
Pascale Marchot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7482411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO Journal, 2005, 24, 3635-3646.	7.8	602
2	Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. EMBO Journal, 2003, 22, 1-12.	7.8	362
3	Acetylcholinesterase inhibition by fasciculin: Crystal structure of the complex. Cell, 1995, 83, 503-512.	28.9	357
4	Crystal structure of a Cbtx–AChBP complex reveals essential interactions between snake α-neurotoxins and nicotinic receptors. EMBO Journal, 2005, 24, 1512-1522.	7.8	302
5	Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1449-1454.	7.1	297
6	ESTHER, the database of the $\hat{l} \pm / \hat{l}^2$ -hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Research, 2012, 41, D423-D429.	14.5	244
7	Immunocytochemical Localization and Crystal Structure of Human Frequenin (Neuronal Calcium) Tj ETQq1 1 0.78	4314 rgB⊺ 3.4	F /Oyerlock 176
8	Structural determinants in phycotoxins and AChBP conferring high affinity binding and nicotinic AChR antagonism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6076-6081.	7.1	156
9	Conformational Flexibility of the Acetylcholinesterase Tetramer Suggested by X-ray Crystallography. Journal of Biological Chemistry, 1999, 274, 30370-30376.	3.4	154
10	Structural determinants for interaction of partial agonists with acetylcholine binding protein and neuronal α7 nicotinic acetylcholine receptor. EMBO Journal, 2009, 28, 3040-3051.	7.8	153
11	ESTHER, the database of the Â/Â-hydrolase fold superfamily of proteins. Nucleic Acids Research, 2004, 32, 145D-147.	14.5	150
12	Structural Analysis of the Synaptic Protein Neuroligin and Its β-Neurexin Complex: Determinants for Folding and Cell Adhesion. Neuron, 2007, 56, 979-991.	8.1	142
13	Crystal Structure of Mouse Acetylcholinesterase. Journal of Biological Chemistry, 1999, 274, 2963-2970.	3.4	117
14	Substrate and Product Trafficking through the Active Center Gorge of Acetylcholinesterase Analyzed by Crystallography and Equilibrium Binding. Journal of Biological Chemistry, 2006, 281, 29256-29267.	3.4	117
15	The threeâ€finger toxin fold: a multifunctional structural scaffold able to modulate cholinergic functions. Journal of Neurochemistry, 2017, 142, 7-18.	3.9	84
16	Structural bases for the specificity of cholinesterase catalysis and inhibition. Toxicology Letters, 1995, 82-83, 453-458.	0.8	79
17	Mechanism of Acetylcholinesterase Inhibition by Fasciculin:Â A 5-ns Molecular Dynamics Simulation. Journal of the American Chemical Society, 2002, 124, 6153-6161.	13.7	75
18	USE OF X-RAY MICROTOMOGRAPHY TO FOLLOW THE CONVECTIVE HEAT DRYING OF WASTEWATER SLUDGES. Drying Technology, 2002, 20, 1053-1069.	3.1	70

#	Article	IF	CITATIONS
19	Characterization of Elapidae snake venom components using optimized reverse-phase high-performance liquid chromatographic conditions and screening assays for .alphaneurotoxin and phospholipase A2 activities. Biochemistry, 1986, 25, 7235-7243.	2.5	63
20	Cyclic imine toxins from dinoflagellates: a growing family of potent antagonists of the nicotinic acetylcholine receptors. Journal of Neurochemistry, 2017, 142, 41-51.	3.9	59
21	Soluble monomeric acetylcholinesterase from mouse: Expression, purification, and crystallization in complex with fasciculin. Protein Science, 1996, 5, 672-679.	7.6	56
22	Residues at the Subunit Interfaces of the Nicotinic Acetylcholine Receptor That Contribute to α-Conotoxin M1 Binding. Molecular Pharmacology, 1998, 53, 787-794.	2.3	46
23	Enzymatic Activity and Protein Interactions in Alpha/Beta Hydrolase Fold Proteins: Moonlighting Versus Promiscuity. Protein and Peptide Letters, 2012, 19, 132-143.	0.9	46
24	Expression and Activity of Mutants of Fasciculin, a Peptidic Acetylcholinesterase Inhibitor from Mamba Venom. Journal of Biological Chemistry, 1997, 272, 3502-3510.	3.4	44
25	Afaacytin, an alphabeta-fibrinogenase from Cerastes cerastes (Horned Viper) Venom, Activates Purified Factor X and Induces Serotonin Release from Human Blood Platelets. FEBS Journal, 1995, 233, 756-765.	0.2	43
26	Marine Macrocyclic Imines, Pinnatoxins A and G: Structural Determinants and Functional Properties to Distinguish Neuronal α7 from Muscle α12βγδ nAChRs. Structure, 2015, 23, 1106-1115.	3.3	42
27	The neuroligins and the synaptic pathway in Autism Spectrum Disorder. Neuroscience and Biobehavioral Reviews, 2020, 119, 37-51.	6.1	40
28	Expression of the standard scorpion alpha-toxin AaH II and AaH II mutants leading to the identification of some key bioactive elements. Biochimica Et Biophysica Acta - General Subjects, 2005, 1723, 91-99.	2.4	39
29	Proteins with an alpha/beta hydrolase fold: Relationships between subfamilies in an ever-growing superfamily. Chemico-Biological Interactions, 2013, 203, 266-268.	4.0	39
30	A fibrinogen-clotting serine proteinase from Cerastes cerastes (horned viper) venom with arginine-esterase and amidase activities. Purification, characterization and kinetic parameter determination. Toxicon, 1992, 30, 1399-1410.	1.6	38
31	Structural insights into the exquisite selectivity of neurexin/neuroligin synaptic interactions. EMBO Journal, 2010, 29, 2461-2471.	7.8	38
32	Insecticide resistance through mutations in cholinesterases or carboxylesterases: data mining in the ESTHER database. Journal of Pesticide Sciences, 2010, 35, 315-320.	1.4	32
33	In vivo synergy of cardiotoxin and phospholipase A2 from the elapid snake Naja mossambica mossambica. Toxicon, 1987, 25, 427-431.	1.6	30
34	Use of high performance liquid chromatography to demonstrate quantitative variation in components of venom from the scorpion Androctonus australis hector. Toxicon, 1987, 25, 569-573.	1.6	30
35	Structural insights into conformational flexibility at the peripheral site and within the active center gorge of AChE. Chemico-Biological Interactions, 2005, 157-158, 159-165.	4.0	30
36	Steric and Dynamic Parameters Influencing In Situ Cycloadditions to Form Triazole Inhibitors with Crystalline Acetylcholinesterase. Journal of the American Chemical Society, 2016, 138, 1611-1621.	13.7	30

#	Article	IF	CITATIONS
37	Aspergillus niger Protein EstA Defines a New Class of Fungal Esterases within the α/β Hydrolase Fold Superfamily of Proteins. Structure, 2004, 12, 677-687.	3.3	29
38	Conformational Remodeling of Femtomolar Inhibitorâ	13.7	29
39	Structure of fasciculin 2 from green mamba snake venom: evidence for unusual loop flexibility. Acta Crystallographica Section D: Biological Crystallography, 1996, 52, 87-92.	2.5	26
40	Inhibition of mouse acetylcholinesterase by fasciculin: Crystal structure of the complex and mutagenesis of fasciculin. Toxicon, 1998, 36, 1613-1622.	1.6	25
41	Theoretical analysis of the structure of the peptide fasciculin and its docking to acetylcholinesterase. Protein Science, 1995, 4, 703-715.	7.6	23
42	Use of a purified and functional recombinant calcium-channel β4 subunit in surface-plasmon resonance studies. Biochemical Journal, 2002, 364, 285-292.	3.7	22
43	New friendly tools for users of ESTHER, the database of the α/β-hydrolase fold superfamily of proteins. Chemico-Biological Interactions, 2005, 157-158, 339-343.	4.0	22
44	Structural Insights into Antibody Sequestering and Neutralizing of Na+ Channel α-Type Modulator from Old World Scorpion Venom. Journal of Biological Chemistry, 2012, 287, 14136-14148.	3.4	20
45	Crystal Structure of Snake Venom Acetylcholinesterase in Complex with Inhibitory Antibody Fragment Fab410 Bound at the Peripheral Site. Journal of Biological Chemistry, 2015, 290, 1522-1535.	3.4	20
46	Localization of the toxic site of naja mossambica cardiotoxins: Small synthetic peptides express an in vivo lethality. Biochemical and Biophysical Research Communications, 1988, 153, 642-647.	2.1	17
47	Toxins selective for subunit interfaces as probes of nicotinic acetylcholine receptor structure. Journal of Physiology (Paris), 1998, 92, 79-83.	2.1	17
48	Selective distinction at equilibrium between the two alpha-neurotoxin binding sites of Torpedo acetylcholine receptor by microtitration. FEBS Journal, 1988, 174, 537-542.	0.2	15
49	Structural Characterization of Agonist and Antagonist-Bound Acetylcholine-Binding Protein From Aplysia californica. Journal of Molecular Neuroscience, 2006, 30, 101-102.	2.3	15
50	Patient-derived antibodies reveal the subcellular distribution and heterogeneous interactome of LGI1. Brain, 0, , .	7.6	12
51	Monitoring the purification by high-performance liquid chromatography of cardiotoxins from Naja mossambica mossambica using phase-sensitive two-dimensional nuclear magnetic resonance. FEBS Journal, 1987, 168, 603-607.	0.2	11
52	Tracking the Origin and Divergence of Cholinesterases and Neuroligins: The Evolution of Synaptic Proteins. Journal of Molecular Neuroscience, 2014, 53, 362-369.	2.3	11
53	The Ig-like domain of Punctin/MADD-4 is the primary determinant for interaction with the ectodomain of neuroligin NLG-1. Journal of Biological Chemistry, 2020, 295, 16267-16279.	3.4	11
54	Structure–function relationships of the α/β-hydrolase fold domain of neuroligin: A comparison with acetylcholinesterase. Chemico-Biological Interactions, 2010, 187, 49-55.	4.0	10

#	Article	IF	CITATIONS
55	Molecular Characterization of Monoclonal Antibodies that Inhibit Acetylcholinesterase by Targeting the Peripheral Site and Backdoor Region. PLoS ONE, 2013, 8, e77226.	2.5	10
56	The Neuroligins and Their Ligands: from Structure to Function at the Synapse. Journal of Molecular Neuroscience, 2014, 53, 387-396.	2.3	10
57	A Triad of Crystals Sheds Light on MDGA Interference with Neuroligation. Neuron, 2017, 95, 729-732.	8.1	10
58	Relationships of human α/β hydrolase fold proteins and other organophosphate-interacting proteins. Chemico-Biological Interactions, 2016, 259, 343-351.	4.0	9
59	Electron paramagnetic resonance reveals altered topography of the active center gorge of acetylcholinesterase after binding of fasciculin to the peripheral site. BBA - Proteins and Proteomics, 1999, 1430, 349-358.	2.1	8
60	Natural genomic amplification of cholinesterase genes in animals. Journal of Neurochemistry, 2017, 142, 73-81.	3.9	8
61	Crystal Structure of Mouse Acetylcholinesterase. , 1998, , 315-322.		7
62	On the kaliotoxin and dendrotoxin binding sites on rat brain synaptosomes. Toxicon, 2000, 38, 1749-1758.	1.6	5
63	Hot Spots for Protein Partnerships at the Surface of Cholinesterases and Related α/β Hydrolase Fold Proteins or Domains—A Structural Perspective. Molecules, 2018, 23, 35.	3.8	5
64	Selective loss of binding sites for the iodinated alpha-neurotoxin I from Naja mossambica mossambica venom upon enzymatic deglycosylation of Torpedo electric organ membranes. FEBS Journal, 1988, 174, 543-550.	0.2	4
65	Editorial [Hot Topic: Hydrolase Versus Other Functions of Members of the Alpha/Beta-Hydrolase Fold Superfamily of Proteins (Guest Editor: Pascale Marchot and Arnaud Chatonnet)]. Protein and Peptide Letters, 2012, 19, 130-131.	0.9	4
66	Preface: Cholinergic Mechanisms. Journal of Neurochemistry, 2017, 142, 3-6.	3.9	4
67	Comparative mapping of selected structural determinants on the extracellular domains of cholinesterase-like cell-adhesion molecules. Neuropharmacology, 2021, 184, 108381.	4.1	4
68	(28) Structural insights into AChE inhibition by monoclonal antibodies. Chemico-Biological Interactions, 2005, 157-158, 397-400.	4.0	3
69	Structural Comparison of Three Crystalline Complexes of a Peptidic Toxin With a Synaptic Acetylcholine Recognition Protein. Journal of Molecular Neuroscience, 2006, 30, 103-104.	2.3	3
70	An evolutionary perspective on the first disulfide bond in members of the cholinesterase-carboxylesterase (COesterase) family: Possible outcomes for cholinesterase expression in prokaryotes. Chemico-Biological Interactions, 2019, 308, 179-184.	4.0	3
71	Structural Determinants of Fasciculin Specificity for Acetylcholinesterase. , 1995, , 197-202.		3
72	Special Issue on "freshwater and marine toxins― Toxicon, 2014, 91, 1-4.	1.6	2

#	Article	IF	CITATIONS
73	L'interaction fasciculine-acétylcholinestérase. Société De Biologie Journal, 1999, 193, 505-508.	0.3	2
74	Crystal structure of a Cbtx–AChBP complex reveals essential interactions between snake α-neurotoxins and nicotinic receptors. EMBO Journal, 2006, 25, 266-266.	7.8	1
75	Elapidae Toxins: The Fasciculins, and their Interaction with Acetylcholinesterase. , 2000, , 246-275.		1
76	Aspergillus niger Protein EstA Defines a New Class of Fungal Esterases within the α/β Hydrolase Fold Superfamily of Proteins. Structure, 2004, 12, 1545.	3.3	0
77	(27) A. niger protein "EstAâ€ , perhaps a new electrotactin, defines a new class of fungal esterases within the α/l² hydrolase fold superfamily. Chemico-Biological Interactions, 2005, 157-158, 395-396.	4.0	0
78	Special issue on «Toxins: From threats to benefits». Toxicon, 2013, 75, 1-2.	1.6	0
79	Click chemistry: an original approach for drug discovery. Acta Crystallographica Section A: Foundations and Advances, 2004, 60, s23-s23.	0.3	Ο
80	Mechanism of acetylcholinesterase inhibition by fasciculin. , 2004, , 727-728.		0
81	Fasciculin Inhibition of Mouse Acetylcholinesterase. , 1998, , 331-338.		О
82	Expression and Purification of Recombinant Mutants of Fasciculin from Mammalian Cells. , 1998, , 240-241.		0