
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7479873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
2	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
3	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	4.3	9
4	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
5	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	4.5	12
6	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> stretchy="false">⊙</mml:mtext></mml:mrow>. Physical Review Letters, 2020, 125, 101102.</mml:math 	ıml :ma text:	⊳≺nສສາ໔msub:
7	Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 2020, 125, 131101.	7.8	35
8	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
9	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
10	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.4	9
11	ELGAR—a European Laboratory for Gravitation and Atom-interferometric Research. Classical and Quantum Gravity, 2020, 37, 225017.	4.0	63
12	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406
13	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	8.3	65
14	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
15	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
16	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
17	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
18	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	8.3	145

#	Article	IF	CITATIONS
19	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	4.5	32
20	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
21	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
22	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
23	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179
24	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
25	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
26	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	7.8	254
27	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
28	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
29	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
30	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
31	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq1 1	0.784314 4.0	rgBT /Overlo
32	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.3	9
33	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
34	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
35	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	4.7	69
36	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98

#	Article	IF	CITATIONS
37	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
38	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
39	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
40	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
41	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
42	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
43	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	27.8	674
44	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
45	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
46	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73
47	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	4.7	64
48	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
49	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	4.7	40
50	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
51	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
52	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
53	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	4.7	19
54	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	4.7	59

#	Article	IF	CITATIONS
55	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	1.5	6
56	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
57	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
58	Advanced Virgo Status. , 2017, , .		0
59	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
60	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	7.7	63
61	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
62	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	8.9	106
63	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	4.7	31
64	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
65	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
66	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	4.7	35
67	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	4.7	60
68	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
69	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	4.7	102
70	An autocorrelation method to detect periodic gravitational waves from neutron stars in binary systems. Classical and Quantum Gravity, 2016, 33, 165006.	4.0	2
71	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	4.7	29
72	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	4.7	17

#	Article	IF	CITATIONS
73	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	4.7	32
74	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
75	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	4.7	14
76	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	4.7	92
77	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
78	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
79	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
80	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	4.7	119
81	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
82	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
83	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
84	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	8.9	898
85	The Advanced Virgo monolithic fused silica suspension. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 824, 644-645.	1.6	14
86	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
87	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
88	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
89	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	4.7	37
90	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	4.7	39

#	Article	IF	CITATIONS
91	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	4.7	47
92	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
93	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.4	27
94	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
95	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	4.0	2,530
96	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	4.0	10
97	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
98	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	4.7	60
99	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68
100	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
101	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	4.7	29
102	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
103	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
104	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	4.0	21
105	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42
106	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	4.7	28
107	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters. 2014. 113. 011102.</mml:math 	7.8	32
108	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	4.7	35

#	Article	IF	CITATIONS
109	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	4.7	29
110	The Science Case for Advanced Gravitational Wave Detectors. Astrophysics and Space Science Library, 2014, , 21-55.	2.7	0
111	Gravitational wave astronomy. Frontiers of Physics, 2013, 8, 771-793.	5.0	8
112	Newtonian noise limit in atom interferometers for gravitational wave detection. European Physical Journal C, 2013, 73, 1.	3.9	7
113	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	4.7	92
114	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	4.7	31
115	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	5.4	32
116	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	4.0	11
117	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	4.7	91
118	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	4.7	132
119	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	4.7	65
120	A tool for measuring the bending length in thin wires. Review of Scientific Instruments, 2013, 84, 033904.	1.3	2
121	PRINCIPLES OF GRAVITATIONAL WAVES DETECTION THROUGH ATOM INTERFEROMETRY. International Journal of Modern Physics Conference Series, 2013, 23, 135-143.	0.7	1
122	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005.	4.0	5
123	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62
124	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73
125	Status of the commissioning of the Virgo interferometer. , 2012, , .		1
126	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	3

#	Article	IF	CITATIONS
127	Noise monitor tools and their application to Virgo data. Journal of Physics: Conference Series, 2012, 363, 012024.	0.4	2
128	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	5.1	75
129	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	4.5	104
130	The NoEMi (Noise Frequency Event Miner) framework. Journal of Physics: Conference Series, 2012, 363, 012037.	0.4	12
131	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	4.7	107
132	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	4.7	48
133	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	4.7	43
134	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	4.7	185
135	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	4.7	66
136	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	4.7	0
137	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	2
138	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	1.2	257
139	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	4.0	355
140	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	5.1	84
141	A THERMAL COMPENSATION SYSTEM FOR THE GRAVITATIONAL WAVE DETECTOR VIRGO. , 2012, , .		2
142	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	4.7	85
143	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. International Journal of Modern Physics D, 2011, 20, 2075-2079.	2.1	4
144	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. Journal of Low Frequency Noise Vibration and Active Control, 2011, 30, 63-79.	2.9	28

#	Article	IF	CITATIONS
145	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	8.3	55
146	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	4.5	89
147	Optical detector topology for third-generation gravitational wave observatories. General Relativity and Gravitation, 2011, 43, 537-567.	2.0	6
148	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	4.3	6
149	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	4.3	13
150	Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum Gravity, 2011, 28, 094013.	4.0	644
151	Calibration and sensitivity of the Virgo detector during its second science run. Classical and Quantum Gravity, 2011, 28, 025005.	4.0	85
152	A state observer for the Virgo inverted pendulum. Review of Scientific Instruments, 2011, 82, 094502.	1.3	8
153	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	7.8	94
154	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002.	4.0	171
155	Commissioning status of the Virgo interferometer. Classical and Quantum Gravity, 2010, 27, 149801.	4.0	7
156	Tools for noise characterization in Virgo. Journal of Physics: Conference Series, 2010, 243, 012004.	0.4	0
157	Complete phenomenological gravitational waveforms from spinning coalescing binaries. Journal of Physics: Conference Series, 2010, 243, 012007.	0.4	41
158	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. Journal of Physics: Conference Series, 2010, 228, 012015.	0.4	8
159	The dynamics of monolithic suspensions for advanced detectors: A 3-segment model. Journal of Physics: Conference Series, 2010, 228, 012017.	0.4	7
160	Status and perspectives of the Virgo gravitational wave detector. Journal of Physics: Conference Series, 2010, 203, 012074.	0.4	29
161	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	4.5	60
162	Performances of the Virgo interferometer longitudinal control system. Astroparticle Physics, 2010, 33, 75-80.	4.3	10

#	Article	IF	CITATIONS
163	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	4.3	62
164	Automatic Alignment for the first science run of the Virgo interferometer. Astroparticle Physics, 2010, 33, 131-139.	4.3	11
165	The third generation of gravitational wave observatories and their science reach. Classical and Quantum Gravity, 2010, 27, 084007.	4.0	287
166	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	4.5	155
167	The Einstein Telescope: a third-generation gravitational wave observatory. Classical and Quantum Gravity, 2010, 27, 194002.	4.0	1,211
168	Noise from scattered light in Virgo's second science run data. Classical and Quantum Gravity, 2010, 27, 194011.	4.0	59
169	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	4.7	111
170	In-vacuum Faraday isolation remote tuning. Applied Optics, 2010, 49, 4780.	2.1	8
171	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	4.7	107
172	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	4.0	956
173	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
174	Control of the laser frequency of the Virgo gravitational wave interferometer with an in-loop relative frequency stability of 1.0 × 10â^21 on a 100 ms time scale. , 2009, , .		4
175	Laser with an in-loop relative frequency stability of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>1.0</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mrow><mm a 100-ms time scale for gravitational-wave detection. Physical Review A, 2009, 79, .</mm </mml:mrow></mml:msup></mml:mrow></mml:math 	l:mn>10<	/mml:mn>
176	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. Classical and Quantum Gravity, 2009, 26, 204002.	4.0	10
177	Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project. Classical and Quantum Gravity, 2009, 26, 165008.	4.0	110
178	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009.	4.0	16
179	Unmodeled search for black hole binary systems in the NINJA project. Classical and Quantum Gravity, 2009, 26, 204005.	4.0	3
180	Status of NINJA: the Numerical INJection Analysis project. Classical and Quantum Gravity, 2009, 26, 114008.	4.0	39

#	Article	IF	CITATIONS
181	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	27.8	303
182	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38.	4.3	16
183	In-vacuum optical isolation changes by heating in a Faraday isolator. Applied Optics, 2008, 47, 5853.	2.1	13
184	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. IEEE Transactions on Nuclear Science, 2008, 55, 302-310.	2.0	7
185	First joint gravitational wave search by the AURIGA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	4.0	13
186	The Virgo 3 km interferometer for gravitational wave detection. Journal of Optics, 2008, 10, 064009.	1.5	31
187	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. Classical and Quantum Gravity, 2008, 25, 114046.	4.0	0
188	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	4.0	28
189	Status of Virgo. Classical and Quantum Gravity, 2008, 25, 114045.	4.0	148
190	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	4.0	26
191	Detailed comparison of LIGO and Virgo inspiral pipelines in preparation for a joint search. Classical and Quantum Gravity, 2008, 25, 045001.	4.0	23
192	A comparison of methods for gravitational wave burst searches from LIGO and Virgo. Classical and Quantum Gravity, 2008, 25, 045002.	4.0	12
193	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001.	4.0	116
194	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	4.0	8
195	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. IEEE Transactions on Nuclear Science, 2008, 55, 225-232.	2.0	5
196	VIRGO: a large interferometer for gravitational wave detection started its first scientific run. Journal of Physics: Conference Series, 2008, 120, 032007.	0.4	15
197	The status of virgo. Journal of Physics: Conference Series, 2008, 110, 062025.	0.4	5

198 Methods of gravitational wave detection in the VIRGO Interferometer. , 2007, , .

1

#	Article	IF	CITATIONS
199	Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. Classical and Quantum Gravity, 2007, 24, S617-S625.	4.0	10
200	Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a. Classical and Quantum Gravity, 2007, 24, S671-S679.	4.0	19
201	Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. Classical and Quantum Gravity, 2007, 24, S491-S499.	4.0	13
202	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443.	4.0	9
203	Data quality studies for burst analysis of Virgo data acquired during Weekly Science Runs. Classical and Quantum Gravity, 2007, 24, S415-S422.	4.0	4
204	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388.	4.0	56
205	Coherent Bayesian analysis of inspiral signals. Classical and Quantum Gravity, 2007, 24, S607-S615.	4.0	17
206	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-5775.	4.0	9
207	Measurement of the optical parameters of the Virgo interferometer. Applied Optics, 2007, 46, 3466.	2.1	13
208	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. , 2007, , .		0
209	The Real-time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. , 2007, , .		1
210	The Virgo interferometric gravitational antenna. Optics and Lasers in Engineering, 2007, 45, 478-487.	3.8	7
211	Status of Virgo. Journal of Physics: Conference Series, 2006, 39, 32-35.	0.4	3
212	SEP flux mapping with PHOEBUS. Journal of Physics: Conference Series, 2006, 32, 6-11.	0.4	1
213	Benefits of joint LIGO - Virgo coincidence searches for burst and inspiral signals. Journal of Physics: Conference Series, 2006, 32, 212-222.	0.4	10
214	Virgo upgrade investigations. Journal of Physics: Conference Series, 2006, 32, 223-229.	0.4	21
215	A parallel in-time analysis system for Virgo Journal of Physics: Conference Series, 2006, 32, 35-43.	0.4	Ο
216	Environmental noise studies in Virgo. Journal of Physics: Conference Series, 2006, 32, 80-88.	0.4	4

#	Article	IF	CITATIONS
217	Ground based 2DoF test for LISA and LISA PF. Journal of Physics: Conference Series, 2006, 32, 180-185.	0.4	6
218	Length Sensing and Control in the Virgo Gravitational Wave Interferometer. IEEE Transactions on Instrumentation and Measurement, 2006, 55, 1985-1995.	4.7	5
219	The status of coalescing binaries search code in Virgo, and the analysis of C5 data. Classical and Quantum Gravity, 2006, 23, S187-S196.	4.0	7
220	Normal/independent noise in VIRGO data. Classical and Quantum Gravity, 2006, 23, S829-S836.	4.0	0
221	The variable finesse locking technique. Classical and Quantum Gravity, 2006, 23, S85-S89.	4.0	22
222	The Virgo automatic alignment system. Classical and Quantum Gravity, 2006, 23, S91-S101.	4.0	16
223	The status of VIRGO. Classical and Quantum Gravity, 2006, 23, S63-S69.	4.0	83
224	Testing Virgo burst detection tools on commissioning run data. Classical and Quantum Gravity, 2006, 23, S197-S205.	4.0	3
225	Ground Based 2 DoF Test For LISA And LISA Pathfinder: A Status Report. AIP Conference Proceedings, 2006, , .	0.4	Ο
226	The Virgo status. Classical and Quantum Gravity, 2006, 23, S635-S642.	4.0	179
227	Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astroparticle Physics, 2005, 23, 557-565.	4.3	79
228	Virgo and the worldwide search for gravitational waves. AIP Conference Proceedings, 2005, , .	0.4	2
229	The Virgo Detector. AIP Conference Proceedings, 2005, , .	0.4	10
230	LISA test-mass charging process due to cosmic-ray nuclei and electrons. Classical and Quantum Gravity, 2005, 22, S327-S332.	4.0	34
231	A simple line detection algorithm applied to Virgo data. Classical and Quantum Gravity, 2005, 22, S1189-S1196.	4.0	6
232	A first comparison of search methods for gravitational wave bursts using LIGO and Virgo simulated data. Classical and Quantum Gravity, 2005, 22, S1293-S1301.	4.0	15
233	A first study of environmental noise coupling to the Virgo interferometer. Classical and Quantum Gravity, 2005, 22, S1069-S1077.	4.0	4
234	Virgo status and commissioning results. Classical and Quantum Gravity, 2005, 22, S185-S191.	4.0	2

#	Article	IF	CITATIONS
235	Simulation of the charging process of the LISA test masses due to solar particles. Classical and Quantum Gravity, 2005, 22, S319-S325.	4.0	22
236	Status of Virgo. Classical and Quantum Gravity, 2005, 22, S869-S880.	4.0	54
237	NAP: a tool for noise data analysis. Application to Virgo engineering runs. Classical and Quantum Gravity, 2005, 22, S1041-S1049.	4.0	7
238	Testing the detection pipelines for inspirals with Virgo commissioning run C4 data. Classical and Quantum Gravity, 2005, 22, S1139-S1148.	4.0	5
239	A first comparison between LIGO and Virgo inspiral search pipelines. Classical and Quantum Gravity, 2005, 22, S1149-S1158.	4.0	7
240	ADVANCED GRAVITATIONAL WAVE DETECTORS AND THE GLOBAL NETWORK. International Journal of Modern Physics A, 2005, 20, 7045-7053.	1.5	2
241	Search for inspiralling binary events in the Virgo Engineering Run data. Classical and Quantum Gravity, 2004, 21, S709-S716.	4.0	13
242	Cosmic-ray spectra near the LISA orbit. Classical and Quantum Gravity, 2004, 21, S629-S633.	4.0	23
243	A power filter for the detection of burst events based on time–frequency spectrum estimation. Classical and Quantum Gravity, 2004, 21, S815-S820.	4.0	8
244	Network analysis for coalescing binaries: coherent versus coincidence based strategies. Classical and Quantum Gravity, 2004, 21, S1793-S1800.	4.0	1
245	Performance of a Âgeneralized Â-filter for the detection of burst events. Classical and Quantum Gravity, 2004, 21, S741-S747.	4.0	1
246	The VIRGO large mirrors: a challenge for low loss coatings. Classical and Quantum Gravity, 2004, 21, S935-S945.	4.0	30
247	Status of VIRGO. Classical and Quantum Gravity, 2004, 21, S385-S394.	4.0	89
248	Results of the Virgo central interferometer commissioning. Classical and Quantum Gravity, 2004, 21, S395-S402.	4.0	5
249	The last-stage suspension of the mirrors for the gravitational wave antenna Virgo. Classical and Quantum Gravity, 2004, 21, S425-S432.	4.0	5
250	Properties of seismic noise at the Virgo site. Classical and Quantum Gravity, 2004, 21, S433-S440.	4.0	25
251	Simulation of the charging process of the LISA test masses due to solar flares. Classical and Quantum Gravity, 2004, 21, S665-S670.	4.0	21
252	A first test of a sine-Hough method for the detection of pulsars in binary systems using the E4 Virgo engineering run data. Classical and Quantum Gravity, 2004, 21, S717-S727.	4.0	1

#	Article	IF	CITATIONS
253	First locking of the Virgo central area interferometer with suspension hierarchical control. Astroparticle Physics, 2004, 20, 629-640.	4.3	19
254	The commissioning of the central interferometer of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 21, 1-22.	4.3	22
255	Lock acquisition of the central interferometer of the gravitational wave detector Virgo. Astroparticle Physics, 2004, 21, 465-477.	4.3	4
256	A local control system for the test masses of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 20, 617-628.	4.3	22
257	Status of VIRGO. , 2004, 5500, 58.		2
258	Low-loss coatings for the VIRGO large mirrors. , 2004, , .		14
259	STATUS OF THE VIRGO EXPERIMENT. , 2004, , .		0
260	Status report of the low frequency facility experiment, Virgo R&D. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 318, 199-204.	2.1	6
261	Matched filters for coalescing binaries detection onÂmassivelyÂparallelÂcomputers. Computer Physics Communications, 2003, 152, 295-306.	7.5	2
262	Data analysis methods for non-Gaussian, nonstationary and nonlinear features and their application to VIRGO. Classical and Quantum Gravity, 2003, 20, S915-S924.	4.0	7
263	Testing the performance of a blind burst statistic. Classical and Quantum Gravity, 2003, 20, S821-S828.	4.0	1
264	Last stage control and mechanical transfer function measurement of the VIRGO suspensions. Review of Scientific Instruments, 2002, 73, 2143-2149.	1.3	14
265	Optimal detection of burst events in gravitational wave interferometric observatories. Physical Review D, 2002, 66, .	4.7	48
266	Status of the low frequency facility experiment. Classical and Quantum Gravity, 2002, 19, 1675-1682.	4.0	3
267	The present status of the VIRGO Central Interferometer*. Classical and Quantum Gravity, 2002, 19, 1421-1428.	4.0	85
268	The VIRGO experiment. AIP Conference Proceedings, 2001, , .	0.4	1
269	Inertial control of the mirror suspensions of the VIRGO interferometer for gravitational wave detection. Review of Scientific Instruments, 2001, 72, 3653-3661.	1.3	52
270	Measurement of the VIRGO superattenuator performance for seismic noise suppression. Review of Scientific Instruments, 2001, 72, 3643-3652.	1.3	89

#	Article	IF	CITATIONS
271	Measurement of the transfer function of the steering filter of the Virgo super attenuator suspension. Review of Scientific Instruments, 2001, 72, 3635-3642.	1.3	14
272	Suspension for the low frequency facility. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 266, 1-10.	2.1	6
273	IDENTIFICATION AND MONITORING OF VIOLIN MODES USING THE KARHOUNEN–LOÃ^VE TRANSFORM. International Journal of Modern Physics D, 2000, 09, 269-273.	2.1	1
274	The Low Frequency Facility, R&D experiment of the VIRGO project. Journal of Optics B: Quantum and Semiclassical Optics, 2000, 2, 172-178.	1.4	5
275	An inverted pendulum preisolator stage for the VIRGO suspension system. Review of Scientific Instruments, 1999, 70, 2507-2515.	1.3	82
276	SIESTA, a time domain, general purpose simulation program for the VIRGO experiment. Astroparticle Physics, 1999, 10, 369-386.	4.3	41
277	High-performance road-vehicle optimised aerodynamic design: Application of parallel computing to car design. Future Generation Computer Systems, 1999, 15, 323-332.	7.5	4
278	Performances of an ultralow frequency vertical pre-isolator for the VIRGO seismic attenuation chains. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 420, 316-335.	1.6	13
279	Plane parallel mirrors Fabry-Perot cavity to improve Virgo superattenuators. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 243, 187-194.	2.1	11
280	The creep problem in the VIRGO suspensions: a possible solution using Maraging steel. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 404, 455-469.	1.6	36
281	Seismic isolation by mechanical filters at very low frequencies. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 409, 480-483.	1.6	7
282	High PErformance Roadvehicle optimized aerodynamic design: Application of parallel computing to car design. Lecture Notes in Computer Science, 1998, , 86-95.	1.3	1
283	Status and noise limit of the VIRGO antenna. , 1998, , .		1
284	Ground tilt seismic spectrum measured with a new high sensitivity rotational accelerometer. Review of Scientific Instruments, 1997, 68, 1889-1893.	1.3	15
285	Coulomb law in the pure gauge U(1) theory on a lattice. Physical Review D, 1997, 56, 3896-3902.	4.7	7
286	Validation and performance analysis of a parallel ported code for simulating the effects of lightning strokes on telecommunication buildings. Lecture Notes in Computer Science, 1997, , 71-83.	1.3	0
287	Triggering and data analysis for the VIRGO experiment on the APEmille parallel computer. Nuclear Physics, Section B, Proceedings Supplements, 1997, 54, 184-187.	0.4	0
288	The VIRGO interferometer for gravitational wave detection. Nuclear Physics, Section B, Proceedings Supplements, 1997, 54, 167-175.	0.4	50

#	Article	IF	CITATIONS
289	Extending the VIRGO gravitational wave detection band down to a few Hz: metal blade springs and magnetic antisprings. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 394, 397-408.	1.6	46
290	EFFICIENCY OF DIFFERENT MATRIX INVERSION METHODS APPLIED TO WILSON FERMIONS. International Journal of Modern Physics C, 1996, 07, 787-809.	1.7	2
291	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	0.4	1
292	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce=. Nuclear Physics, Section B. Scaling, asymptotic scaling, and Symanzik improvement: Deconfinement temperature in SU(2) pure gauge theory. Physical Review D, 1994, 49, 511-527.	4.7	11
293	The b→sγ decay revisited. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 325, 227-234.	4.1	88
294	The SU(3) deconfining phase transition with Symanzik action. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 333, 457-460.	4.1	12
295	The SU (2) deconfinement phase transition with zymanzik action. Nuclear Physics, Section B, Proceedings Supplements, 1994, 34, 283-285.	0.4	0
296	QCD corrections to electroweak processes in an unconventional scheme: application to the b→sγ decay. Nuclear Physics B, 1994, 431, 417-452.	2.5	43
297	Two-loop heavy-top effects in the Standard Model. Nuclear Physics B, 1993, 409, 105-127.	2.5	144
298	Numerical solutions of first-exit-time problems. Physical Review E, 1993, 48, 1539-1546.	2.1	6
299	Radiative correction effects of a very heavy top. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1992, 288, 95-98.	4.1	158
300	QCD corrections to the →Xse+eⴒ decay. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 258, 212-218.	4.1	39
301	QCD corrections to the weak radiative -meson decay. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1990, 248, 181-187.	4.1	94
302	Ground based tests for LISA and LISA pathfinder. , 0, , .		0