Andreas Meyerhans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7477933/publications.pdf

Version: 2024-02-01

58581 57758 7,980 169 44 82 citations h-index g-index papers 177 177 177 8113 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations. Cell, 1989, 58, 901-910.	28.9	751
2	DNA recombination during PCR. Nucleic Acids Research, 1990, 18, 1687-1691.	14.5	540
3	Genetic organization of a chimpanzee lentivirus related to HIV-1. Nature, 1990, 345, 356-359.	27.8	408
4	Multiply infected spleen cells in HIV patients. Nature, 2002, 418, 144-144.	27.8	381
5	Selection, recombination, and GA hypermutation of human immunodeficiency virus type 1 genomes. Journal of Virology, 1991, 65, 1779-1788.	3.4	349
6	LEVELS OF VIRUS-SPECIFIC CD4 T CELLS CORRELATE WITH CYTOMEGALOVIRUS CONTROL AND PREDICT VIRUS-INDUCED DISEASE AFTER RENAL TRANSPLANTATION1. Transplantation, 2001, 71, 1287-1294.	1.0	217
7	Early Depletion of <i>Mycobacterium tuberculosis</i> â€"Specific T Helper 1 Cell Responses after HIV‶ Infection. Journal of Infectious Diseases, 2008, 198, 1590-1598.	4.0	158
8	The Laâ€related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes. EMBO Reports, 2008, 9, 569-575.	4.5	152
9	Antiviral drug discovery: broad-spectrum drugs from nature. Natural Product Reports, 2015, 32, 29-48.	10.3	148
10	G->A hypermutation of the human immunodeficiency virus type 1 genome: evidence for dCTP pool imbalance during reverse transcription Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3092-3096.	7.1	144
11	CD8 T-Cell Recognition of Multiple Epitopes within Specific Gag Regions Is Associated with Maintenance of a Low Steady-State Viremia in Human Immunodeficiency Virus Type 1-Seropositive Patients. Journal of Virology, 2007, 81, 2440-2448.	3.4	142
12	Differences in CMV-Specific T-Cell Levels and Long-Term Susceptibility to CMV Infection after Kidney, Heart and Lung Transplantation. American Journal of Transplantation, 2005, 5, 1483-1489.	4.7	140
13	Restriction and enhancement of human immunodeficiency virus type 1 replication by modulation of intracellular deoxynucleoside triphosphate pools. Journal of Virology, 1994, 68, 535-540.	3.4	135
14	Position effects influence HIV latency reversal. Nature Structural and Molecular Biology, 2017, 24, 47-54.	8.2	133
15	Genetic Editing of Herpes Simplex Virus 1 and Epstein-Barr Herpesvirus Genomes by Human APOBEC3 Cytidine Deaminases in Culture and <i>In Vivo</i> Iournal of Virology, 2011, 85, 7594-7602.	3.4	131
16	Translation and replication of hepatitis C virus genomic RNA depends on ancient cellular proteins that control mRNA fates. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13517-13522.	7.1	127
17	Sustained High Frequencies of Specific CD4 T Cells Restricted to a Single Persistent Virus. Journal of Virology, 2002, 76, 3748-3755.	3.4	107
18	Dominance of Virus-Specific CD8 T Cells in Human Primary Cytomegalovirus Infection. Journal of the American Society of Nephrology: JASN, 2002, 13, 2577-2584.	6.1	101

#	Article	IF	CITATIONS
19	Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5388-5393.	7.1	100
20	Monocyte-derived cultured dendritic cells are susceptible to human immunodeficiency virus infection and transmit virus to resting T cells in the process of nominal antigen presentation. Journal of Virology, 1995, 69, 4544-4547.	3.4	99
21	In vivo persistence of a HIV-1-encoded HLA-B27-restricted cytotoxic T lymphocyte epitope despite specificin vitro reactivity. European Journal of Immunology, 1991, 21, 2637-2640.	2.9	93
22	Back to Normal: An Old Physics Route to Reduce SARS-CoV-2 Transmission in Indoor Spaces. ACS Nano, 2020, 14, 7704-7713.	14.6	88
23	Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages. Respiratory Research, 2010, 11, 124.	3.6	83
24	Rapid increase of mucosal CD4 T cells followed by clearance of intestinal cryptosporidiosis in an AIDS patient receiving highly active antiretroviral therapy. Gastroenterology, 2001, 120, 984-987.	1.3	81
25	Dynamics of viral variants in HIV-1 Nef and specific cytotoxic T lymphocytes in vivo. Journal of Immunology, 1996, 157, 4212-21.	0.8	80
26	Naturally Occurring Hepatitis B Virus Genomes Bearing the Hallmarks of Retroviral G \hat{a}^{\dagger} A Hypermutation. Virology, 1997, 235, 104-108.	2.4	77
27	Cytotoxic T Lymphocyte Epitopes of HIV-1 Nef. Journal of Experimental Medicine, 2000, 191, 239-252.	8.5	77
28	Peptide motifs of HLA-A3, -A24, and -B7 molecules as determined by pool sequencing. Immunogenetics, 1994, 40, 306-308.	2.4	75
29	Assessment of the Feasibility and Safety of Durvalumab for Treatment of Solid Tumors in Patients With HIV-1 Infection. JAMA Oncology, 2020, 6, 1063.	7.1	70
30	Glandular tissue from human pancreas and salivary gland yields similar stem cell populations. European Journal of Cell Biology, 2009, 88, 409-421.	3.6	62
31	Estimation of Cell Proliferation Dynamics Using CFSE Data. Bulletin of Mathematical Biology, 2011, 73, 116-150.	1.9	62
32	Independent fluctuation of human immunodeficiency virus type 1 rev and gp41 quasispecies in vivo. Journal of Virology, 1991, 65, 4502-4507.	3.4	61
33	Manganese cations increase the mutation rate of human immunodeficiency virus type $1\mathrm{ex}$ vivo. Journal of General Virology, 1999, 80, 1983-1986.	2.9	60
34	A novel whole-blood miRNA signature for a rapid diagnosis of pulmonary tuberculosis. European Respiratory Journal, 2015, 45, 1173-1176.	6.7	58
35	Numerical modelling of label-structured cell population growth using CFSE distribution data. Theoretical Biology and Medical Modelling, 2007, 4, 26.	2.1	54
36	Identification of PatL1, a human homolog to yeast P body component Pat1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1786-1792.	4.1	54

#	Article	IF	Citations
37	Monitoring CD27 Expression to Evaluate Mycobacterium Tuberculosis Activity in HIV-1 Infected Individuals In Vivo. PLoS ONE, 2011, 6, e27284.	2.5	53
38	Aetheramides A and B, Potent HIV-Inhibitory Depsipeptides from a Myxobacterium of the New Genus $\hat{a} \in \mathbb{R}$ (i>Aetherobacteri> $\hat{a} \in \mathbb{R}$ Organic Letters, 2012, 14, 2854-2857.	4.6	53
39	HIV genetic variation is directed and restricted by DNA precursor availability. Journal of Molecular Biology, 1997, 270, 139-151.	4.2	52
40	Genetic drift can dominate short-term human immunodeficiency virus type 1 nef quasispecies evolution in vivo. Journal of Virology, 1997, 71, 4233-4240.	3.4	52
41	A genetic-algorithm approach to simulating human immunodeficiency virus evolution reveals the strong impact of multiply infected cells and recombination. Journal of General Virology, 2005, 86, 3109-3118.	2.9	50
42	Sequence constraints and recognition by CTL of an HLA-B27-restricted HIV-1 gag epitope. Journal of Immunology, 1995, 154, 2189-97.	0.8	47
43	Network analysis of human and simian immunodeficiency virus sequence sets reveals massive recombination resulting in shorter pathways. Journal of General Virology, 2003, 84, 885-895.	2.9	46
44	Improved efficiency in detecting cellular immunity towards M. tuberculosis in patients receiving immunosuppressive drug therapy. Nephrology Dialysis Transplantation, 2006, 21, 3258-3268.	0.7	46
45	Monocyte-derived dendritic cells represent a transient stage of differentiation in the myeloid lineage. Immunobiology, 1997, 197, 534-542.	1.9	44
46	The fraction of perforin-expressing HIV-specific CD8 T cells is a marker for disease progression in HIV infection. Aids, 2002, 16, 1497-1501.	2.2	44
47	Pan-genotypic Hepatitis C Virus Inhibition by Natural Products Derived from the Wild Egyptian Artichoke. Journal of Virology, 2016, 90, 1918-1930.	3.4	44
48	On the Role of the Second Coding Exon of the HIV-1 Tat Protein in Virus Replication and MHC Class I Downregulation. AIDS Research and Human Retroviruses, 1998, 14, 1553-1559.	1.1	43
49	Human Immunodeficiency Virus Infection : from Biological Observations to Mechanistic Mathematical Modelling. Mathematical Modelling of Natural Phenomena, 2012, 7, 78-104.	2.4	43
50	Saccharomyces cerevisiae: A useful model host to study fundamental biology of viral replication. Virus Research, 2006, 120, 49-56.	2.2	42
51	Saccharomyces cerevisiae: a versatile eukaryotic system in virology. Microbial Cell Factories, 2007, 6, 32.	4.0	42
52	Mathematical Immunology of Virus Infections. , 2018, , .		42
53	PD-L1 Blockade Differentially Impacts Regulatory T Cells from HIV-Infected Individuals Depending on Plasma Viremia. PLoS Pathogens, 2015, 11, e1005270.	4.7	41
54	Challenges and perspectives for improved management of HIV/Mycobacterium tuberculosis co-infection. European Respiratory Journal, 2010, 36, 1242-1247.	6.7	39

#	Article	IF	CITATIONS
55	Spatiotemporal Dynamics of Virus Infection Spreading in Tissues. PLoS ONE, 2016, 11, e0168576.	2.5	39
56	A new model for the estimation of cell proliferation dynamics using CFSE data. Journal of Immunological Methods, 2011, 373, 143-160.	1.4	38
57	Calcineurin and mTOR inhibitors have opposing effects on regulatory T cells while reducing regulatory B cell populations in kidney transplant recipients. Transplant Immunology, 2016, 35, 1-6.	1.2	37
58	Identification of myxobacteria-derived HIV inhibitors by a high-throughput two-step infectivity assay. Microbial Cell Factories, 2013, 12, 85.	4.0	34
59	The myxobacterial metabolite ratjadone A inhibits HIV infection by blocking the Rev/CRM1-mediated nuclear export pathway. Microbial Cell Factories, 2014, 13, 17.	4.0	34
60	Extensive MHC class I-restricted CD8 T lymphocyte responses against various yeast genera in humans. FEMS Immunology and Medical Microbiology, 2003, 39, 279-286.	2.7	32
61	Myxobacteria: natural pharmaceutical factories. Microbial Cell Factories, 2012, 11, 52.	4.0	32
62	Detection of Broadly Neutralizing Activity within the First Months of HIV-1 Infection. Journal of Virology, 2016, 90, 5231-5245.	3.4	31
63	Labyrinthopeptins Exert Broad-Spectrum Antiviral Activity through Lipid-Binding-Mediated Virolysis. Journal of Virology, 2020, 94, .	3.4	30
64	[13] Simultaneous synthesis and biological applications of DNA fragments: An efficient and complete methodology. Methods in Enzymology, 1987, 154, 221-249.	1.0	29
65	Hybrid approach to model the spatial regulation of T cell responses. BMC Immunology, 2017, 18, 29.	2.2	29
66	Rapid whole blood analysis of virus-specific CD4 and CD8 T cell responses in persistent HIV infection. Aids, 2000, 14, 2653-2660.	2.2	28
67	Soraphen A: A broad-spectrum antiviral natural product with potent anti-hepatitis C virus activity. Journal of Hepatology, 2015, 63, 813-821.	3.7	28
68	Absence of selection of HIV-1 variants in vivo based on transcription/transactivation during progression to AIDS. Virology, 1992, 188, 811-818.	2.4	26
69	Gut-homing (α 4 β 7 +) Th1 memory responses after inactivated poliovirus immunization in poliovirus orally pre-immunized donors. Journal of General Virology, 2004, 85, 1571-1579.	2.9	26
70	Human pancreatic secretory trypsin inhibitor (PSTI) produced in active form and secreted from Escherichia coli. Gene, 1988, 68, 357-369.	2.2	25
71	A pattern search method for putative anchor residues in T cell epitopes. European Journal of Immunology, 1993, 23, 1271-1276.	2.9	25
72	In a mixed subtype epidemic, the HIV-1 Gag-specific T-cell response is biased towards the infecting subtype. Aids, 2007, 21, 135-143.	2.2	25

#	Article	IF	Citations
73	Immune Screening Identifies Novel T Cell Targets Encoded by Antisense Reading Frames of HIV-1. Journal of Virology, 2015, 89, 4015-4019.	3.4	24
74	Phylogenetic reconstruction of intrapatient evolution of human immunodeficiency virus type 1: predominance of drift and purifying selection. Journal of General Virology, 2001, 82, 1621-1627.	2.9	24
75	Human immune response to HIV-1-Nef. I. CD45ROâ^'T lymphocytes of non-infected donors contain cytotoxic T lymphocyte precursors at high frequency. International Immunology, 1994, 6, 1739-1749.	4.0	23
76	T cell activation on a single-cell level in dielectrophoresis-based microfluidic devices. Journal of Chromatography A, 2008, 1202, 83-89.	3.7	23
77	Quantification of Unintegrated HIV-1 DNA at the Single Cell Level In Vivo. PLoS ONE, 2012, 7, e36246.	2.5	23
78	Homeostatically Maintained Resting Naive CD4+ T Cells Resist Latent HIV Reactivation. Frontiers in Microbiology, 2016, 7, 1944.	3.5	22
79	Cancer immunotherapy of patients with HIV infection. Clinical and Translational Oncology, 2019, 21, 713-720.	2.4	22
80	Gamma Interferon Is a Major Suppressive Factor Produced by Activated Human Peripheral Blood Lymphocytes That Is Able To Inhibit Foamy Virus-Induced Cytopathic Effects. Journal of Virology, 1999, 73, 1724-1728.	3.4	22
81	Fitness Ranking of Individual Mutants Drives Patterns of Epistatic Interactions in HIV-1. PLoS ONE, 2011, 6, e18375.	2.5	22
82	The Autographa californica nuclear polyhedrosis virus AcNPV induces functional maturation of human monocyte-derived dendritic cells. Vaccine, 2006, 24, 7190-7196.	3.8	21
83	Metabolite profiling studies in Saccharomyces cerevisiae: an assisting tool to prioritize host targets for antiviral drug screening. Microbial Cell Factories, 2009, 8, 12.	4.0	21
84	Systems analysis reveals complex biological processes during virus infection fate decisions. Genome Research, 2019, 29, 907-919.	5.5	21
85	Targeting Antibody Responses to the Membrane Proximal External Region of the Envelope Glycoprotein of Human Immunodeficiency Virus. PLoS ONE, 2012, 7, e38068.	2.5	21
86	Specific activation of CMV-primed human T lymphocytes by cytomegalovirus pp65 expressed in fission yeast. FEMS Immunology and Medical Microbiology, 2003, 38, 231-239.	2.7	19
87	Expression pattern analysis of transcribed HERV sequences is complicated by ex vivo recombination. Retrovirology, 2007, 4, 39.	2.0	19
88	Hepatitis C virus RNA recombination in cell culture. Journal of Hepatology, 2011, 55, 777-783.	3.7	19
89	Understanding Experimental LCMV Infection of Mice: The Role of Mathematical Models. Journal of Immunology Research, 2015, 2015, 1-10.	2.2	18
90	Modeling of the HIV-1 Life Cycle in Productively Infected Cells to Predict Novel Therapeutic Targets. Pathogens, 2020, 9, 255.	2.8	18

#	Article	IF	Citations
91	Insertion/deletion frequencies match those of point mutations in the hypervariable regions of the simian immunodeficiency virus surface envelope gene. Journal of General Virology, 2001, 82, 1613-1619.	2.9	18
92	High-resolution structure of an HIV-1 quasispecies. Aids, 1992, 6, 1095-1098.	2.2	17
93	Cross-presentation of HLA class I epitopes from influenza matrix protein produced in Saccharomyces cerevisiae. Vaccine, 2006, 24, 6272-6281.	3.8	17
94	Towards a Multiscale Model of Acute HIV Infection. Computation, 2017, 5, 6.	2.0	17
95	G â†' A Hypermutation Does Not Result from Polymerase Chain Reaction. AIDS Research and Human Retroviruses, 1997, 13, 985-986.	1.1	15
96	Cloning and expression pattern of a murine semaphorin homologous to H-sema IV. NeuroReport, 1998, 9, 3975-3979.	1.2	15
97	An Automated HIV-1 Env-Pseudotyped Virus Production for Global HIV Vaccine Trials. PLoS ONE, 2012, 7, e51715.	2.5	15
98	Intracellular Life Cycle Kinetics of SARS-CoV-2 Predicted Using Mathematical Modelling. Viruses, 2021, 13, 1735.	3.3	15
99	A division-dependent compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assays. Mathematical Biosciences and Engineering, 2012, 9, 699-736.	1.9	15
100	Letter to the Editor: Long-Term Survivors with Continuously High Levels of HIV Type 1. AIDS Research and Human Retroviruses, 1996, 12, 757-758.	1.1	14
101	Pathogenesis and Treatment of HIV Infection: The Cellular, the Immune System and the Neuroendocrine Systems Perspective. International Reviews of Immunology, 2013, 32, 282-306.	3.3	14
102	Activation of viral defense signaling in cancer. Therapeutic Advances in Medical Oncology, 2018, 10, 175883591879310.	3.2	14
103	Interplay between reaction and diffusion processes in governing the dynamics of virus infections. Journal of Theoretical Biology, 2018, 457, 221-236.	1.7	14
104	The transcription factor NFAT5 limits infection-induced type I interferon responses. Journal of Experimental Medicine, 2020, 217, .	8.5	14
105	Phase II study of durvalumab (MEDI4736) in cancer patients HIV-1-infected Journal of Clinical Oncology, 2019, 37, 2501-2501.	1.6	14
106	Structural constraints of HIV-1 Nef may curtail escape from HLA-B7-restricted CTL recognition. Immunology Letters, 1997, 55, 119-122.	2.5	13
107	Replication of M-tropic HIV-1 in Activated Human Intestinal Lamina Propria Lymphocytes Is the Main Reason for Increased Virus Load in the Intestinal Mucosa. Journal of Acquired Immune Deficiency Syndromes (1999), 2005, 38, 23-30.	2.1	13
108	A High Viral Burden Predicts the Loss of CD8 T-Cell Responses Specific for Subdominant Gag Epitopes during Chronic Human Immunodeficiency Virus Infection. Journal of Virology, 2007, 81, 13809-13815.	3.4	13

#	Article	IF	CITATIONS
109	HIV LTR-Driven Antisense RNA by Itself Has Regulatory Function and May Curtail Virus Reactivation From Latency. Frontiers in Microbiology, 2018, 9, 1066.	3.5	13
110	Cloning and sequencing of hlk-1, a cDNA encoding a human homologue of mouse Ikaros/LyF-1. Immunology Letters, 1996, 49, 139-141.	2.5	12
111	Human immune response to HIV-1 Nef. II. Induction of HIV-1/HIV-2 Nef cross-reactive cytotoxic T lymphocytes in peripheral blood lymphocytes of non-infected healthy individuals. International Immunology, 1996, 8, 577-584.	4.0	12
112	Antigen-specific T cell responses: Determination of their frequencies, homing properties, and effector functions in human whole blood. Methods, 2006, 38, 77-83.	3.8	12
113	Maintenance of HIV-Specific Central and Effector Memory CD4 and CD8 T Cells Requires Antigen Persistence. AIDS Research and Human Retroviruses, 2007, 23, 549-553.	1.1	12
114	A novel statistical analysis and interpretation of flow cytometry data. Journal of Biological Dynamics, 2013, 7, 96-132.	1.7	12
115	The non-clonal and transitory nature of HIV in vivo. Swiss Medical Weekly, 2003, 133, 451-4.	1.6	12
116	Screening of small molecules affecting mammalian P-body assembly uncovers links with diverse intracellular processes and organelle physiology. RNA Biology, 2013, 10, 1661-1669.	3.1	11
117	Markov Chain-Based Stochastic Modelling of HIV-1 Life Cycle in a CD4 T Cell. Mathematics, 2021, 9, 2025.	2.2	11
118	Editorial: Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease. Frontiers in Immunology, 2019, 10, 2944.	4.8	11
119	Prediction of PD-L1 inhibition effects for HIV-infected individuals. PLoS Computational Biology, 2019, 15, e1007401.	3.2	10
120	Peptide Assembly on the Membrane Determines the HIV-1 Inhibitory Activity of Dual-Targeting Fusion Inhibitor Peptides. Scientific Reports, 2019, 9, 3257.	3.3	10
121	Nonlocal Reaction–Diffusion Model of Viral Evolution: Emergence of Virus Strains. Mathematics, 2020, 8, 117.	2.2	10
122	Profound differences of microRNA expression patterns in hepatocytes and hepatoma cell lines commonly used in hepatitis C virus studies. Hepatology, 2011, 54, 1111-1112.	7.3	9
123	Restructuring the translation initiation region of the human parathyroid hormone gene for improved expression in Escherichia coli. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1089, 320-324.	2.4	8
124	Stable multi-infection of splenocytes during SIV infection - the basis for continuous recombination. Retrovirology, 2012, 9, 31.	2.0	8
125	Oligonucleotide-Lipid Conjugates Forming G-Quadruplex Structures Are Potent and Pangenotypic Hepatitis C Virus Entry Inhibitors <i>In Vitro</i> and <i>Ex Vivo</i> . Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	8
126	The Myxobacterial Metabolite Soraphen A Inhibits HIV-1 by Reducing Virus Production and Altering Virion Composition. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	8

#	Article	IF	CITATIONS
127	Herpesvirus Saimiri-Transformed Human CD4 ⁺ T-Cell Lines: an Efficient Target Cell System for the Analysis of Human Immunodeficiency Virus-Specific Cytotoxic CD8 ⁺ T-Lymphocyte Activity. Journal of Virology, 1998, 72, 1627-1631.	3.4	8
128	The HIV-1 Nucleocapsid Regulates Its Own Condensation by Phase-Separated Activity-Enhancing Sequestration of the Viral Protease during Maturation. Viruses, 2021, 13, 2312.	3.3	8
129	Human cytomegalovirus protein pp65: an efficient protein carrier system into human dendritic cells. Gene Therapy, 2008, 15, 318-325.	4.5	7
130	Management of tuberculosis in HIV infection: where T-cells matter. European Respiratory Journal, 2010, 35, 475-476.	6.7	7
131	Low Seroprevalence of West Nile Virus in Blood Donors from Catalonia, Spain. Vector-Borne and Zoonotic Diseases, 2015, 15, 782-784.	1.5	7
132	Spatial Lymphocyte Dynamics in Lymph Nodes Predicts the Cytotoxic T Cell Frequency Needed for HIV Infection Control. Frontiers in Immunology, 2019, 10, 1213.	4.8	7
133	Linking Cell Dynamics With Gene Coexpression Networks to Characterize Key Events in Chronic Virus Infections. Frontiers in Immunology, 2019, 10, 1002.	4.8	7
134	Viral Infection Dynamics Model Based on a Markov Process with Time Delay between Cell Infection and Progeny Production. Mathematics, 2020, 8, 1207.	2.2	7
135	Importance of structure-based studies for the design of a novel HIV-1 inhibitor peptide. Scientific Reports, 2020, 10, 14430.	3.3	7
136	Examining the cooperativity mode of antibody and CD8+ T cell immune responses for vaccinology. Trends in Immunology, 2021, 42, 852-855.	6.8	7
137	The Fidelity of Cellular and Viral polymerases and its manipulation for Hypermutagenesis. , 1999, , 87-114.		7
138	Interaction of human immunodeficiency virus gp120 with the voltageâ€gated potassium channel BEC1. FEBS Letters, 2010, 584, 3513-3518.	2.8	6
139	Numbers Game and Immune Geography as Determinants of Coronavirus Pathogenicity. Frontiers in Cellular and Infection Microbiology, 2020, 10, 559209.	3.9	6
140	Kinetics of CXCR4 and CCR5 up-regulation and human immunodeficiency virus expansion after antigenic stimulation of primary CD4(+) T lymphocytes. Blood, 2000, 96, 1853-6.	1.4	6
141	Screening HIVâ€1 antigenic peptides as receptors for antibodies and CD4 in allosteric nanosensors. Journal of Molecular Recognition, 2009, 22, 255-260.	2.1	5
142	Benzyl-2-Acetamido-2-Deoxy-α-d-Galactopyranoside Increases Human Immunodeficiency Virus Replication and Viral Outgrowth Efficacy In Vitro. Frontiers in Immunology, 2018, 8, 2010.	4.8	5
143	Existence and Dynamics of Strains in a Nonlocal Reaction-Diffusion Model of Viral Evolution. SIAM Journal on Applied Mathematics, 2021, 81, 107-128.	1.8	5
144	Kinetics of CXCR4 and CCR5 up-regulation and human immunodeficiency virus expansion after antigenic stimulation of primary CD4+ T lymphocytes. Blood, 2000, 96, 1853-1856.	1.4	4

#	Article	IF	CITATIONS
145	Lymphocyte Activation Dynamics Is Shaped by Hereditary Components at Chromosome Region 17q12-q21. PLoS ONE, 2016, 11, e0166414.	2.5	4
146	Srand specific PCR amplification of low copy number DNA. Nucleic Acids Research, 1992, 20, 521-523.	14.5	3
147	Analysis of variability in estimates of cell proliferation parameters for cyton-based models using CFSE-based flow cytometry data. Journal of Inverse and Ill-Posed Problems, 2015, 23, .	1.0	3
148	Mathematical modelling of the within-host HIV quasispecies dynamics in response to antiviral treatment. Russian Journal of Numerical Analysis and Mathematical Modelling, 2015, 30, .	0.6	3
149	Sensitivity of SARS-CoV-2 Life Cycle to IFN Effects and ACE2 Binding Unveiled with a Stochastic Model. Viruses, 2022, 14, 403.	3.3	3
150	Rapid Purification of Chemically Synthesized Oligodeoxy-Nucleotides. Nucleosides & Nucleotides, 1985, 4, 245-245.	0.5	2
151	On viral epidemics, zoonoses and memory. Trends in Microbiology, 1999, 7, 389-391.	7.7	2
152	Global HIV Vaccine Research Cryorepository-GHRC. Procedia in Vaccinology, 2009, 1, 49-62.	0.4	2
153	Human yeast-specific CD8 T lymphocytes show a nonclassical effector molecule profile. Medical Microbiology and Immunology, 2012, 201, 127-136.	4.8	2
154	A drug pharmacodynamics and pharmacokinetics based approach towards stabilization of HIV infection dynamics. Russian Journal of Numerical Analysis and Mathematical Modelling, 2015, 30, .	0.6	2
155	Multi-scale and Integrative Modelling Approaches. , 2018, , 221-242.		2
156	Granulocyte colonyâ€stimulating factor (G SF) may stimulate HIVâ€replication during cytostatic chemotherapy. European Journal of Haematology, 1998, 61, 354-355.	2.2	1
157	Preface. Distributed Parameter Systems in Immunology. Mathematical Modelling of Natural Phenomena, 2012, 7, 1-3.	2.4	1
158	Pathogen prevalence may determine maintenance of antigen-specific T-cell responses in HIV-infected individuals. Aids, 2012, 26, 695-700.	2.2	1
159	Lipid-Oligonucleotide Conjugates Forming G-Quadruplexes (Lipoquads) as Potent Inhibitors of HIV Entry. Proceedings (mdpi), $2017, 1, .$	0.2	1
160	Equilibrium Model of Drug-Modulated GagPol-Embedded HIV-1 Reverse Transcriptase Dimerization to Enhance Premature Protease Activation. AIDS Research and Human Retroviruses, 2018, 34, 804-807.	1,1	1
161	Parameter Estimation and Model Selection. , 2018, , 35-95.		1
162	Principles of Virus–Host Interaction. , 2018, , 1-14.		1

#	Article	IF	CITATIONS
163	A Rational Methodology for Rapid Chemical And Enzymic Synthesis of Long Double Stranded DNA: A Human Î ² -Interferon Gene. Nucleosides & Nucleotides, 1985, 4, 243-243.	0.5	0
164	Retrovirus variation: a finger on the pulse. Trends in Microbiology, 1996, 4, 218-219.	7.7	0
165	Induction of Mutations in Drosophila melanogaster gypsy Retroelements by Modulation of Intracellular Deoxynucleoside Triphosphate Pools In Vivo. Journal of Virology, 2007, 81, 4900-4903.	3.4	0
166	Antigen-Driven HIV Expansion in Allergen-Specific T Cells. AIDS Research and Human Retroviruses, 2007, 23, 161-164.	1.1	0
167	Metabolite profiling studies in Saccharomyces cerevisiae: an assisting tool to prioritize host targets for antiviral drug screening. New Biotechnology, 2009, 25, S4.	4.4	0
168	Spatial Modelling Using Reaction–Diffusion Systems. , 2018, , 195-219.		0
169	Modelling of Human Infections. , 2018, , 153-194.		0