Shintaro Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/74831/publications.pdf

Version: 2024-02-01

20759 34900 38,503 98 60 98 citations h-index g-index papers 100 100 100 33173 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Toll-like receptor recognizes bacterial DNA. Nature, 2000, 408, 740-745.	13.7	5,827
2	Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 2006, 441, 101-105.	13.7	3,292
3	Role of Adaptor TRIF in the MyD88-Independent Toll-Like Receptor Signaling Pathway. Science, 2003, 301, 640-643.	6.0	2,808
4	Small anti-viral compounds activate immune cells via the TLR7 MyD88–dependent signaling pathway. Nature Immunology, 2002, 3, 196-200.	7.0	2,290
5	IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nature Immunology, 2005, 6, 981-988.	7.0	2,254
6	Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature, 2004, 432, 917-921.	13.7	1,540
7	Cell Type-Specific Involvement of RIG-I in Antiviral Response. Immunity, 2005, 23, 19-28.	6.6	1,221
8	Cutting Edge: Role of Toll-Like Receptor 1 in Mediating Immune Response to Microbial Lipoproteins. Journal of Immunology, 2002, 169, 10-14.	0.4	1,186
9	Cutting Edge: A Novel Toll/IL-1 Receptor Domain-Containing Adapter That Preferentially Activates the IFN-Î ² Promoter in the Toll-Like Receptor Signaling. Journal of Immunology, 2002, 169, 6668-6672.	0.4	1,123
10	Lipopolysaccharide Stimulates the MyD88-Independent Pathway and Results in Activation of IFN-Regulatory Factor 3 and the Expression of a Subset of Lipopolysaccharide-Inducible Genes. Journal of Immunology, 2001, 167, 5887-5894.	0.4	986
11	TRAM is specifically involved in the Toll-like receptor 4–mediated MyD88-independent signaling pathway. Nature Immunology, 2003, 4, 1144-1150.	7.0	919
12	Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature, 2002, 420, 324-329.	13.7	910
13	Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature Immunology, 2004, 5, 1061-1068.	7.0	894
14	Essential function for the kinase TAK1 in innate and adaptive immune responses. Nature Immunology, 2005, 6, 1087-1095.	7.0	839
15	A Toll-like receptor–independent antiviral response induced by double-stranded B-form DNA. Nature Immunology, 2006, 7, 40-48.	7.0	704
16	Cutting Edge: Endotoxin Tolerance in Mouse Peritoneal Macrophages Correlates with Down-Regulation of Surface Toll-Like Receptor 4 Expression. Journal of Immunology, 2000, 164, 3476-3479.	0.4	700
17	Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nature Immunology, 2008, 9, 769-776.	7.0	668
18	Toll/IL-1 Receptor Domain-Containing Adaptor Inducing IFN-β (TRIF) Associates with TNF Receptor-Associated Factor 6 and TANK-Binding Kinase 1, and Activates Two Distinct Transcription Factors, NF-κB and IFN-Regulatory Factor-3, in the Toll-Like Receptor Signaling. Journal of Immunology, 2003, 171, 4304-4310.	0.4	629

#	Article	IF	CITATIONS
19	SOCS-1 Participates in Negative Regulation of LPS Responses. Immunity, 2002, 17, 677-687.	6.6	583
20	LGP2 is a positive regulator of RIG-l– and MDA5-mediated antiviral responses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1512-1517.	3.3	540
21	Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. Journal of Experimental Medicine, 2005, 201, 19-25.	4.2	537
22	The Roles of Two IκB Kinase-related Kinases in Lipopolysaccharide and Double Stranded RNA Signaling and Viral Infection. Journal of Experimental Medicine, 2004, 199, 1641-1650.	4.2	536
23	Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science, 2014, 345, 1254009.	6.0	450
24	Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction. Journal of Experimental Medicine, 2005, 201, 915-923.	4.2	446
25	Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein llºBl¶. Nature, 2004, 430, 218-222.	13.7	445
26	Essential role of IPS-1 in innate immune responses against RNA viruses. Journal of Experimental Medicine, 2006, 203, 1795-1803.	4.2	438
27	Synergy and Cross-Tolerance Between Toll-Like Receptor (TLR) 2- and TLR4-Mediated Signaling Pathways. Journal of Immunology, 2000, 165, 7096-7101.	0.4	367
28	Sequential control of Toll-like receptor–dependent responses by IRAK1 and IRAK2. Nature Immunology, 2008, 9, 684-691.	7.0	361
29	Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nature Immunology, 2006, 7, 962-970.	7.0	249
30	Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nature Communications, 2012, 3, 1034.	5.8	243
31	Toll-like Receptors and Their Signaling Mechanisms. Scandinavian Journal of Infectious Diseases, 2003, 35, 555-562.	1.5	237
32	Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis. Nature Cell Biology, 2006, 8, 615-622.	4.6	229
33	Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7419-7424.	3.3	197
34	Cutting Edge: Roles of Caspase-8 and Caspase-10 in Innate Immune Responses to Double-Stranded RNA. Journal of Immunology, 2006, 176, 4520-4524.	0.4	161
35	Essential role of IRAK-4 protein and its kinase activity in Toll-like receptor–mediated immune responses but not in TCR signaling. Journal of Experimental Medicine, 2007, 204, 1013-1024.	4.2	158
36	A variety of microbial components induce tolerance to lipopolysaccharide by differentially affecting MyD88-dependent and -independent pathways. International Immunology, 2002, 14, 783-791.	1.8	153

#	Article	IF	CITATIONS
37	Pathological role of Toll-like receptor signaling in cerebral malaria. International Immunology, 2006, 19, 67-79.	1.8	144
38	Toll-like Receptor 3 and STAT-1 Contribute to Double-stranded RNA+ Interferon- \hat{l}^3 -induced Apoptosis in Primary Pancreatic \hat{l}^2 -Cells. Journal of Biological Chemistry, 2005, 280, 33984-33991.	1.6	140
39	TAK1 Is a Master Regulator of Epidermal Homeostasis Involving Skin Inflammation and Apoptosis. Journal of Biological Chemistry, 2006, 281, 19610-19617.	1.6	136
40	Lipocalin 2-Dependent Inhibition of Mycobacterial Growth in Alveolar Epithelium. Journal of Immunology, 2008, 181, 8521-8527.	0.4	127
41	Nanogel-Based PspA Intranasal Vaccine Prevents Invasive Disease and Nasal Colonization by Streptococcus pneumoniae. Infection and Immunity, 2013, 81, 1625-1634.	1.0	126
42	Generation of colonic IgA-secreting cells in the caecal patch. Nature Communications, 2014, 5, 3704.	5.8	121
43	Blockade of TLR3 protects mice from lethal radiation-induced gastrointestinal syndrome. Nature Communications, 2014, 5, 3492.	5.8	119
44	Fasting-Refeeding Impacts Immune Cell Dynamics and Mucosal Immune Responses. Cell, 2019, 178, 1072-1087.e14.	13.5	119
45	TAK1 is indispensable for development of T cells and prevention of colitis by the generation of regulatory T cells. International Immunology, 2006, 18 , $1405-1411$.	1.8	110
46	Interleukin-1 (IL-1)-induced TAK1-dependent Versus MEKK3-dependent NFÎB Activation Pathways Bifurcate at IL-1 Receptor-associated Kinase Modification. Journal of Biological Chemistry, 2007, 282, 6075-6089.	1.6	101
47	Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nature Communications, 2021, 12, 5674.	5.8	95
48	The Airway Antigen Sampling System: Respiratory M Cells as an Alternative Gateway for Inhaled Antigens. Journal of Immunology, 2011, 186, 4253-4262.	0.4	91
49	Leishmania-Induced IRAK-1 Inactivation Is Mediated by SHP-1 Interacting with an Evolutionarily Conserved KTIM Motif. PLoS Neglected Tropical Diseases, 2008, 2, e305.	1.3	88
50	TLR8-mediated NF- \hat{l}^{9} B and JNK Activation Are TAK1-independent and MEKK3-dependent. Journal of Biological Chemistry, 2006, 281, 21013-21021.	1.6	84
51	A Refined Culture System for Human Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Organoids. Stem Cell Reports, 2018, 10, 314-328.	2.3	83
52	The mucosal immune system of the respiratory tract. Current Opinion in Virology, 2012, 2, 225-232.	2.6	82
53	The Enzyme Cyp26b1 Mediates Inhibition of Mast Cell Activation by Fibroblasts to Maintain Skin-Barrier Homeostasis. Immunity, 2014, 40, 530-541.	6.6	81
54	Cutting Edge: Role of TANK-Binding Kinase 1 and Inducible lî® Kinase in IFN Responses against Viruses in Innate Immune Cells. Journal of Immunology, 2006, 177, 5785-5789.	0.4	79

#	Article	IF	CITATIONS
55	Cutting Edge: Pivotal Function of Ubc13 in Thymocyte TCR Signaling. Journal of Immunology, 2006, 177, 7520-7524.	0.4	76
56	An essential role for the N-terminal fragment of Toll-like receptor 9 in DNA sensing. Nature Communications, 2013, 4, 1949.	5.8	74
57	Enhanced TLR-mediated NF-IL6–dependent gene expression by Trib1 deficiency. Journal of Experimental Medicine, 2007, 204, 2233-2239.	4.2	73
58	The Ectoenzyme E-NPP3 Negatively Regulates ATP-Dependent Chronic Allergic Responses by Basophils and Mast Cells. Immunity, 2015, 42, 279-293.	6.6	70
59	ld2-, RORγt-, and LTβR-independent initiation of lymphoid organogenesis in ocular immunity. Journal of Experimental Medicine, 2009, 206, 2351-2364.	4.2	66
60	Lymphoid tissue-resident Alcaligenes LPS induces IgA production without excessive inflammatory responses via weak TLR4 agonist activity. Mucosal Immunology, 2018, 11, 693-702.	2.7	65
61	Intracellular <i>Mycobacterium avium</i> Intersect Transferrin in the Rab11 ⁺ Recycling Endocytic Pathway and Avoid Lipocalin 2 Trafficking to the Lysosomal Pathway. Journal of Infectious Diseases, 2010, 201, 783-792.	1.9	64
62	Eosinophil depletion suppresses radiation-induced small intestinal fibrosis. Science Translational Medicine, 2018, 10 , .	5 . 8	58
63	Transforming Growth Factor- \hat{l}^2 -activated Kinase 1 Is Essential for Differentiation and the Prevention of Apoptosis in Epidermis. Journal of Biological Chemistry, 2006, 281, 22013-22020.	1.6	52
64	Metagenome Data on Intestinal Phage-Bacteria Associations Aids the Development of Phage Therapy against Pathobionts. Cell Host and Microbe, 2020, 28, 380-389.e9.	5.1	51
65	Lipocalin 2 Bolsters Innate and Adaptive Immune Responses to Blood-Stage Malaria Infection by Reinforcing Host Iron Metabolism. Cell Host and Microbe, 2012, 12, 705-716.	5.1	50
66	Human Norovirus Propagation in Human Induced Pluripotent Stem Cell–Derived Intestinal Epithelial Cells. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 686-688.e5.	2.3	48
67	Sox8 is essential for M cell maturation to accelerate IgA response at the early stage after weaning in mice. Journal of Experimental Medicine, 2019, 216, 831-846.	4.2	47
68	Mucosal Immunosenescence in the Gastrointestinal Tract: A Mini-Review. Gerontology, 2015, 61, 336-342.	1.4	46
69	Reciprocal Inflammatory Signaling Between Intestinal Epithelial Cells and Adipocytes in the Absence of Immune Cells. EBioMedicine, 2017, 23, 34-45.	2.7	45
70	SARS-CoV-2 infection triggers paracrine senescence and leads to a sustained senescence-associated inflammatory response. Nature Aging, 2022, 2, 115-124.	5. 3	43
71	Blockade of transforming growth factor- \hat{l}^2 -activated kinase 1 activity enhances TRAIL-induced apoptosis through activation of a caspase cascade. Molecular Cancer Therapeutics, 2006, 5, 2970-2976.	1.9	41
72	Allograft inflammatory factor 1 is a regulator of transcytosis in M cells. Nature Communications, 2017, 8, 14509.	5.8	39

#	Article	IF	Citations
73	TAK1 Is a Component of the Epstein-Barr Virus LMP1 Complex and Is Essential for Activation of JNK but Not of NF-κB. Journal of Biological Chemistry, 2006, 281, 7863-7872.	1.6	34
74	Vaginal Memory T Cells Induced by Intranasal Vaccination Are Critical for Protective T Cell Recruitment and Prevention of Genital HSV-2 Disease. Journal of Virology, 2014, 88, 13699-13708.	1.5	34
75	Osteoprotegerin-dependent M cell self-regulation balances gut infection and immunity. Nature Communications, 2020, 11, 234.	5.8	34
76	Potent Antimycobacterial Activity of Mouse Secretory Leukocyte Protease Inhibitor. Journal of Immunology, 2008, 180, 4032-4039.	0.4	33
77	Loss of Lymph Node Fibroblastic Reticular Cells and High Endothelial Cells Is Associated with Humoral Immunodeficiency in Mouse Graft-versus-Host Disease. Journal of Immunology, 2015, 194, 398-406.	0.4	27
78	IL-10-producing CD4+ T cells negatively regulate fucosylation of epithelial cells in the gut. Scientific Reports, 2015, 5, 15918.	1.6	26
79	Intestinal commensal microbiota and cytokines regulate Fut2 ⁺ Paneth cells for gut defense. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	26
80	Alcohol abrogates human norovirus infectivity in a pH-dependent manner. Scientific Reports, 2020, 10, 15878.	1.6	25
81	Mucosal adjuvants for vaccines to control upper respiratory infections in the elderly. Experimental Gerontology, 2014, 54, 21-26.	1.2	24
82	The gut microbiota induces Peyer's-patch-dependent secretion of maternal IgA into milk. Cell Reports, 2021, 36, 109655.	2.9	24
83	HTLV-1 Tax-induced NFήB activation is independent of Lys-63-linked-type polyubiquitination. Biochemical and Biophysical Research Communications, 2007, 357, 225-230.	1.0	22
84	Intravesicular Acidification Regulates Lipopolysaccharide Inflammation and Tolerance through TLR4 Trafficking. Journal of Immunology, 2018, 200, 2798-2808.	0.4	19
85	Regulation and function of the cytosolic viral RNA sensor RIG-I in pancreatic beta cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1768-1775.	1.9	18
86	Runx2-I Isoform Contributes to Fetal Bone Formation Even in the Absence of Specific N-Terminal Amino Acids. PLoS ONE, 2014, 9, e108294.	1.1	15
87	Inflammatory Mediator TAK1 Regulates Hair Follicle Morphogenesis and Anagen Induction Shown by Using Keratinocyte-Specific TAK1-Deficient Mice. PLoS ONE, 2010, 5, e11275.	1.1	15
88	Central Role of Core Binding Factor \hat{I}^2 2 in Mucosa-Associated Lymphoid Tissue Organogenesis in Mouse. PLoS ONE, 2015, 10, e0127460.	1.1	10
89	Critical Role of Dendritic Cells in T Cell Retention in the Interfollicular Region of Peyer's Patches. Journal of Immunology, 2013, 191, 942-948.	0.4	7
90	Identification and Analysis of Natural Killer Cells in Murine Nasal Passages. PLoS ONE, 2015, 10, e0142920.	1.1	7

#	Article	IF	CITATIONS
91	A role for the CCR5–CCL5 interaction in the preferential migration of HSV-2-specific effector cells to the vaginal mucosa upon nasal immunization. Mucosal Immunology, 2019, 12, 1391-1403.	2.7	7
92	Persistent colonization of non-lymphoid tissue-resident macrophages by <i>Stenotrophomonas maltophilia</i> . International Immunology, 2020, 32, 133-141.	1.8	6
93	Development of Antibody-Fragment–Producing Rice for Neutralization of Human Norovirus. Frontiers in Plant Science, 2021, 12, 639953.	1.7	6
94	Comparison of gene expression and activation of transcription factors in organoid-derived monolayer intestinal epithelial cells and organoids. Bioscience, Biotechnology and Biochemistry, 2021, 85, 2137-2144.	0.6	6
95	A Heterodimeric Antibody Fragment for Passive Immunotherapy Against Norovirus Infection. Journal of Infectious Diseases, 2020, 222, 470-478.	1.9	5
96	Peyer $\hat{E}^{1}\!\!/\!4$ s Patches Play a Protective Role in Nonsteroidal Anti-inflammatory Drug-induced Enteropathy in Mice. Inflammatory Bowel Diseases, 2014, 20, 790-799.	0.9	3
97	M Cell-Targeted Vaccines. , 2020, , 487-498.		1
98	Genesis of tear ductâ€associated lymphoid tissue is independent of Id2, RORγt but requires Cbfβ2 transcriptional regulator. FASEB Journal, 2008, 22, 845.1.	0.2	0