Valentina V Vasilevskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7479143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fibrillar gel self-assembly via cononsolvency of amphiphilic polymer. Journal of Colloid and Interface Science, 2022, 614, 181-193.	9.4	5
2	Self-Assembly of Gel-Like Particles and Vesicles in Solutions of Polymers with Amphiphilic Repeat Unit. Polymer Science - Series A, 2022, 64, 220-231.	1.0	1
3	Structured globules with twisted arrangement of helical blocks: Computer simulation. Polymer, 2022, , 124974.	3.8	0
4	Matrix free polymer nanocomposites from amphiphilic hairy nanoparticles: Solvent selectivity and mechanical properties. Polymer, 2022, 255, 125172.	3.8	4
5	Microphase separation in helix–coil block copolymer melts: computer simulation. Soft Matter, 2021, 17, 8331-8342.	2.7	1
6	Multichain adsorption at fluid interfaces: Amphiphilic homopolymers vs copolymers. Journal of Colloid and Interface Science, 2021, 585, 408-419.	9.4	10
7	Atomistic simulation of poly (lactic acid) of different regioregularity. Polymer, 2021, 221, 123577.	3.8	4
8	Flowerlike Multipetal Structures of Nanoparticles Decorated by Amphiphilic Homopolymers. Macromolecules, 2021, 54, 6285-6295.	4.8	8
9	Orientation- and cosolvent-induced self-assembly of amphiphilic homopolymers in selective solvents. Polymer, 2021, 232, 124160.	3.8	9
10	Fibril Assembly and Gelation of Macromolecules with Amphiphilic Repeating Units. Langmuir, 2021, 37, 12377-12387.	3.5	2
11	Effect of Nanoparticles Surface Bonding and Aspect Ratio on Mechanical Properties of Highly Cross-Linked Epoxy Nanocomposites: Mesoscopic Simulations. Materials, 2021, 14, 6637.	2.9	3
12	Self-assembly in Solutions of Amphiphilic Homopolymers: Computer Modeling and Analytical Theory. Macromolecules, 2020, 53, 4783-4795.	4.8	15
13	Self-assembly in amphiphilic spherical brushes. Journal of Chemical Physics, 2020, 152, 234903.	3.0	5
14	Unusual Structures of Interpolyelectrolyte Complexes: Vesicles and Perforated Vesicles. Polymers, 2020, 12, 871.	4.5	5
15	Coarse-grained simulation of molecular ordering in polylactic blends under uniaxial strain. Polymer, 2020, 190, 122232.	3.8	7
16	Lamellae and parking garage structures in amphiphilic homopolymer brushes with different grafting densities. Journal of Chemical Physics, 2019, 151, 154903.	3.0	6
17	Hollow and Vesicle Particles from Macromolecules with Amphiphilic Monomer Units. Polymer Reviews, 2019, 59, 625-650.	10.9	28
18	On Conditions of Formation of Hollow Particles by an Interpolylectrolyte Complex. Polymer Science - Series A, 2019, 61, 780-788.	1.0	1

#	Article	IF	CITATIONS
19	Coarseâ€grained Aâ€graftâ€B model of poly(lactic acid) for molecular dynamics simulations. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 604-612.	2.1	9
20	Liquid-Crystalline Ordering of Filaments Formed by Bidisperse Amphiphilic Macromolecules. Polymer Science - Series C, 2018, 60, 39-47.	1.7	2
21	Parking Garage Bicontinuous Structures of Densely Grafted Layers of Amphiphilic Homopolymers. Polymer Science - Series C, 2018, 60, 56-65.	1.7	3
22	Lamellae—Parking Garage Structure—Lamellae Transition in Densely Grafted Layers of Amphiphilic Homopolymers: Impact of Polymerization Degree. ACS Omega, 2018, 3, 12967-12974.	3.5	6
23	Morphological diagram of amphiphilic H-graft-P macromolecules: Theory and computer experiment. Polymer, 2018, 146, 230-241.	3.8	19
24	Reverse Mapping Algorithm for Multi-scale Numerical Simulation of Polylactic Acid. Supercomputing Frontiers and Innovations, 2018, 5, .	0.4	2
25	Effect of correlations in the interaction along polymer chain on the globule structure. Doklady Physical Chemistry, 2017, 472, 6-9.	0.9	1
26	Computer synthesis of hypercrosslinked polystyrene: All-atom simulations. Low Temperature Physics, 2017, 43, 244-247.	0.6	3
27	Self-assembly in densely grafted macromolecules with amphiphilic monomer units: diagram of states. Soft Matter, 2017, 13, 8525-8533.	2.7	13
28	Domains in mixtures of amphiphilic macromolecules with different stiffness of backbone. Polymer, 2017, 125, 234-240.	3.8	5
29	Macromolecules with amphiphilic monomer units at interface of two immiscible liquids. Journal of Chemical Physics, 2017, 147, 184902.	3.0	9
30	Induced liquid-crystalline ordering in solutions of stiff and flexible amphiphilic macromolecules: Effect of mixture composition. Journal of Chemical Physics, 2016, 145, 044904.	3.0	8
31	Polymer globule with fractal properties caused by intramolecular nanostructuring and spatial constrains. Soft Matter, 2016, 12, 5138-5145.	2.7	5
32	Formation of a vesicle-like globule under steric restrictions. Polymer Science - Series A, 2016, 58, 292-301.	1.0	8
33	The formation of interpolymer complexes in mixtures of weak polyelectrolytes. Polymer Science - Series A, 2016, 58, 606-612.	1.0	3
34	Salt effects on macrophase separations in nonâ€stoichiometric mixtures of oppositely charged macromolecules: Theory and experiment. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1717-1730.	2.1	9
35	Self-Assembly into Strands in Amphiphilic Polymer Brushes. Langmuir, 2016, 32, 7000-7008.	3.5	15
36	Influence of cross-linking rate on the structure of hypercrosslinked networks: Multiscale computer simulation. Polymer, 2016, 86, 168-175.	3.8	21

#	Article	IF	CITATIONS
37	Vesicle‣ike Globules of Amphiphilic Macromolecules. Macromolecular Theory and Simulations, 2015, 24, 393-398.	1.4	18
38	Effect of Induced Self-Organization in Mixtures of Amphiphilic Macromolecules with Different Stiffness. Macromolecules, 2015, 48, 3767-3774.	4.8	8
39	New strategy to create ultra-thin surface layer of grafted amphiphilic macromolecules. Journal of Chemical Physics, 2015, 142, 184904.	3.0	18
40	Macroscopic Properties of Hypercrosslinked Polystyrene Networks: An Atomistic and Coarseâ€Grained Molecular Dynamics Simulation. Macromolecular Symposia, 2015, 348, 14-24.	0.7	13
41	Hybrids of Synthetic Polymers and Biopolymers. , 2015, , 953-958.		0
42	Marked difference in conformational fluctuation between giant DNA molecules in circular and linear forms. Journal of Chemical Physics, 2015, 142, 145101.	3.0	7
43	Experimental and Theoretical Studies of Polyanion–Polycation Complexation in Salted Media in the Context of Nonviral Gene Transfection. Macromolecules, 2014, 47, 3574-3581.	4.8	11
44	Hypercrosslinked polystyrene networks: An atomistic molecular dynamics simulation combined with a mapping/reverse mapping procedure. Journal of Chemical Physics, 2014, 140, 134903.	3.0	16
45	Hybrids of Synthetic Polymers and Biopolymers. , 2014, , 1-6.		0
46	Self-assembly of an amphiphilic macromolecule under spherical confinement: An efficient route to generate hollow nanospheres. Journal of Chemical Physics, 2013, 139, 244901.	3.0	9
47	Void Microstructuring in Lamellar Phase of Amphiphilic Macromolecules. Macromolecular Theory and Simulations, 2013, 22, 31-35.	1.4	13
48	Self-organization of amphiphilic macromolecules with local helix structure in concentrated solutions. Journal of Chemical Physics, 2012, 137, 084901.	3.0	14
49	Compaction of DNA in solutions of highly charged proteins carrying the same charge as DNA. Polymer Science - Series C, 2012, 54, 21-29.	1.7	2
50	Self-assembly of polymer layers with mobile grafting points: Computer simulation. Polymer Science - Series A, 2012, 54, 767-777.	1.0	4
51	Polyelectrolyte Complexes Consisting of Macromolecules With Varied Stiffness: Computer Simulation. Macromolecular Theory and Simulations, 2012, 21, 328-339.	1.4	33
52	Adsorption of amphiphilic comb-shaped macromolecules on a patterned surface. Polymer Science - Series A, 2011, 53, 344-353.	1.0	4
53	Formation of fibrillar aggregates in concentrated solutions of rigid-chain amphiphilic macromolecules with fixed torsion and bend angles. Polymer Science - Series A, 2011, 53, 733-743.	1.0	7
54	Computer simulation of macromolecular systems with amphiphilic monomer units: Biomimetic models. Polymer Science - Series A, 2011, 53, 846-866.	1.0	26

#	Article	IF	CITATIONS
55	Microphase separation in the melts of diblock copolymers composed of linear and amphiphilic blocks. Polymer Science - Series A, 2010, 52, 182-190.	1.0	11
56	Secondary structure of globules of copolymers consisting of amphiphilic and hydrophilic units: Effect of potential range. Polymer Science - Series A, 2010, 52, 317-327.	1.0	6
57	Compactization of rigid-chain amphiphilic macromolecules with local helical structure. Polymer Science - Series A, 2010, 52, 761-774.	1.0	12
58	DNA Compaction in a Crowded Environment with Negatively Charged Proteins. Physical Review Letters, 2010, 105, 128302.	7.8	46
59	Destruction of globules of Co- and homopolymer macromolecules in the presence of an amphiphilic substrate. Polymer Science - Series A, 2009, 51, 424-429.	1.0	5
60	The effect of a low-molecular-mass salt on stoichiometric polyelectrolyte complexes composed of oppositely charged macromolecules with different solvent affinities. Polymer Science - Series A, 2009, 51, 1075-1082.	1.0	7
61	Salt Effects on Complexes of Oppositely Charged Macromolecules Having Different Affinity to Water. Macromolecules, 2009, 42, 7495-7503.	4.8	17
62	Conformational properties of rigid-chain amphiphilic macromolecules: The phase diagram. Polymer Science - Series A, 2008, 50, 621-629.	1.0	14
63	Amphiphilic comb macromolecules with different distribution statistics of side-chain grafting sites: Mathematical modeling. Polymer Science - Series A, 2008, 50, 1008-1017.	1.0	13
64	Self-Organization in Solutions of Stiff-Chain Amphiphilic Macromolecules. Macromolecules, 2008, 41, 7722-7728.	4.8	27
65	Diagram of State of Stiff Amphiphilic Macromolecules. Macromolecular Symposia, 2007, 252, 24-35.	0.7	11
66	Secondary globular structure of copolymers containing amphiphilic and hydrophilic units: Computer simulation analysis. Polymer Science - Series A, 2007, 49, 89-96.	1.0	12
67	Catalytic reactions in emulsions in the presence of a polymeric catalyst. Polymer Science - Series A, 2007, 49, 729-736.	1.0	5
68	Reactions in surface microreactors: Computer simulation. Colloid Journal, 2007, 69, 265-271.	1.3	8
69	Helix-coil transition in DNA in the presence of a denaturating agent. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2007, 62, 99-103.	0.4	1
70	Study of Interpolymer Complexes of Oppositely Charged Macromolecules with Different Affinity to Solvent. Macromolecules, 2007, 40, 5934-5940.	4.8	27
71	Conformational Transitions in Cross-Linked Ionic Gels. , 2007, , 81-114.		0
72	Semiflexible amphiphilic polymers: Cylindrical-shaped, collagenlike, and toroidal structures. Journal of Chemical Physics, 2006, 124, 144914.	3.0	30

#	Article	IF	CITATIONS
73	Analysis of correlations in location of hydrophobic and hydrophilic monomers in protein sequences. Doklady Biochemistry and Biophysics, 2006, 411, 361-364.	0.9	0
74	Control of reactions between surfactant reagents in miniemulsions. Surface nanoreactors. Colloid and Polymer Science, 2006, 284, 459-467.	2.1	16
75	Protein Sequences as Literature Text. Macromolecular Theory and Simulations, 2006, 15, 425-431.	1.4	3
76	"Swiss-cheese―polyelectrolyte gels as media with extremely inhomogeneous distribution of charged species. Journal of Chemical Physics, 2004, 120, 9321-9329.	3.0	8
77	Protein Sequences as a "Literary―Text. Doklady Biochemistry and Biophysics, 2004, 397, 235-238.	0.9	1
78	Catalytic Reactions of a Surface-Active Catalyst and a Surface-Active Substrate in Emulsions: The Optimal Drop Size. Doklady Physical Chemistry, 2004, 398, 258-261.	0.9	9
79	HA (Hydrophobic/Amphiphilic) Copolymer Model:Â Coilâ^ Globule Transition versus Aggregation. Macromolecules, 2004, 37, 5444-5460.	4.8	73
80	Segmentation of Heteropolymer Sequences Specifying Subsequences with Different Composition and Statistical Properties. Macromolecular Theory and Simulations, 2003, 12, 604-613.	1.4	7
81	Conformational Polymorphism of Amphiphilic Polymers in a Poor Solvent. Macromolecules, 2003, 36, 10103-10111.	4.8	139
82	Swelling and Collapse of Swiss-Cheese Polyelectrolyte Gels in Salt Solutions. Macromolecular Theory and Simulations, 2002, 11, 623.	1.4	14
83	Domains in Melts of Combâ^'Coil Diblock Copolymers:  Superstrong Segregation Regime. Macromolecules, 2001, 34, 5019-5022.	4.8	9
84	Microphase Separation within a Comb Copolymer with Attractive Side Chains: A Computer Simulation Study. Macromolecular Theory and Simulations, 2001, 10, 389-394.	1.4	33
85	Structures of stiff macromolecules of finite chain length near the coil-globule transition: A Monte Carlo simulation. Macromolecular Theory and Simulations, 2000, 9, 488-499.	1.4	61
86	Single polyelectrolyte macromolecule in the salt solution: Effect of escaped counter ions. Macromolecular Theory and Simulations, 2000, 9, 600-607.	1.4	19
87	Influence of Migrating Ionic Groups on the Solubility of Polyelectrolytes:Â Phase Behavior of Ionic Poly(N-isopropylacrylamide) Copolymers in Water. Macromolecules, 2000, 33, 9757-9763.	4.8	39
88	Structures of stiff macromolecules of finite chain length near the coil-globule transition: A Monte Carlo simulation. Macromolecular Theory and Simulations, 2000, 9, 488-499.	1.4	7
89	Associating polyelectrolytes: Finite size cluster stabilization versus physical gel formation. Journal of Chemical Physics, 1999, 111, 2809-2817.	3.0	66
90	Association of diphilic chains near the solvent critical region. Journal of Chemical Physics, 1999, 111, 2340-2344.	3.0	1

#	Article	IF	CITATIONS
91	Swelling and Collapse of Physical Gels Formed by Associating Telechelic Polyelectrolytes. Langmuir, 1999, 15, 7918-7924.	3.5	33
92	Monte Carlo simulation of association of diphilic chains near the solvent critical region. , 1999, , .		0
93	Kinetics of polyelectrolyte network swelling and collapse. Polymer Gels and Networks, 1998, 6, 149-161.	0.6	4
94	Conformation of a polymer chain near the solvent critical region. I. The integral equation theory. Journal of Chemical Physics, 1998, 109, 5108-5118.	3.0	25
95	Conformation of a polymer chain near the solvent critical region. II. Monte Carlo simulation. Journal of Chemical Physics, 1998, 109, 5119-5125.	3.0	17
96	Discrete Coilâ^'Globule Transition of Single Duplex DNAs Induced by Polyamines. Journal of Physical Chemistry B, 1997, 101, 9396-9401.	2.6	192
97	Structure of collapsed persistent macromolecule: Toroid vs. spherical globule. Biopolymers, 1997, 41, 51-60.	2.4	108
98	Large Discrete Transition in a Single DNA Molecule Appears Continuous in the Ensemble. Physical Review Letters, 1996, 76, 3029-3031.	7.8	297
99	Marked discreteness on the coilâ€globule transition of single duplex DNA. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 876-880.	0.9	47
100	Collapse of single DNA molecule in poly(ethylene glycol) solutions. Journal of Chemical Physics, 1995, 102, 6595-6602.	3.0	293
101	Computer simulation analysis of microstructure formation in monomer and polymer blends involving a glassy component. Macromolecular Theory and Simulations, 1994, 3, 939-961.	1.4	8
102	Conformational transitions in polymer gels: Theory and experiment. Advances in Polymer Science, 1993, , 123-171.	0.8	188
103	Swelling and collapse of polymer gel in polymer solutions and melts. Macromolecules, 1992, 25, 384-390.	4.8	45
104	Swelling and collapse of polymer networks in contact with polymer melts and solutions. Polymer Science USSR, 1991, 33, 805-811.	0.2	1
105	Theory of the collapse of polyelectrolyte networks in solutions of ionogenic surfactants. Polymer Science USSR, 1991, 33, 974-982.	0.2	0
106	Neutral glycolipids of atherosclerotic plaques and unaffected human aorta tissue. FEBS Journal, 1989, 180, 167-171.	0.2	9
107	Collapse of polymeric networks in a mixed solvent. Polymer Science USSR, 1989, 31, 784-791.	0.2	6
108	The effect of low-molecular weight salts on the collapse of charged polymeric networks. Polymer Science USSR, 1986, 28, 348-353.	0.2	11