis. Journal of Biological Chemistry, 2014, 289, 27899-27910.	3.4	73
51	Single Cell Kinetics of Phenotypic Switching in the Arabinose Utilization System of E. coli. PLoS ONE, 2014, 9, e89532.	2.5	48
52	Dynamics of an Interactive Network Composed of a Bacterial Two-Component System, a Transporter and K+ as Mediator. PLoS ONE, 2014, 9, e89671.	2.5	12
53	Pyrones as bacterial signaling molecules. Nature Chemical Biology, 2013, 9, 573-578.	8.0	180
54	Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae). Parasitology Research, 2013, 112, 2891-2896.	1.6	43

#	Article	IF	Citations
55	Quantification of Interaction Strengths between Chaperones and Tetratricopeptide Repeat Domain-containing Membrane Proteins. Journal of Biological Chemistry, 2013, 288, 30614-30625.	3.4	28
56	Histidine kinases and response regulators in networks. Current Opinion in Microbiology, 2012, 15, 118-124.	5.1	204
57	The complexity of the â€~simple' two-component system KdpD/KdpE in <i>Escherichia coli</i> . FEMS Microbiology Letters, 2010, 304, 97-106.	1.8	71
58	Domain swapping reveals that the N-terminal domain of the sensor kinase KdpD in Escherichia coli is important for signaling. BMC Microbiology, 2009, 9, 133.	3. 3	14
59	Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA ^{Ntr} in <i>Escherichia coli</i>). Molecular Microbiology, 2009, 72, 978-994.	2.5	98
60	The Universal Stress Protein UspC Scaffolds the KdpD/KdpE Signaling Cascade of Escherichia coli under Salt Stress. Journal of Molecular Biology, 2009, 386, 134-148.	4.2	69
61	Photorhabdus luminescens genes induced upon insect infection. BMC Genomics, 2008, 9, 229.	2.8	48
62	Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: uncovering candidate genes involved in insect pathogenicity. BMC Genomics, 2008, 9, 40.	2.8	81
63	Simple generation of site-directed point mutations in the Escherichia coli chromosome using Red®/ET® Recombination. Microbial Cell Factories, 2008, 7, 14.	4.0	63
64	Purification, Reconstitution, and Characterization of the CpxRAP Envelope Stress System of Escherichia coli. Journal of Biological Chemistry, 2007, 282, 8583-8593.	3.4	101
65	Analysis of two-component signal transduction by mathematical modeling using the KdpD/KdpE system of Escherichia coli. BioSystems, 2004, 78, 23-37.	2.0	30
66	Structural features and mechanisms for sensing high osmolarity in microorganisms. Current Opinion in Microbiology, 2004, 7, 168-174.	5.1	19
67	The transmembrane domains of the sensor kinase KdpD of Escherichia coli are not essential for sensing K+ limitation. Molecular Microbiology, 2003, 47, 839-848.	2.5	27
68	The N-terminal Input Domain of the Sensor Kinase KdpD of Escherichia coli Stabilizes the Interaction between the Cognate Response Regulator KdpE and the Corresponding DNA-binding Site. Journal of Biological Chemistry, 2003, 278, 51277-51284.	3.4	33
69	A chimeric Anabaena / Escherichia coli KdpD protein (Anacoli KdpD) functionally interacts with E. coli KdpE and activates kdp expression in E. coli. Archives of Microbiology, 2002, 178, 141-148.	2.2	14
70	The Hydrophilic N-terminal Domain Complements the Membrane-anchored C-terminal Domain of the Sensor Kinase KdpD ofEscherichia coli. Journal of Biological Chemistry, 2000, 275, 17080-17085.	3.4	31
71	Effect of cysteine replacements on the properties of the turgor sensor KdpD of Escherichia coli. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1372, 311-322.	2.6	16
72	The turgor sensor KdpD of Escherichia coli is a homodimer. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1415, 114-124.	2.6	29