
Eric M Wassermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7481484/publications.pdf Version: 2024-02-01

EDIC M WASSEDMANN

#	Article	IF	CITATIONS
1	Reproducing the effect of hippocampal network-targeted transcranial magnetic stimulation on episodic memory. Behavioural Brain Research, 2022, 419, 113707.	2.2	5
2	A Direct Test of Competitive Versus Cooperative Episodic–Procedural Network Dynamics in Human Memory. Cerebral Cortex, 2022, , .	2.9	3
3	Callosal anisotropy predicts attentional network changes after parietal inhibitory stimulation. NeuroImage, 2021, 226, 117559.	4.2	17
4	Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clinical Neurophysiology, 2021, 132, 269-306.	1.5	553
5	Motor cortex modulation and reward in children with attention-deficit/hyperactivity disorder. Brain Communications, 2021, 3, fcab093.	3.3	5
6	Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes. Biological Psychiatry, 2021, 89, 825-835.	1.3	10
7	Multiple parietal pathways are associated with rTMS-induced hippocampal network enhancement and episodic memory changes. NeuroImage, 2021, 237, 118199.	4.2	3
8	Resting-State Correlations of Fatigue Following Military Deployment. Journal of Neuropsychiatry and Clinical Neurosciences, 2021, 33, 337-341.	1.8	2
9	Optimizing Hippocampalâ€Cortical Network Modulation via Repetitive Transcranial Magnetic Stimulation: A Doseâ€Finding Study Using the Continual Reassessment Method. Neuromodulation, 2020, 23, 366-372.	0.8	10
10	Competitive and cooperative interactions between medial temporal and striatal learning systems. Neuropsychologia, 2020, 136, 107257.	1.6	22
11	P300 Analysis Using High-Density EEG to Decipher Neural Response to rTMS in Patients With Schizophrenia and Auditory Verbal Hallucinations. Frontiers in Neuroscience, 2020, 14, 575538.	2.8	2
12	Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis. Scientific Reports, 2020, 10, 12184.	3.3	4
13	Testosterone and Resting State Connectivity of the Parahippocampal Gyrus in Men With History of Deployment-Related Mild Traumatic Brain Injury. Military Medicine, 2020, 185, e1750-e1758.	0.8	3
14	Functional and Structural Neuroimaging Correlates of Repetitive Low-Level Blast Exposure in Career Breachers. Journal of Neurotrauma, 2020, 37, 2468-2481.	3.4	35
15	Frontal Pole Hypometabolism Linked to Reduced Prosocial Sexual Behaviors in Frontotemporal Dementia and Corticobasal Syndrome. Journal of Alzheimer's Disease, 2020, 77, 821-830.	2.6	1
16	Effect of Functional BDNF and COMT Polymorphisms on Symptoms and Regional Brain Volume in Frontotemporal Dementia and Corticobasal Syndrome. Journal of Neuropsychiatry and Clinical Neurosciences, 2020, 32, 362-369.	1.8	5
17	Transcranial Magnetic Stimulation for Pain, Headache, and Comorbid Depression: INS-NANS Expert Consensus Panel Review and Recommendation. Neuromodulation, 2020, 23, 267-290.	0.8	65
18	ldentifying site- and stimulation-specific TMS-evoked EEG potentials using a quantitative cosine similarity metric. PLoS ONE, 2020, 15, e0216185.	2.5	33

#	Article	IF	CITATIONS
19	Prism Adaptation Modulates Connectivity of the Intraparietal Sulcus with Multiple Brain Networks. Cerebral Cortex, 2020, 30, 4747-4758.	2.9	21
20	Tolcapone Treatment for Cognitive and Behavioral Symptoms in Behavioral Variant Frontotemporal Dementia: A Placebo-Controlled Crossover Study. Journal of Alzheimer's Disease, 2020, 75, 1391-1403.	2.6	9
21	Hearing Loss and Irritability Reporting Without Vestibular Differences in Explosive Breaching Professionals. Frontiers in Neurology, 2020, 11, 588377.	2.4	5
22	Motor cortex inhibition and modulation in children with ADHD. Neurology, 2019, 93, e599-e610.	1.1	43
23	FDG-PET patterns associated with underlying pathology in corticobasal syndrome. Neurology, 2019, 92, e1121-e1135.	1.1	63
24	Seizures from transcranial magnetic stimulation 2012–2016: Results of a survey of active laboratories and clinics. Clinical Neurophysiology, 2019, 130, 1409-1416.	1.5	95
25	Persistent Enhancement of Hippocampal Network Connectivity by Parietal rTMS Is Reproducible. ENeuro, 2019, 6, ENEURO.0129-19.2019.	1.9	47
26	Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop. Brain Stimulation, 2018, 11, 465-480.	1.6	144
27	Phosphodiesteraseâ€5 inhibition potentiates cerebrovascular reactivity in chronic traumatic brain injury. Annals of Clinical and Translational Neurology, 2018, 5, 418-428.	3.7	17
28	lmaging of Cerebrovascular Function in Chronic Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 1116-1123.	3.4	38
29	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	7.6	39
30	Left-shifting prism adaptation boosts reward-based learning. Cortex, 2018, 109, 279-286.	2.4	16
31	Assessment of Patient Self-awareness and Related Neural Correlates in Frontotemporal Dementia and Corticobasal Syndrome. Archives of Clinical Neuropsychology, 2018, 33, 519-529.	0.5	13
32	Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clinical Neurophysiology, 2017, 128, 589-603.	1.5	275
33	Motor cortex inhibition by TMS reduces cognitive non-motor procedural learning when immediate incentives are present. Cortex, 2017, 97, 70-80.	2.4	5
34	Neuromodulation directed at the prefrontal cortex of subjects with obesity reduces snack food intake and hunger in a randomized trial. American Journal of Clinical Nutrition, 2017, 106, 1347-1357.	4.7	43
35	Association Between Traumatic Brain Injury-Related Brain Lesions and Long-term Caregiver Burden. Journal of Head Trauma Rehabilitation, 2016, 31, E48-E58.	1.7	19
36	Abnormality of low frequency cerebral hemodynamics oscillations in TBI population. Brain Research, 2016, 1639, 194-199.	2.2	10

#	Article	IF	CITATIONS
37	A machine learning approach to identify functional biomarkers in human prefrontal cortex for individuals with traumatic brain injury using functional nearâ€infrared spectroscopy. Brain and Behavior, 2016, 6, e00541.	2.2	29
38	Shifts in connectivity during procedural learning after motor cortex stimulation: A combined transcranial magnetic stimulation/functional magnetic resonance imaging study. Cortex, 2016, 74, 134-148.	2.4	45
39	Biomarkers in a Taurine Trial for Succinic Semialdehyde Dehydrogenase Deficiency. JIMD Reports, 2015, 30, 81-87.	1.5	17
40	Association Between Long-Term Cognitive Decline in Vietnam Veterans With TBI and Caregiver Attachment Style. Journal of Head Trauma Rehabilitation, 2015, 30, E26-E33.	1.7	13
41	Theory of mind impairment in patients with behavioural variant fronto-temporal dementia (bv-FTD) increases caregiver burden. Age and Ageing, 2015, 44, 891-895.	1.6	20
42	Modulation of corticospinal excitability by reward depends on task framing. Neuropsychologia, 2015, 68, 31-37.	1.6	23
43	Online feedback enhances early consolidation of motor sequence learning and reverses recall deficit from transcranial stimulation of motor cortex. Cortex, 2015, 71, 134-147.	2.4	14
44	Areas of Brain Damage Underlying Increased Reports of Behavioral Disinhibition. Journal of Neuropsychiatry and Clinical Neurosciences, 2015, 27, 193-198.	1.8	43
45	Modulating Conscious Movement Intention by Noninvasive Brain Stimulation and the Underlying Neural Mechanisms. Journal of Neuroscience, 2015, 35, 7239-7255.	3.6	45
46	Anhedonia in combat veterans with penetrating head injury. Brain Imaging and Behavior, 2015, 9, 456-460.	2.1	5
47	Neuromodulation targeted to the prefrontal cortex induces changes in energy intake and weight loss in obesity. Obesity, 2015, 23, 2149-2156.	3.0	81
48	Predictors of Neurocognitive Syndromes in Combat Veterans. Cureus, 2015, 7, e293.	0.5	2
49	Visuoperception test predicts pathologic diagnosis of Alzheimer disease in corticobasal syndrome. Neurology, 2014, 83, 510-519.	1.1	23
50	Neural correlates of apathy revealed by lesion mapping in participants with traumatic brain injuries. Human Brain Mapping, 2014, 35, 943-953.	3.6	41
51	Antidepressant Efficacy of High and Low Frequency rTMS at 110% of Motor Threshold versus Sham Stimulation over Left Prefrontal Cortex. Brain Stimulation, 2014, 7, 36-41.	1.6	38
52	Object and space perception $\hat{a} \in $ Is it a matter of \hat{A} hemisphere?. Cortex, 2014, 57, 244-253.	2.4	20
53	Transcranial magnetic stimulation may improve symptoms of hemiparesis. Journal of Pediatrics, 2014, 165, 207-210.	1.8	0
54	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	10.2	302

#	Article	IF	CITATIONS
55	The left inferior frontal gyrus is crucial for reading the mind in the eyes: Brain lesion evidence. Cortex, 2014, 58, 9-17.	2.4	86
56	Aggression, <i>DRD1</i> polymorphism, and lesion location in penetrating traumatic brain injury. CNS Spectrums, 2014, 19, 382-390.	1.2	15
57	Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS. NeuroImage, 2013, 74, 266-275.	4.2	381
58	Injured brain regions associated with anxiety in Vietnam veterans. Neuropsychologia, 2013, 51, 686-694.	1.6	29
59	Semi-Automated Trajectory Analysis of Deep Ballistic Penetrating Brain Injury. Military Medicine, 2013, 178, 338-345.	0.8	6
60	A hematoma detector—a practical application of instrumental motion as signal in near infra-red imaging. Biomedical Optics Express, 2012, 3, 192.	2.9	10
61	Central sensitization as a component of post-deployment syndrome. NeuroRehabilitation, 2012, 31, 367-372.	1.3	22
62	FUS and TDP43 genetic variability in FTD and CBS. Neurobiology of Aging, 2012, 33, 1016.e9-1016.e17.	3.1	69
63	Screening for C9ORF72 repeat expansion in FTLD. Neurobiology of Aging, 2012, 33, 1850.e1-1850.e11.	3.1	46
64	Normative database of judgment of complexity task with functional near infrared spectroscopy—Application for TBI. NeuroImage, 2012, 60, 879-883.	4.2	30
65	TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neurolmage, 2012, 59, 117-128.	4.2	209
66	A pilot study on effects of 4×1 High-Definition tDCS on motor cortex excitability. , 2012, 2012, 735-8.		58
67	Transcranial magnetic brain stimulation: Therapeutic promises and scientific gaps. , 2012, 133, 98-107.		190
68	Reward Improves Long-Term Retention of a Motor Memory through Induction of Offline Memory Gains. Current Biology, 2011, 21, 557-562.	3.9	265
69	Tolerability of transcranial direct current stimulation in childhood-onset schizophrenia. Brain Stimulation, 2011, 4, 275-280.	1.6	113
70	Reward processing abnormalities in Parkinson's disease. Movement Disorders, 2011, 26, 1451-1457.	3.9	38
71	Direct Current Brain Polarization: A Simple, Noninvasive Technique for Human Neuromodulation. Neuromodulation, 2010, 13, 168-173.	0.8	13
72	Effects of 10 Hz rTMS on the Neural Efficiency of Working Memory. Journal of Cognitive Neuroscience, 2010, 22, 447-456.	2.3	48

#	Article	IF	CITATIONS
73	Transcranial direct current stimulation for the treatment of Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 1105-1111.	1.9	276
74	Association of Ideomotor Apraxia With Frontal Gray Matter Volume Loss in Corticobasal Syndrome. Archives of Neurology, 2009, 66, 1274-80.	4.5	32
75	Bilateral frontal transcranial direct current stimulation: Failure to replicate classic findings in healthy subjects. Clinical Neurophysiology, 2009, 120, 80-84.	1.5	73
76	Safety study of 50 Hz repetitive transcranial magnetic stimulation in patients with Parkinson's disease. Clinical Neurophysiology, 2009, 120, 809-815.	1.5	38
77	Focal brain damage protects against post-traumatic stress disorder in combat veterans. Nature Neuroscience, 2008, 11, 232-237.	14.8	221
78	Rewardâ€related activity in the human motor cortex. European Journal of Neuroscience, 2008, 27, 1836-1842.	2.6	91
79	Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 2008, 1, 206-223.	1.6	2,538
80	Consensus: Can transcranial direct current stimulation and transcranial magnetic stimulation enhance motor learning and memory formation?. Brain Stimulation, 2008, 1, 363-369.	1.6	225
81	Transcranial Magnetic Stimulation in Clinical Pharmacology. Central Nervous System Agents in Medicinal Chemistry, 2008, 8, 234-240.	1.1	29
82	In vivo and Postmortem Clinicoanatomical Correlations in Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17. Neurodegenerative Diseases, 2008, 5, 215-217.	1.4	27
83	Stimulant Treatment of Frontotemporal Dementia in 8 Patients. Journal of Clinical Psychiatry, 2008, 69, 1981-1982.	2.2	53
84	Corticobasal Syndrome Associated With the A9D Progranulin Mutation. Journal of Neuropathology and Experimental Neurology, 2007, 66, 892-900.	1.7	81
85	No effect of DC brain polarization on verbal fluency in patients with advanced frontotemporal dementia. Clinical Neurophysiology, 2007, 118, 1417-1418.	1.5	34
86	Atomoxetine treatment of ADHD in Tourette Syndrome: Reduction in motor cortex inhibition correlates with clinical improvement. Clinical Neurophysiology, 2007, 118, 1835-1841.	1.5	24
87	Analysis of IFT74as a candidate gene for chromosome 9p-linked ALS-FTD. BMC Neurology, 2006, 6, 44.	1.8	70
88	Placebo-controlled study of rTMS for the treatment of Parkinson's disease. Movement Disorders, 2006, 21, 325-331.	3.9	196
89	Characteristics of frontotemporal dementia patients with a <i>Progranulin</i> mutation. Annals of Neurology, 2006, 60, 374-380.	5.3	83
90	Dopamine transporter genotype influences the physiological response to medication in ADHD. Brain, 2006, 129, 2038-2046.	7.6	82

#	Article	IF	CITATIONS
91	Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain, 2006, 129, 791-808.	7.6	403
92	Comparison of the Inhibitory and Excitatory Effects of ADHD Medications Methylphenidate and Atomoxetine on Motor Cortex. Neuropsychopharmacology, 2006, 31, 442-449.	5.4	84
93	Idiopathic intracranial hypertension following kidney transplantation: A case report and review of the literature. Pediatric Transplantation, 2005, 9, 545-550.	1.0	14
94	The ipsilateral silent period in boys with attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 2005, 116, 1889-1896.	1.5	47
95	Visual deprivation effects on human motor cortex excitability. Neuroscience Letters, 2005, 389, 17-20.	2.1	34
96	Recharging cognition with DC brain polarization. Trends in Cognitive Sciences, 2005, 9, 503-505.	7.8	139
97	Transcranial Magnetic Stimulation-Evoked Cortical Inhibition: A Consistent Marker of Attention-Deficit/Hyperactivity Disorder Scores in Tourette Syndrome. Biological Psychiatry, 2005, 57, 1597-1600.	1.3	82
98	Electroconvulsive therapy and repetitive transcranial magnetic stimulation in children and adolescents: a review and report of two cases of epilepsia partialis continua. Child and Adolescent Psychiatric Clinics of North America, 2005, 14, 193-210.	1.9	67
99	Consecutive Transcranial Magnetic Stimulation: Phosphene Thresholds in Migraineurs and Controls. Headache, 2004, 44, 131-135.	3.9	49
100	Functional connectivity between somatosensory and visual cortex in early blind humans. European Journal of Neuroscience, 2004, 20, 1923-1927.	2.6	135
101	Association of cortical disinhibition with tic, ADHD, and OCD severity in Tourette syndrome. Movement Disorders, 2004, 19, 416-425.	3.9	158
102	Should transcranial magnetic stimulation research in children be considered minimal risk?. Clinical Neurophysiology, 2004, 115, 1730-1739.	1.5	104
103	A Pilot Safety Study of Repetitive Transcranial Magnetic Stimulation (rTMS) in Tourette's Syndrome. Cognitive and Behavioral Neurology, 2004, 17, 109-117.	0.9	67
104	Abnormal luteal phase excitability of the motor cortex in women with premenstrual syndrome. Biological Psychiatry, 2003, 54, 757-762.	1.3	77
105	Intensity-dependent regional cerebral blood flow during 1-Hz repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers studied with H215O positron emission tomography: i. effects of primary motor cortex rTMS. Biological Psychiatry, 2003, 54, 818-825.	1.3	96
106	Intensity-dependent regional cerebral blood flow during 1-Hz repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers studied with h2150 positron emission tomography: II. effects of prefrontal cortex rTMS. Biological Psychiatry, 2003, 54, 826-832.	1.3	94
107	International Society for Transcranial Stimulation Consensus Statement: Managing the Risks of Repetitive Transcranial Stimulation. CNS Spectrums, 2003, 8, 489-489.	1.2	53

#	Article	IF	CITATIONS
109	Priming Stimulation Enhances the Depressant Effect of Low-Frequency Repetitive Transcranial Magnetic Stimulation. Journal of Neuroscience, 2003, 23, 10867-10872.	3.6	308
110	Variation in the response to transcranial magnetic brain stimulation in the general population. Clinical Neurophysiology, 2002, 113, 1165-1171.	1.5	382
111	Left prefrontal-repetitive transcranial magnetic stimulation (rTMS) and regional cerebral glucose metabolism in normal volunteers. Psychiatry Research - Neuroimaging, 2002, 115, 101-113.	1.8	102
112	Effects of ovarian hormones on human cortical excitability. Annals of Neurology, 2002, 51, 599-603.	5.3	273
113	A safety screening questionnaire for transcranial magnetic stimulation. Clinical Neurophysiology, 2001, 112, 720.	1.5	507
114	Therapeutic application of repetitive transcranial magnetic stimulation: a review. Clinical Neurophysiology, 2001, 112, 1367-1377.	1.5	548
115	Acute mood and thyroid stimulating hormone effects of transcranial magnetic stimulation in major depression. Biological Psychiatry, 2001, 50, 22-27.	1.3	87
116	Motor cortex excitability correlates with an anxiety-related personality trait. Biological Psychiatry, 2001, 50, 377-382.	1.3	151
117	Transcranial Magnetic Stimulation in Disorders of Movement: The Therapeutic Outlook. Epilepsy and Behavior, 2001, 2, S41-S44.	1.7	2
118	BOLD-f MRI response to single-pulse transcranial magnetic stimulation (TMS). Journal of Magnetic Resonance Imaging, 2000, 11, 569-574.	3.4	131
119	Side effects of repetitive transcranial magnetic stimulation. Depression and Anxiety, 2000, 12, 124-129.	4.1	41
120	Human corticospinal excitability evaluated with transcranial magnetic stimulation during different reaction time paradigms. Brain, 2000, 123, 1161-1173.	7.6	348
121	Motor cortex excitability in patients with cerebellar degeneration. Clinical Neurophysiology, 2000, 111, 1157-1164.	1.5	19
122	Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biological Psychiatry, 2000, 48, 1133-1141.	1.3	528
123	Simultaneous repetitive transcranial magnetic stimulation does not speed fine movement in PD. Neurology, 1999, 52, 768-768.	1.1	114
124	Dissociation of the pathways mediating ipsilateral and contralateral motorâ€evoked potentials in human hand and arm muscles. Journal of Physiology, 1999, 518, 895-906.	2.9	280
125	Complete suppression of voluntary motor drive during the silent period after transcranial magnetic stimulation. Experimental Brain Research, 1999, 124, 447-454.	1.5	112
126	Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. Biological Psychiatry, 1999, 46, 1603-1613.	1.3	305

#	Article	IF	CITATIONS
127	Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation. Journal of Physiology, 1998, 511, 181-190.	2.9	387
128	Finger movements induced by transcranial magnetic stimulation change with hand posture, but not with coil position. Human Brain Mapping, 1998, 6, 390-393.	3.6	14
129	Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1998, 108, 1-16.	2.0	1,978
130	Decreased neuronal inhibition in cerebral cortex in obsessive compulsive disorder on transcranial magnetic stimulation. Lancet, The, 1998, 352, 881-882.	13.7	81
131	Crossed reduction of human motor cortex excitability by 1-Hz transcranial magnetic stimulation. Neuroscience Letters, 1998, 250, 141-144.	2.1	210
132	Cortical mechanisms of recovery of function after stroke. NeuroRehabilitation, 1998, 10, 131-142.	1.3	29
133	Mood Improvement Following Daily Left Prefrontal Repetitive Transcranial Magnetic Stimulation in Patients With Depression: A Placebo-Controlled Crossover Trial. American Journal of Psychiatry, 1997, 154, 1752-1756.	7.2	506
134	Impaired inhibition in writer's cramp during voluntary muscle activation. Neurology, 1997, 49, 1054-1059.	1.1	218
135	Repetitive TMS as a Probe of Mood In Health and Disease. CNS Spectrums, 1997, 2, 39-44.	1.2	7
136	Mood Effects of Prefrontal Repetitive High-Frequency TMS in Healthy Volunteers. CNS Spectrums, 1997, 2, 53-68.	1.2	42
137	Absence of facilitation or depression of motor evoked potentials after contralateral homologous muscle activation. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1997, 105, 241-245.	1.4	35
138	Post-exercise depression of motor evoked potentials as a function of exercise duration. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1997, 105, 352-356.	1.4	69
139	Safety of different inter-train intervals for repetitive transcranial magnetic stimulation and recommendations for safe ranges of stimulation parameters. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1997, 105, 415-421.	1.4	207
140	Combining transcranial magnetic stimulation and neuroimaging to map the brain. Trends in Cognitive Sciences, 1997, 1, 199-200.	7.8	7
141	Repetitive Transcranial Magnetic Stimulation: An Introduction and Overview. CNS Spectrums, 1997, 2, 21-25.	1.2	43
142	A COMPARISON OF SPATIAL PREDICTION TECHNIQUES FOR AN EXPLORATORY ANALYSIS OF HUMAN CORTICAL MOTOR REPRESENTATIONS. Statistics in Medicine, 1997, 16, 1337-1355.	1.6	3
143	Locating the Motor Cortex on the MRI with Transcranial Magnetic Stimulation and PET. NeuroImage, 1996, 3, 1-9.	4.2	179
144	Use and safety of a new repetitive transcranial magnetic stimulator. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1996, 101, 412-417.	1.4	233

#	ARTICLE	IF	CITATIONS
145	Responses to paired transcranial magnetic stimuli in resting, active, and recently activated muscles. Experimental Brain Research, 1996, 109, 158-63.	1.5	160
146	The role of the dorsolateral prefrontal cortex in implicit procedural learning. Experimental Brain Research, 1996, 107, 479-85.	1.5	187
147	Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. NeuroReport, 1995, 6, 1853-1856.	1.2	834
148	The role of reading activity on the modulation of motor cortical outputs to the reading hand in braille readers. Annals of Neurology, 1995, 38, 910-915.	5.3	141
149	Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 1994, 117, 847-858.	7.6	1,255
150	Modulation of motor cortical outputs to the reading hand of braille readers. Annals of Neurology, 1993, 34, 33-37.	5.3	360
151	Topography of the inhibitory and excitatory responses to transcranial magnetic stimulation in a hand muscle. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1993, 89, 424-433.	2.0	115
152	EFFECTS OF FOCAL TRANSCRANIAL MAGNETIC STIMULATION ON SIMPLE REACTION TIME TO ACOUSTIC, VISUAL AND SOMATOSENSORY STIMULI. Brain, 1992, 115, 1045-1059.	7.6	168
153	Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1992, 85, 355-364.	2.0	585
154	Noninvasive mapping of muscle representations in human motor cortex. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1992, 85, 1-8.	2.0	504
155	Magnetic Stimulation of the Human Cerebral Cortex, an Indicator of Reorganization in Motor Pathways in Certain Pathological Conditions. Journal of Clinical Neurophysiology, 1991, 8, 56-65.	1.7	113