
Janet G Luhmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7480974/publications.pdf Version: 2024-02-01

IANET C. LUMMANN

#	Article	IF	CITATIONS
1	A Comparative Study of Magnetic Flux Ropes in the Nightside Induced Magnetosphere of Mars and Venus. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	3
2	Discrete Aurora on the Nightside of Mars: Occurrence Location and Probability. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	6
3	CMEs and SEPs During November–December 2020: A Challenge for Realâ€īme Space Weather Forecasting. Space Weather, 2022, 20, .	1.3	16
4	A Statistical Investigation of Factors Influencing the Magnetotail Twist at Mars. Geophysical Research Letters, 2022, 49, .	1.5	14
5	Venus and solar storms: Solar Energetic Particles, Stream Interaction Regions and Coronal Mass Ejections. , 2021, 53, .		0
6	Magnetic Topology at Venus: New Insights Into the Venus Plasma Environment. Geophysical Research Letters, 2021, 48, e2021GL095545.	1.5	4
7	Emirates Mars Mission Characterization of Mars Atmosphere Dynamics and Processes. Space Science Reviews, 2021, 217, .	3.7	23
8	MOSAIC: A Satellite Constellation to Enable Groundbreaking Mars Climate System Science and Prepare for Human Exploration. Planetary Science Journal, 2021, 2, 211.	1.5	6
9	Solar Wind Anomalies at 1 au and Their Associations with Large-scale Structures. Astrophysical Journal, 2021, 923, 105.	1.6	1
10	Impact of space weather on climate and habitability of terrestrial-type exoplanets. International Journal of Astrobiology, 2020, 19, 136-194.	0.9	125
11	Influence of the Solar Wind Dynamic Pressure on the Ion Precipitation: MAVEN Observations and Simulation Results. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028183.	0.8	6
12	The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au. Astrophysical Journal, 2020, 897, 134.	1.6	14
13	Superthermal Electron Deposition on the Mars Nightside During ICMEs. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028430.	0.8	3
14	Formation and Evolution of the Largeâ€Scale Magnetic Fields in Venus' Ionosphere: Results From a Three Dimensional Global Multispecies MHD Model. Geophysical Research Letters, 2020, 47, e2020GL087593.	1.5	12
15	Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 63.	3.0	34
16	Characterizing Mars's Magnetotail Topology With Respect to the Upstream Interplanetary Magnetic Fields. Journal of Geophysical Research: Space Physics, 2020, 125, no.	0.8	21
17	Source and Propagation of a Streamer Blowout Coronal Mass Ejection Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 69.	3.0	29
18	ICME Evolution in the Inner Heliosphere, Solar Physics, 2020, 295, 1	10	37

#	Article	IF	CITATIONS
19	Variability of the Solar Wind Flow Asymmetry in the Martian Magnetosheath Observed by MAVEN. Geophysical Research Letters, 2020, 47, .	1.5	9
20	Influence of Extreme Ultraviolet Irradiance Variations on the Precipitating Ion Flux From MAVEN Observations. Geophysical Research Letters, 2019, 46, 7761-7768.	1.5	5
21	The Solar Clock. Reviews of Geophysics, 2019, 57, 1129-1145.	9.0	5
22	First In Situ Evidence of Mars Nonthermal Exosphere. Geophysical Research Letters, 2019, 46, 4144-4150.	1.5	7
23	Solar Terrestrial Relations Observatory (STEREO) Observations of Stream Interaction Regions in 2007 – 2016: Relationship with Heliospheric Current Sheets, Solar Cycle Variations, and Dual Observations. Solar Physics, 2019, 294, 1.	1.0	48
24	The Penetration of Draped Magnetic Field Into the Martian Upper Ionosphere and Correlations With Upstream Solar Wind Dynamic Pressure. Journal of Geophysical Research: Space Physics, 2019, 124, 3021-3035.	0.8	8
25	Magnetic Topology Response to the 2003 Halloween ICME Event at Mars. Journal of Geophysical Research: Space Physics, 2019, 124, 151-165.	0.8	18
26	A Clock in the Sun?. Proceedings of the International Astronomical Union, 2019, 15, 127-133.	0.0	0
27	Solar activity influences on planetary atmosphere evolution: Lessons from observations at Venus, Earth, and Mars. Proceedings of the International Astronomical Union, 2019, 15, 241-258.	0.0	Ο
28	Variability of Precipitating Ion Fluxes During the September 2017 Event at Mars. Journal of Geophysical Research: Space Physics, 2019, 124, 420-432.	0.8	6
29	Seasonal Variability of Neutral Escape from Mars as Derived From MAVEN Pickup Ion Observations. Journal of Geophysical Research E: Planets, 2018, 123, 1192-1202.	1.5	38
30	Autocorrelation Study of Solar Wind Plasma and IMF Properties as Measured by the MAVEN Spacecraft. Journal of Geophysical Research: Space Physics, 2018, 123, 2493-2512.	0.8	26
31	On Mars's Atmospheric Sputtering After MAVEN's First Martian Year of Measurements. Geophysical Research Letters, 2018, 45, 4685-4691.	1.5	25
32	The Morphology of the Solar Wind Magnetic Field Draping on the Dayside of Mars and Its Variability. Geophysical Research Letters, 2018, 45, 3356-3365.	1.5	39
33	STEREO Observations of Interplanetary Coronal Mass Ejections in 2007–2016. Astrophysical Journal, 2018, 855, 114.	1.6	55
34	Structure and Variability of the Martian Ion Composition Boundary Layer. Journal of Geophysical Research: Space Physics, 2018, 123, 8439-8458.	0.8	24
35	Evidence for Crustal Magnetic Field Control of Ions Precipitating Into the Upper Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2018, 123, 8572-8586.	0.8	16
36	Statistical Study of the Energetic Proton Environment at Titan's Orbit From the Cassini Spacecraft. Journal of Geophysical Research: Space Physics, 2018, 123, 4820-4834.	0.8	8

#	Article	IF	CITATIONS
37	Investigation of Martian Magnetic Topology Response to 2017 September ICME. Geophysical Research Letters, 2018, 45, 7337-7346.	1.5	39
38	Solar Wind Interaction With the Martian Upper Atmosphere: Roles of the Cold Thermosphere and Hot Oxygen Corona. Journal of Geophysical Research: Space Physics, 2018, 123, 6639-6654.	0.8	14
39	Magnetic Clouds: Solar Cycle Dependence, Sources, and Geomagnetic Impacts. Solar Physics, 2018, 293, 135.	1.0	22
40	Modeling Martian Atmospheric Losses over Time: Implications for Exoplanetary Climate Evolution and Habitability. Astrophysical Journal Letters, 2018, 859, L14.	3.0	51
41	The Impact and Solar Wind Proxy of the 2017 September ICME Event at Mars. Geophysical Research Letters, 2018, 45, 7248-7256.	1.5	29
42	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	1.1	216
43	The Twisted Configuration of the Martian Magnetotail: MAVEN Observations. Geophysical Research Letters, 2018, 45, 4559-4568.	1.5	66
44	Shock Connectivity and the Late Cycle 24 Solar Energetic Particle Events in July and September 2017. Space Weather, 2018, 16, 557-568.	1.3	34
45	Responses of the Martian Magnetosphere to an Interplanetary Coronal Mass Ejection: MAVEN Observations and LatHyS Results. Geophysical Research Letters, 2018, 45, 7891-7900.	1.5	19
46	Observations and Impacts of the 10 September 2017 Solar Events at Mars: An Overview and Synthesis of the Initial Results. Geophysical Research Letters, 2018, 45, 8871-8885.	1.5	77
47	Martian lowâ€altitude magnetic topology deduced from MAVEN/SWEA observations. Journal of Geophysical Research: Space Physics, 2017, 122, 1831-1852.	0.8	107
48	Structure, dynamics, and seasonal variability of the Marsâ€solar wind interaction: MAVEN Solar Wind Ion Analyzer inâ€flight performance and science results. Journal of Geophysical Research: Space Physics, 2017, 122, 547-578.	0.8	191
49	MAVEN observations on a hemispheric asymmetry of precipitating ions toward the Martian upper atmosphere according to the upstream solar wind electric field. Journal of Geophysical Research: Space Physics, 2017, 122, 1083-1101.	0.8	19
50	MAVEN observations of the solar cycle 24 space weather conditions at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 2768-2794.	0.8	78
51	Martian magnetic storms. Journal of Geophysical Research: Space Physics, 2017, 122, 6185-6209.	0.8	40
52	The Dependence of the Cerean Exosphere on Solar Energetic Particle Events. Astrophysical Journal Letters, 2017, 838, L8.	3.0	41
53	MAVEN observations of a giant ionospheric flux rope near Mars resulting from interaction between the crustal and interplanetary draped magnetic fields. Journal of Geophysical Research: Space Physics, 2017, 122, 828-842.	0.8	21
54	Hot oxygen escape from Mars: Simple scaling with solar EUV irradiance. Journal of Geophysical Research: Space Physics, 2017, 122, 1102-1116.	0.8	40

Janet G Luhmann

#	Article	IF	CITATIONS
55	Highâ€Altitude Closed Magnetic Loops at Mars Observed by MAVEN. Geophysical Research Letters, 2017, 44, 11,229.	1.5	26
56	Solar Wind Interaction and Impact on the Venus Atmosphere. Space Science Reviews, 2017, 212, 1453-1509.	3.7	79
57	The Martian Photoelectron Boundary as Seen by MAVEN. Journal of Geophysical Research: Space Physics, 2017, 122, 10,472.	0.8	28
58	Modeling solar energetic particle events using ENLIL heliosphere simulations. Space Weather, 2017, 15, 934-954.	1.3	35
59	On the Origins of Mars' Exospheric Nonthermal Oxygen Component as Observed by MAVEN and Modeled by HELIOSARES. Journal of Geophysical Research E: Planets, 2017, 122, 2401-2428.	1.5	27
60	Flows, Fields, and Forces in the Marsâ€Solar Wind Interaction. Journal of Geophysical Research: Space Physics, 2017, 122, 11,320.	0.8	64
61	Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express, and Mars Atmosphere and Volatile EvolutioN mission observations. Journal of Geophysical Research: Space Physics, 2017, 122, 857-873.	0.8	28
62	Prospects for Modeling and Forecasting SEP Events with ENLIL and SEPMOD. Proceedings of the International Astronomical Union, 2017, 13, 263-267.	0.0	0
63	On the origins of magnetic flux ropes in nearâ€Mars magnetotail current sheets. Geophysical Research Letters, 2017, 44, 7653-7662.	1.5	28
64	Searching for Extreme SEP Events with STEREO. , 2017, , .		2
65	ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS: II. SLOW EVENTS AND COMPARISON WITH OTHERS. Astrophysical Journal, Supplement Series, 2016, 222, 23.	3.0	51
66	Solar control of the Martian magnetic topology: Implications from model-data comparisons. Planetary and Space Science, 2016, 128, 1-13.	0.9	7
67	MAVEN observations of magnetic flux ropes with a strong field amplitude in the Martian magnetosheath during the ICME passage on 8 March 2015. Geophysical Research Letters, 2016, 43, 4816-4824.	1.5	14
68	Interplanetary shocks and foreshocks observed by STEREO during 2007–2010. Journal of Geophysical Research: Space Physics, 2016, 121, 992-1008.	0.8	34
69	Continuous solar wind forcing knowledge: Providing continuous conditions at Mars with the WSAâ€ENLIL + Cone model. Journal of Geophysical Research: Space Physics, 2016, 121, 6207-6222.	0.8	10
70	Small solar wind transients at 1ÂAU: STEREO observations (2007–2014) and comparison with nearâ€Earth wind results (1995–2014). Journal of Geophysical Research: Space Physics, 2016, 121, 5005-5024.	0.8	33
71	Shadowing and anisotropy of solar energetic ions at Mars measured by MAVEN during the March 2015 solar storm. Journal of Geophysical Research: Space Physics, 2016, 121, 2818-2829.	0.8	16
72	A model for stealth coronal mass ejections. Journal of Geophysical Research: Space Physics, 2016, 121, 10,677.	0.8	48

#	Article	IF	CITATIONS
73	Carrington Class Solar Events and How to Recognize Them. Proceedings of the International Astronomical Union, 2016, 12, 204-210.	0.0	1
74	Space Weather Storm Responses at Mars: Lessons from A Weakly Magnetized Terrestrial Planet. Proceedings of the International Astronomical Union, 2016, 12, 211-217.	0.0	0
75	Dynamics of planetary ions in the induced magnetospheres of Venus and Mars. Planetary and Space Science, 2016, 127, 1-14.	0.9	22
76	SHOCK CONNECTIVITY IN THE 2010 AUGUST AND 2012 JULY SOLAR ENERGETIC PARTICLE EVENTS INFERRED FROM OBSERVATIONS AND ENLIL MODELING. Astrophysical Journal, 2016, 825, 1.	1.6	37
77	Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN. Space Science Reviews, 2015, 195, 357-422.	3.7	99
78	Response of Mars O ⁺ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN dataâ€based models. Geophysical Research Letters, 2015, 42, 9095-9102.	1.5	47
79	Statistical study of magnetic cloud erosion by magnetic reconnection. Journal of Geophysical Research: Space Physics, 2015, 120, 43-60.	0.8	106
80	Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel. Geophysical Research Letters, 2015, 42, 8942-8950.	1.5	143
81	MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars. Geophysical Research Letters, 2015, 42, 8901-8909.	1.5	78
82	Multifluid MHD study of the solar wind interaction with Mars' upper atmosphere during the 2015 March 8th ICME event. Geophysical Research Letters, 2015, 42, 9103-9112.	1.5	54
83	Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations. Geophysical Research Letters, 2015, 42, 8877-8884.	1.5	41
84	The MAVEN Solar Energetic Particle Investigation. Space Science Reviews, 2015, 195, 153-172.	3.7	79
85	The Venus–solar wind interaction: Is it purely ionospheric?. Planetary and Space Science, 2015, 119, 36-42.	0.9	9
86	Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile EvolutioN. Geophysical Research Letters, 2015, 42, 9135-9141.	1.5	39
87	Implications of MAVEN Mars nearâ€wake measurements and models. Geophysical Research Letters, 2015, 42, 9087-9094.	1.5	35
88	Initial results from the MAVEN mission to Mars. Geophysical Research Letters, 2015, 42, 8791-8802.	1.5	101
89	The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophysical Research Letters, 2015, 42, 9142-9148.	1.5	115
90	Statistical studies on Mars atmospheric sputtering by precipitating pickup O ⁺ : Preparation for the MAVEN mission. Journal of Geophysical Research E: Planets, 2015, 120, 34-50.	1.5	26

#	Article	IF	CITATIONS
91	The Aeronomy of Mars: Characterization by MAVEN of the Upper Atmosphere Reservoir That Regulates Volatile Escape. Space Science Reviews, 2015, 195, 423-456.	3.7	63
92	Solar wind interaction effects on the magnetic fields around Mars: Consequences for interplanetary and crustal field measurements. Planetary and Space Science, 2015, 117, 15-23.	0.9	16
93	Characterizing the lowâ€altitude magnetic belt at Venus: Complementary observations from the Pioneer Venus Orbiter and Venus Express. Journal of Geophysical Research: Space Physics, 2015, 120, 2232-2240.	0.8	15
94	Lowâ€frequency waves within isolated magnetic clouds and complex structures: STEREO observations. Journal of Geophysical Research: Space Physics, 2015, 120, 2363-2381.	0.8	10
95	The Mars Atmosphere and Volatile Evolution (MAVEN) Mission. Space Science Reviews, 2015, 195, 3-48.	3.7	563
96	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	6.0	166
97	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	6.0	90
98	Comparative pick-up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape. Planetary and Space Science, 2015, 115, 35-47.	0.9	51
99	PLASMA AND MAGNETIC FIELD CHARACTERISTICS OF SOLAR CORONAL MASS EJECTIONS IN RELATION TO GEOMAGNETIC STORM INTENSITY AND VARIABILITY. Astrophysical Journal Letters, 2015, 809, L34.	3.0	81
100	Solar wind control of the terrestrial magnetotail as seen by STEREO. Journal of Geophysical Research: Space Physics, 2014, 119, 6342-6355.	0.8	10
101	Ninety degrees pitch angle enhancements of suprathermal electrons associated with interplanetary shocks. Journal of Geophysical Research: Space Physics, 2014, 119, 7038-7060.	0.8	7
102	SUN-TO-EARTH CHARACTERISTICS OF TWO CORONAL MASS EJECTIONS INTERACTING NEAR 1 AU: FORMATION OF A COMPLEX EJECTA AND GENERATION OF A TWO-STEP GEOMAGNETIC STORM. Astrophysical Journal Letters, 2014, 793, L41.	3.0	57
103	Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nature Communications, 2014, 5, 3481.	5.8	223
104	A statistical analysis of properties of small transients in the solar wind 2007–2009: STEREO and Wind observations. Journal of Geophysical Research: Space Physics, 2014, 119, 689-708.	0.8	51
105	CONNECTING SPEEDS, DIRECTIONS AND ARRIVAL TIMES OF 22 CORONAL MASS EJECTIONS FROM THE SUN TO 1 AU. Astrophysical Journal, 2014, 787, 119.	1.6	145
106	Why have geomagnetic storms been so weak during the recent solar minimum and the rising phase of cycle 24?. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 107, 12-19.	0.6	30
107	Magnetic clouds and origins in STEREO era. Journal of Geophysical Research: Space Physics, 2014, 119, 3237-3246.	0.8	24
108	A statistical analysis of heliospheric plasma sheets, heliospheric current sheets, and sector boundaries observed in situ by STEREO. Journal of Geophysical Research: Space Physics, 2014, 119, 8721-8732.	0.8	30

#	Article	IF	CITATIONS
109	Modeling of the O ⁺ pickup ion sputtering efficiency dependence on solar wind conditions for the Martian atmosphere. Journal of Geophysical Research E: Planets, 2014, 119, 93-108.	1.5	23
110	Effects of crustal field rotation on the solar wind plasma interaction with Mars. Geophysical Research Letters, 2014, 41, 6563-6569.	1.5	80
111	Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24. Journal of Advanced Research, 2013, 4, 221-228.	4.4	17
112	The Magnetopause Counterpart at the Weakly Magnetized Planets: The Ionopause. Geophysical Monograph Series, 2013, , 71-79.	0.1	2
113	Mirrorâ€mode storms inside stream interaction regions and in the ambient solar wind: A kinetic study. Journal of Geophysical Research: Space Physics, 2013, 118, 17-28.	0.8	11
114	ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS. Astrophysical Journal, 2013, 769, 45.	1.6	120
115	Solar wind observations at STEREO: 2007 - 2011. , 2013, , .		28
116	Large scale solar wind structure: Non-dipolar features and consequences. , 2013, , .		0
117	Small solar wind transients: Stereo-A observations in 2009. AIP Conference Proceedings, 2013, , .	0.3	2
118	THE VERY UNUSUAL INTERPLANETARY CORONAL MASS EJECTION OF 2012 JULY 23: A BLAST WAVE MEDIATED BY SOLAR ENERGETIC PARTICLES. Astrophysical Journal, 2013, 770, 38.	1.6	123
119	The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind conditions. Geophysical Research Letters, 2013, 40, 1922-1927.	1.5	45
120	The Inner Heliosphere at Fifty. Eos, 2013, 94, 329-330.	0.1	0
121	Long Term Variations in the Solar Wind of Importance to ULF Phenomena. Geophysical Monograph Series, 2013, , 67-74.	0.1	3
122	Characteristics of Cometary Picked-Up Ions in a Global Model of Giacobini-Zinner. Special Publications, 2013, , 8536-8544.	0.0	0
123	On the relationship between magnetic cloud field polarity and geoeffectiveness. Annales Geophysicae, 2012, 30, 1037-1050.	0.6	27
124	INTERACTIONS BETWEEN CORONAL MASS EJECTIONS VIEWED IN COORDINATED IMAGING AND IN SITU OBSERVATIONS. Astrophysical Journal Letters, 2012, 746, L15.	3.0	99
125	Investigation of Mars' ionospheric response to solar energetic particle events. Journal of Geophysical Research, 2012, 117, .	3.3	26
126	Issues in heliospheric field mapping to flare SEP sources. AIP Conference Proceedings, 2012, , .	0.3	6

#	Article	IF	CITATIONS
127	MULTI-POINT SHOCK AND FLUX ROPE ANALYSIS OF MULTIPLE INTERPLANETARY CORONAL MASS EJECTIONS AROUND 2010 AUGUST 1 IN THE INNER HELIOSPHERE. Astrophysical Journal, 2012, 758, 10.	1.6	109
128	QUIET-TIME INTERPLANETARY â^1⁄42-20 keV SUPERHALO ELECTRONS AT SOLAR MINIMUM. Astrophysical Journal Letters, 2012, 753, L23.	3.0	114
129	Deep Solar Activity Minimum 2007 – 2009: Solar Wind Properties and Major Effects on the Terrestrial Magnetosphere. Solar Physics, 2012, 281, 461.	1.0	4
130	The Heliospheric Plasma Sheet Observed in situ by Three Spacecraft over Four Solar Rotations. Solar Physics, 2012, 281, 423.	1.0	19
131	Observations of ICMEs and ICME-like Solar Wind Structures from 2007 – 2010 Using Near-Earth and STEREO Observations. Solar Physics, 2012, 281, 391.	1.0	30
132	Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. Journal of Geophysical Research, 2012, 117, .	3.3	143
133	Interpreting some properties of CIRs and their associated shocks during the last two solar minima using global MHD simulations. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 83, 11-21.	0.6	12
134	Waves upstream and downstream of interplanetary shocks driven by coronal mass ejections. Journal of Geophysical Research, 2012, 117, .	3.3	53
135	Evidence for superthermal secondary electrons produced by SEP ionization in the Martian atmosphere. Journal of Geophysical Research, 2012, 117, .	3.3	17
136	Energetic particles detected by the Electron Reflectometer instrument on the Mars Global Surveyor, 1999–2006. Space Weather, 2012, 10, .	1.3	23
137	The Radial Variation of Interplanetary Shocks in the Inner Heliosphere: Observations by Helios, MESSENGER, and STEREO. Solar Physics, 2012, 278, 421-433.	1.0	10
138	Comparisons of Cassini flybys of the Titan magnetospheric interaction with an MHD model: Evidence for organized behavior at high altitudes. Icarus, 2012, 217, 43-54.	1.1	8
139	Investigating magnetospheric interaction effects on Titan's ionosphere with the Cassini orbiter Ion Neutral Mass Spectrometer, Langmuir Probe and magnetometer observations during targeted flybys. Icarus, 2012, 219, 534-555.	1.1	15
140	Interplanetary Signatures of Unipolar Streamers and the Origin of the Slow Solar Wind. Solar Physics, 2012, 277, 355-373.	1.0	81
141	Far tail (255 <i>R</i> _{<i>E</i>}) fast response to very weak magnetic activity. Journal of Geophysical Research, 2011, 116, .	3.3	3
142	Titan's thermospheric response to various plasma environments. Journal of Geophysical Research, 2011, 116, .	3.3	73
143	Dual observations of interplanetary shocks associated with stream interaction regions. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	9
144	Atmospheric erosion of Venus during stormy space weather. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	60

#	Article	IF	CITATIONS
145	SOLAR SOURCE AND HELIOSPHERIC CONSEQUENCES OF THE 2010 APRIL 3 CORONAL MASS EJECTION: A COMPREHENSIVE VIEW. Astrophysical Journal, 2011, 734, 84.	1.6	78
146	Interplanetary conditions: lessons from this minimum. Proceedings of the International Astronomical Union, 2011, 7, 168-178.	0.0	3
147	ARRIVAL TIME CALCULATION FOR INTERPLANETARY CORONAL MASS EJECTIONS WITH CIRCULAR FRONTS AND APPLICATION TO <i>STEREO</i> OBSERVATIONS OF THE 2009 FEBRUARY 13 ERUPTION. Astrophysical Journal, 2011, 741, 34.	1.6	51
148	PLASMOID RELEASES IN THE HELIOSPHERIC CURRENT SHEET AND ASSOCIATED CORONAL HOLE BOUNDARY LAYER EVOLUTION. Astrophysical Journal, 2011, 737, 16.	1.6	32
149	Clobal MHD Modeling of the Solar Corona and Inner Heliosphere for the Whole Heliosphere Interval. Solar Physics, 2011, 274, 361-377.	1.0	114
150	Coronal Field Opens at Lower Height During the Solar Cycles 22 and 23 Minimum Periods: IMF Comparison Suggests the Source Surface Should Be Lowered. Solar Physics, 2011, 269, 367-388.	1.0	87
151	Cyclic Reversal of Magnetic Cloud Poloidal Field. Solar Physics, 2011, 270, 331-346.	1.0	25
152	Comparing Solar Minimum 23/24 with Historical Solar Wind Records at 1 AU. Solar Physics, 2011, 274, 321-344.	1.0	128
153	Comparison of Observations at ACE and Ulysses with Enlil Model Results: Stream Interaction Regions During Carrington Rotations 2016 – 2018. Solar Physics, 2011, 273, 179-203.	1.0	53
154	The IMPACT Solar Wind Electron Analyzer (SWEA): Reconstruction of the SWEA Transmission Function by Numerical Simulation and Data Analysis. Space Science Reviews, 2011, 161, 49-62.	3.7	11
155	Multiple, distant (40°) in situ observations of a magnetic cloud and a corotating interaction region complex. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1254-1269.	0.6	56
156	Multipoint ICME encounters: Pre-STEREO and STEREO observations. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1228-1241.	0.6	77
157	Interplanetary coronal mass ejections in the near-Earth solar wind during the minimum periods following solar cycles 22 and 23. Annales Geophysicae, 2011, 29, 1455-1467.	0.6	25
158	A comparison of global models for the solar wind interaction with Mars. Icarus, 2010, 206, 139-151.	1.1	108
159	Investigation of the force balance in the Titan ionosphere: Cassini T5 flyby model/data comparisons. Icarus, 2010, 210, 867-880.	1.1	13
160	Cone model-based SEP event calculations for applications to multipoint observations. Advances in Space Research, 2010, 46, 1-21.	1.2	61
161	Sequential Coronal Mass Ejections from AR8038 inÂMayÂ1997. Solar Physics, 2010, 264, 149-164.	1.0	15
162	Organization of Energetic Particles by the Solar Wind Structure During the Declining to Minimum Phase ofÂSolar Cycle 23. Solar Physics, 2010, 263, 239-261.	1.0	12

#	Article	IF	CITATIONS
163	Temporal Evolution of the Solar-Wind Electron Core Density at Solar Minimum by Correlating SWEA Measurements from STEREO A and B. Solar Physics, 2010, 266, 369-377.	1.0	5
164	Interplanetary coronal mass ejection influence on high energy pick-up ions at Venus. Planetary and Space Science, 2010, 58, 1784-1791.	0.9	27
165	On the effect of the martian crustal magnetic field on atmospheric erosion. Icarus, 2010, 206, 130-138.	1.1	57
166	LOW-LATITUDE CORONAL HOLES AT THE MINIMUM OF THE 23rd SOLAR CYCLE. Astrophysical Journal, 2010, 712, 813-818.	1.6	70
167	RECONSTRUCTING CORONAL MASS EJECTIONS WITH COORDINATED IMAGING AND IN SITU OBSERVATIONS: GLOBAL STRUCTURE, KINEMATICS, AND IMPLICATIONS FOR SPACE WEATHER FORECASTING. Astrophysical Journal, 2010, 722, 1762-1777.	1.6	128
168	Statistics of counter-streaming solar wind suprathermal electrons at solar minimum: STEREO observations. Annales Geophysicae, 2010, 28, 233-246.	0.6	24
169	He Pickup Ions in the Inner Heliosphere—Diagnostics of the Local Interstellar Gas and of Interplanetary Conditions. AIP Conference Proceedings, 2010, , .	0.3	9
170	Mirror Mode Structures in the Solar Wind: STEREO Observations. , 2010, , .		5
171	Interplanetary Field Enhancements: Observations from 0.3 AU to 1 AU. , 2010, , .		0
172	Intermittent release of transients in the slow solar wind: 2. In situ evidence. Journal of Geophysical Research, 2010, 115, .	3.3	52
173	Escape probability of Martian atmospheric ions: Controlling effects of the electromagnetic fields. Journal of Geophysical Research, 2010, 115, .	3.3	36
174	Dynamical and magnetic field time constants for Titan's ionosphere: Empirical estimates and comparisons with Venus. Journal of Geophysical Research, 2010, 115, .	3.3	34
175	Sun to 1 AU propagation and evolution of a slow streamerâ€blowout coronal mass ejection. Journal of Geophysical Research, 2010, 115, .	3.3	65
176	How unprecedented a solar minimum?. Reviews of Geophysics, 2010, 48, .	9.0	128
177	Interplanetary field enhancements travel at the solar wind speed. Geophysical Research Letters, 2010, 37, .	1.5	8
178	Energetic, â^1⁄45–90 keV neutral atom imaging of a weak substorm with STEREO/STE. Geophysical Research Letters, 2010, 37, .	1.5	4
179	Hemispheric asymmetry of the magnetic field wrapping pattern in the Venusian magnetotail. Geophysical Research Letters, 2010, 37, .	1.5	61
180	Interpretation of the crossâ€correlation function of ACE and STEREO solar wind velocities using a global MHD Model. Journal of Geophysical Research, 2010, 115, .	3.3	10

#	Article	IF	CITATIONS
181	Observations of ion cyclotron waves in the solar wind near 0.3 AU. Journal of Geophysical Research, 2010, 115, .	3.3	70
182	STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period. Annales Geophysicae, 2009, 27, 4491-4503.	0.6	102
183	ROTATION OF CORONAL MASS EJECTIONS DURING ERUPTION. Astrophysical Journal, 2009, 697, 1918-1927.	1.6	113
184	The Solar Wind at 1 AU During the Declining Phase ofÂSolar Cycle 23: Comparison of 3D Numerical Model Results with Observations. Solar Physics, 2009, 254, 155-183.	1.0	67
185	Multispacecraft Observations of Magnetic Clouds andÂTheir Solar Origins between 19 and 23 May 2007. Solar Physics, 2009, 254, 325-344.	1.0	68
186	A Multispacecraft Analysis of a Small-Scale Transient Entrained by Solar Wind Streams. Solar Physics, 2009, 256, 307-326.	1.0	93
187	Observation of a Complex Solar Wind Reconnection Exhaust from Spacecraft Separated by over 1800 R E. Solar Physics, 2009, 256, 379-392.	1.0	39
188	Effects of the Weak Polar Fields of Solar Cycle 23: Investigation Using OMNI for the STEREO Mission Period. Solar Physics, 2009, 256, 345-363.	1.0	51
189	Solar Wind Sources in the Late Declining Phase ofÂCycleÂ23: Effects of the Weak Solar Polar Field onÂHighÂSpeed Streams. Solar Physics, 2009, 256, 285-305.	1.0	65
190	Optimized Grad – Shafranov Reconstruction ofÂaÂMagnetic Cloud Using STEREO-Wind Observations. Solar Physics, 2009, 256, 427-441.	1.0	69
191	Small Solar Wind Transients and Their Connection toÂtheÂLarge-Scale Coronal Structure. Solar Physics, 2009, 256, 327-344.	1.0	71
192	In Situ Observations of Solar Wind Stream Interface Evolution. Solar Physics, 2009, 259, 323-344.	1.0	23
193	On the Temporal Variability of the "Strahl―andÂltsÂRelationship with Solar Wind Characteristics: STEREO SWEA Observations. Solar Physics, 2009, 259, 311-321.	1.0	9
194	Multi-Spacecraft Observations: Stream Interactions andÂAssociated Structures. Solar Physics, 2009, 259, 345-360.	1.0	32
195	The Apparent Layered Structure of the Heliospheric Current Sheet: Multi-Spacecraft Observations. Solar Physics, 2009, 259, 389-416.	1.0	28
196	An unusual current sheet in an ICME: Possible association with C/2006 P1 (McNaught). Geophysical Research Letters, 2009, 36, .	1.5	5
197	Plume ionosphere of Enceladus as seen by the Cassini ion and neutral mass spectrometer. Geophysical Research Letters, 2009, 36, .	1.5	31
198	STEREO observations of shock formation in the solar wind. Geophysical Research Letters, 2009, 36, .	1.5	17

#	Article	IF	CITATIONS
199	STEREO observations of upstream and downstream waves at low Mach number shocks. Geophysical Research Letters, 2009, 36, .	1.5	32
200	Mirrorâ€mode storms: STEREO observations of protracted generation of small amplitude waves. Geophysical Research Letters, 2009, 36, .	1.5	15
201	Multispacecraft recovery of a magnetic cloud and its origin from magnetic reconnection on the Sun. Journal of Geophysical Research, 2009, 114, .	3.3	51
202	Stream Interactions and Interplanetary Coronal Mass Ejections atÂ0.72 AU. Solar Physics, 2008, 249, 85-101.	1.0	39
203	Stream Interactions and Interplanetary Coronal Mass Ejections at 5.3 AU near the Solar Ecliptic Plane. Solar Physics, 2008, 250, 375-402.	1.0	41
204	Theoretical modeling for the stereo mission. Space Science Reviews, 2008, 136, 565-604.	3.7	40
205	STEREO IMPACT Investigation Goals, Measurements, and Data Products Overview. Space Science Reviews, 2008, 136, 117-184.	3.7	257
206	The IMPACT Solar Wind Electron Analyzer (SWEA). Space Science Reviews, 2008, 136, 227-239.	3.7	76
207	The STEREO/IMPACT Magnetic Field Experiment. Space Science Reviews, 2008, 136, 203-226.	3.7	209
208	The STEREO IMPACT Suprathermal Electron (STE) Instrument. Space Science Reviews, 2008, 136, 241-255.	3.7	35
209	Plasma Flow and Related Phenomena inÂPlanetaryÂAeronomy. Space Science Reviews, 2008, 139, 311-353.	3.7	30
210	Mars Express and Venus Express multi-point observations of geoeffective solar flare events in December 2006. Planetary and Space Science, 2008, 56, 873-880.	0.9	102
211	First observation of energetic neutral atoms in the Venus environment. Planetary and Space Science, 2008, 56, 807-811.	0.9	19
212	Comparative analysis of Venus and Mars magnetotails. Planetary and Space Science, 2008, 56, 812-817.	0.9	48
213	Influence of IMF draping direction and crustal magnetic field location on Martian ion beams. Planetary and Space Science, 2008, 56, 861-867.	0.9	16
214	Evolution of solar wind structures from 0.72 to 1AU. Advances in Space Research, 2008, 41, 259-266.	1.2	34
215	Venus Express observations of atmospheric oxygen escape during the passage of several coronal mass ejections. Journal of Geophysical Research, 2008, 113, .	3.3	44
216	Initial Observations of Interplanetary Shocks by STEREO. AIP Conference Proceedings, 2008, , .	0.3	0

#	Article	IF	CITATIONS
217	The Solar Magnetic Field and Coronal Dynamics of the Eruption on 2007 May 19. Astrophysical Journal, 2008, 681, L37-L40.	1.6	35
218	Topological Evolution of a Fast Magnetic Breakout CME in Three Dimensions. Astrophysical Journal, 2008, 683, 1192-1206.	1.6	204
219	The STEREO/IMPACT Magnetic Field Experiment. , 2008, , 203-226.		4
220	The IMPACT Solar Wind Electron Analyzer (SWEA). , 2008, , 227-239.		10
221	The STEREO IMPACT Suprathermal Electron (STE) Instrument. , 2008, , 241-255.		0
222	Plasma Flow and Related Phenomena inÂPlanetaryÂAeronomy. Space Sciences Series of ISSI, 2008, , 311-353.	0.0	0
223	Space weather at Venus and its potential consequences for atmosphere evolution. Journal of Geophysical Research, 2007, 112, .	3.3	54
224	Venus upper atmosphere and plasma environment: Critical issues for future exploration. Geophysical Monograph Series, 2007, , 139-156.	0.1	12
225	Cassini Ion and Neutral Mass Spectrometer data in Titan's upper atmosphere and exosphere: Observation of a suprathermal corona. Journal of Geophysical Research, 2007, 112, .	3.3	108
226	Solar energetic particles in nearâ \in Mars space. Journal of Geophysical Research, 2007, 112, .	3.3	20
227	Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space. Journal of Geophysical Research, 2007, 112, .	3.3	115
228	The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission. Planetary and Space Science, 2007, 55, 1772-1792.	0.9	214
229	The loss of ions from Venus through the plasma wake. Nature, 2007, 450, 650-653.	13.7	168
230	Auroral Plasma Acceleration Above Martian Magnetic Anomalies. Space Science Reviews, 2007, 126, 333-354.	3.7	28
231	IMF Direction Derived from Cycloid-Like Ion Distributions Observed by Mars Express. Space Science Reviews, 2007, 126, 239-266.	3.7	21
232	The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission. Space Science Reviews, 2007, 126, 113-164.	3.7	241
233	A heliospheric simulation-based approach to SEP source and transport modeling. Advances in Space Research, 2007, 40, 295-303.	1.2	32
234	On the origin of aurorae on Mars. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	139

#	Article	IF	CITATIONS
235	Composition of Titan's ionosphere. Geophysical Research Letters, 2006, 33, .	1.5	191
236	A Comparison between Global Solar Magnetohydrodynamic and Potential Field Source Surface Model Results. Astrophysical Journal, 2006, 653, 1510-1516.	1.6	227
237	Coronal Magnetic Field Topology over Filament Channels: Implication for Coronal Mass Ejection Initiations. Astrophysical Journal, 2006, 648, 732-740.	1.6	17
238	Electric fields within the martian magnetosphere and ion extraction: ASPERA-3 observations. Icarus, 2006, 182, 337-342.	1.1	54
239	Structure of the martian wake. Icarus, 2006, 182, 329-336.	1.1	81
240	Observations of magnetic anomaly signatures in Mars Express ASPERA-3 ELS data. Icarus, 2006, 182, 396-405.	1.1	36
241	Numerical interpretation of high-altitude photoelectron observations. Icarus, 2006, 182, 383-395.	1.1	56
242	Carbon dioxide photoelectron energy peaks at Mars. Icarus, 2006, 182, 371-382.	1.1	105
243	Venus O+ pickup ions: Collected PVO results and expectations for Venus Express. Planetary and Space Science, 2006, 54, 1457-1471.	0.9	42
244	The solar wind interaction with Venus through the eyes of the Pioneer Venus Orbiter. Planetary and Space Science, 2006, 54, 1482-1495.	0.9	89
245	Properties of Stream Interactions at One AU During 1995 – 2004. Solar Physics, 2006, 239, 337-392.	1.0	234
246	Properties of Interplanetary Coronal Mass Ejections at One AU During 1995 – 2004. Solar Physics, 2006, 239, 393-436.	1.0	277
247	Ion escape at Mars: Comparison of a 3-D hybrid simulation with Mars Express IMA/ASPERA-3 measurements. Icarus, 2006, 182, 350-359.	1.1	34
248	Mass composition of the escaping plasma at Mars. Icarus, 2006, 182, 320-328.	1.1	103
249	Plasma Acceleration Above Martian Magnetic Anomalies. Science, 2006, 311, 980-983.	6.0	111
250	IMPACT: Science goals and firsts with STEREO. Advances in Space Research, 2005, 36, 1534-1543.	1.2	23
251	Titan's ionosphere: Model comparisons with Cassini Ta data. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	81
252	Solar Wind-Induced Atmospheric Erosion at Mars: First Results from ASPERA-3 on Mars Express. Science, 2004, 305, 1933-1936.	6.0	204

#	Article	IF	CITATIONS
253	Observational evidence for velocity convergence toward magnetic neutral lines as a factor in CME initiation. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66, 1271-1282.	0.6	16
254	Coupled model simulation of a Sun-to-Earth space weather event. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66, 1243-1256.	0.6	67
255	Induced magnetospheres. Advances in Space Research, 2004, 33, 1905-1912.	1.2	70
256	The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation. Space Science Reviews, 2004, 114, 113-231.	3.7	188
257	Solar cycle control of the magnetic cloud polarity and the geoeffectiveness. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66, 323-331.	0.6	30
258	Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66, 1295-1309.	0.6	272
259	A Three-dimensional Model of the Solar Wind Incorporating Solar Magnetogram Observations. Astrophysical Journal, 2003, 595, L57-L61.	1.6	179
260	Solar cycle changes in coronal holes and space weather cycles. Journal of Geophysical Research, 2002, 107, SMP 3-1-SMP 3-12.	3.3	124
261	Some expected impacts of a solar energetic particle event at Mars. Journal of Geophysical Research, 2002, 107, SIA 5-1.	3.3	54
262	Merging of coronal and heliospheric numerical two-dimensional MHD models. Journal of Geophysical Research, 2002, 107, SSH 14-1-SSH 14-11.	3.3	106
263	The Martian magnetosheath: how Venus-like?. Planetary and Space Science, 2002, 50, 489-502.	0.9	10
264	Earthward directed CMEs seen in large-scale coronal magnetic field changes, SOHO LASCO coronagraph and solar wind. Journal of Geophysical Research, 2001, 106, 25103-25120.	3.3	18
265	Relationship between Ulysses plasma observations and solar observations during the Whole Sun Month campaign. Journal of Geophysical Research, 1999, 104, 9871-9879.	3.3	31
266	Predictability ofDstindex based upon solar wind conditions monitored inside 1 AU. Journal of Geophysical Research, 1999, 104, 10335-10344.	3.3	31
267	Relationships between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections. Journal of Geophysical Research, 1999, 104, 12515-12523.	3.3	151
268	Magnetic field near Venus: A comparison between Pioneer Venus Orbiter magnetic field observations and an MHD simulation. Journal of Geophysical Research, 1998, 103, 4723-4737.	3.3	56
269	The relationship between large-scale solar magnetic field evolution and coronal mass ejections. Journal of Geophysical Research, 1998, 103, 6585-6593.	3.3	61
270	Sputter contribution to the atmospheric corona on Mars. Journal of Geophysical Research, 1998, 103, 3649-3653.	3.3	53

#	Article	IF	CITATIONS
271	POLAR magnetic observations of the low-altitude magnetosphere during the January 1997 coronal mass ejection/magnetic cloud event. Geophysical Research Letters, 1998, 25, 2533-2536.	1.5	17
272	Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere. Geophysical Research Letters, 1998, 25, 2959-2962.	1.5	171
273	Geomagnetic response to magnetic clouds of different polarity. Geophysical Research Letters, 1998, 25, 2999-3002.	1.5	148
274	Charge exchange near Mars: The solar wind absorption and energetic neutral atom production. Journal of Geophysical Research, 1997, 102, 22183-22197.	3.3	116
275	Impact of a paleomagnetic field on sputtering loss of Martian atmospheric argon and neon. Journal of Geophysical Research, 1997, 102, 9183-9189.	3.3	44
276	Time delays in the solar wind flow past Venus: Galileo-Pioneer Venus correlations. Journal of Geophysical Research, 1996, 101, 4539-4546.	3.3	4
277	Ion populations in the tail of Venus. Advances in Space Research, 1995, 16, 105-118.	1.2	14
278	Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness. Journal of Geophysical Research, 1995, 100, 16999.	3.3	56
279	On removing molecular ions from Venus. Journal of Geophysical Research, 1995, 100, 14515.	3.3	7
280	Interplanetary magnetic field control of magnetotail field: IMP 8 data and MHD model compared. Journal of Geophysical Research, 1995, 100, 17163.	3.3	30
281	Structure of the Venus tail. Geophysical Monograph Series, 1994, , 207-220.	0.1	2
282	On the sources of interplanetary shocks at 0.72 AU. Journal of Geophysical Research, 1994, 99, 11.	3.3	102
283	The flaring of the Martian magnetotail observed by the Phobos 2 spacecraft. Geophysical Research Letters, 1994, 21, 1121-1124.	1.5	16
284	Interplanetary magnetic field control of magnetotail magnetic field geometry: IMP 8 observations. Journal of Geophysical Research, 1994, 99, 11113.	3.3	91
285	Proton flow in the Martian magnetosheath. Journal of Geophysical Research, 1994, 99, 23547.	3.3	31
286	Threeâ€dimensional simulations of the solar wind interaction with Mars. Journal of Geophysical Research, 1993, 98, 1345-1357.	3.3	60
287	Solar Cycle 21 effects on the interplanetary magnetic field and related parameters at 0.7 and 1.0 AU. Journal of Geophysical Research, 1993, 98, 5559-5572.	3.3	60
288	On the spatial range of validity of the gas dynamic model in the magnetosheath of Venus. Geophysical Research Letters, 1993, 20, 751-754.	1.5	9

#	Article	IF	CITATIONS
289	The nightside ionosphere of Venus under varying levels of solar Euv flux. Geophysical Research Letters, 1993, 20, 2727-2730.	1.5	5
290	The magnetic state of the lower ionosphere during Pioneer Venus entry phase. Geophysical Research Letters, 1993, 20, 2723-2726.	1.5	5
291	3D plasma observations near Mars. Geophysical Research Letters, 1993, 20, 2339-2342.	1.5	6
292	A model of the ionospheric tail rays of Venus. Journal of Geophysical Research, 1993, 98, 17615-17621.	3.3	33
293	The ancient oxygen exosphere of Mars: Implications for atmosphere evolution. Journal of Geophysical Research, 1993, 98, 10915-10923.	3.3	104
294	Comparisons of peak ionosphere pressures at Mars and Venus with incident solar wind dynamic Pressure. Journal of Geophysical Research, 1992, 97, 1017-1025.	3.3	40
295	IMF draping around the Geotail: IMP 8 observations. Geophysical Research Letters, 1992, 19, 829-832.	1.5	22
296	Evolutionary impact of sputtering of the Martian atmosphere by O ⁺ pickup ions. Geophysical Research Letters, 1992, 19, 2151-2154.	1.5	236
297	Magnetic fields in Venus nightside ionospheric holes: Collected Pioneer Venus Orbiter magnetometer observations. Journal of Geophysical Research, 1992, 97, 10267-10282.	3.3	15
298	Asymmetries in the location of the Venus and Mars bow shock. Geophysical Research Letters, 1991, 18, 127-129.	1.5	36
299	Dayside pickup oxygen ion precipitation at Venus and Mars: Spatial distributions, energy deposition and consequences. Journal of Geophysical Research, 1991, 96, 5457-5467.	3.3	196
300	A comparison of induced magnetotails of planetary bodies: Venus, Mars, and Titan. Journal of Geophysical Research, 1991, 96, 11199-11208.	3.3	84
301	Venus ionospheric "cloudsâ€i relationship to the magnetosheath field geometry. Journal of Geophysical Research, 1991, 96, 11133-11144.	3.3	22
302	The solar wind interaction with Mars: Consideration of Phobos 2 mission observations of an ion composition boundary on the dayside. Journal of Geophysical Research, 1991, 96, 11165-11174.	3.3	67
303	Interaction of the solar wind with the planet Mars: Phobos 2 magnetic field observations. Planetary and Space Science, 1991, 39, 75-81.	0.9	33
304	Magnetic fields in the ionosphere of Venus. Space Science Reviews, 1991, 55, 201.	3.7	133
305	"Wave―analysis of venus ionospheric flux ropes. Geophysical Monograph Series, 1990, , 425-432.	0.1	7
306	The solar wind interaction with unmagnetized planets: A tutorial. Geophysical Monograph Series, 1990, , 401-411.	0.1	15

#	Article	IF	CITATIONS
307	Venus and Mars. Eos, 1990, 71, 1016.	0.1	4
308	A model of the ion wake of Mars. Geophysical Research Letters, 1990, 17, 869-872.	1.5	54
309	The magnetotail of Mars: Phobos observations. Geophysical Research Letters, 1990, 17, 885-888.	1.5	111
310	Upstream waves at Mars: Phobos observations. Geophysical Research Letters, 1990, 17, 897-900.	1.5	125
311	The solar cycle dependence of the location and shape of the Venus bow shock. Journal of Geophysical Research, 1990, 95, 14961-14967.	3.3	72
312	An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods. Journal of Geophysical Research, 1990, 95, 17095-17102.	3.3	152
313	A postâ€Pioneer Venus reassessment of the Martian dayside ionosphere as observed by radio occultation methods. Journal of Geophysical Research, 1990, 95, 14829-14839.	3.3	125
314	Magnetic fields near Mars: first results. Nature, 1989, 341, 604-607.	13.7	246
315	Small scale irregularities in comet Halley's plasma mantle: An attempt at selfâ€consistent analysis of plasma and magnetic field data. Geophysical Research Letters, 1989, 16, 5-8.	1.5	12
316	Electron heat flux dropouts in the solar wind: Evidence for interplanetary magnetic field reconnection?. Journal of Geophysical Research, 1989, 94, 6907-6916.	3.3	111
317	Comment on "On the response of ionospheric magnetisation to solar wind dynamic pressure from Pioneer Venus measurements― Geophysical Research Letters, 1988, 15, 118-119.	1.5	4
318	Asymmetries in the location of the Venus ionopause. Journal of Geophysical Research, 1988, 93, 3927-3941.	3.3	60
319	Solar and interplanetary control of the location of the Venus bow shock. Journal of Geophysical Research, 1988, 93, 5461-5469.	3.3	114
320	Solar wind mass‣oading at comet Halley: A lesson from Venus?. Geophysical Research Letters, 1987, 14, 499-502.	1.5	13
321	Magnetic field draping in the comet Halley coma: Comparison of Vega observations with computer simulations. Geophysical Research Letters, 1987, 14, 640-643.	1.5	24
322	An examination of possible solar wind sources for a sudden brightening of comet IRASâ€Arakiâ€Alcock. Geophysical Research Letters, 1987, 14, 991-994.	1.5	9
323	Characteristics of the Marslike limit of the Venusâ€solar wind interaction. Journal of Geophysical Research, 1987, 92, 8545-8557.	3.3	126
324	Interplanetary field control of the location of the Venus bow shock: Evidence for cometâ€like ion pickup. Geophysical Research Letters, 1986, 13, 917-920.	1.5	45

#	Article	IF	CITATIONS
325	The Venus ultraviolet aurora: Observations at 130.4 nm. Geophysical Research Letters, 1986, 13, 1047-1050.	1.5	42
326	Reply ["Comment on the â€~Pioneer Venus Orbiter Event of February 11, 1982: of cometary or solar origin?'â€]. Geophysical Research Letters, 1986, 13, 1071-1074.	1.5	2
327	The solar wind interaction with Venus. Space Science Reviews, 1986, 44, 241.	3.7	178
328	Planetary meteorology: Is there lightning on Venus?. Nature, 1986, 319, 266-266.	13.7	2
329	The location of the subsolar bow shock of Venus: Implications for the obstacle shape. Geophysical Research Letters, 1985, 12, 627-630.	1.5	17
330	The Pioneer Venus Orbiter event of February 11, 1982: Of cometary or solar origin?. Geophysical Research Letters, 1985, 12, 859-861.	1.5	3
331	Patterns of magnetic field merging sites on the magnetopause. Geophysical Monograph Series, 1984, , 156-157.	0.1	2
332	Interplanetary field enhancements in the solar wind: Statistical properties at 0.72 AU. Icarus, 1984, 60, 332-350.	1.1	29
333	Pioneer Venus. Eos, 1984, 65, 362-362.	0.1	1
334	The Planet Venus. Eos, 1984, 65, 362.	0.1	0
335	Time scales for the decay of induced largeâ€scale magnetic fields in the Venus ionosphere. Journal of Geophysical Research, 1984, 89, 362-368.	3.3	73
336	An unusual interplanetary event: encounter with a comet?. Nature, 1983, 305, 612-615.	13.7	33
337	Magnetic field and plasma wave observations in a plasma cloud at Venus. Geophysical Research Letters, 1982, 9, 45-48.	1.5	62
338	Holes in the nightside ionosphere of Venus. Journal of Geophysical Research, 1982, 87, 199-211.	3.3	111
339	The properties of the low altitude magnetic belt in the Venus ionosphere. Advances in Space Research, 1982, 2, 13-16.	1.2	34
340	Effects of large-scale magnetic fields in the Venus ionosphere. Advances in Space Research, 1982, 2, 17-21.	1.2	10
341	Observations of large scale steady magnetic fields in the dayside Venus ionosphere. Geophysical Research Letters, 1980, 7, 917-920.	1.5	102
342	The Solar Wind Interaction with Venus and Mars: Cometary Analogies and Contrasts. Geophysical Monograph Series, 0, , 5-16.	0.1	8

#	Article	IF	CITATIONS
343	A Parametric Study of the Solar Wind Interaction with Comets. Geophysical Monograph Series, 0, , 65-72.	0.1	2