Peter Howarth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7477582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet, The, 2012, 380, 651-659.	13.7	1,849
2	Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort. European Respiratory Journal, 2015, 46, 1308-1321.	6.7	434
3	U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. Journal of Allergy and Clinical Immunology, 2017, 139, 1797-1807.	2.9	236
4	Assessment of the long-term safety of mepolizumab and durability of clinical response in patients with severe eosinophilic asthma. Journal of Allergy and Clinical Immunology, 2019, 143, 1742-1751.e7.	2.9	212
5	A Transcriptome-driven Analysis of Epithelial Brushings and Bronchial Biopsies to Define Asthma Phenotypes in U-BIOPRED. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 443-455.	5.6	165
6	Eosinophils in Health and Disease: A State-of-the-Art Review. Mayo Clinic Proceedings, 2021, 96, 2694-2707.	3.0	103
7	Real-world mepolizumab in the prospective severe asthma REALITI-A study: initial analysis. European Respiratory Journal, 2020, 56, 2000151.	6.7	84
8	IL-17–high asthma with features of a psoriasis immunophenotype. Journal of Allergy and Clinical Immunology, 2019, 144, 1198-1213.	2.9	80
9	Randomised controlled trials in severe asthma: selection by phenotype or stereotype. European Respiratory Journal, 2018, 52, 1801444.	6.7	70
10	Stratification of asthma phenotypes by airway proteomic signatures. Journal of Allergy and Clinical Immunology, 2019, 144, 70-82.	2.9	59
11	Urinary Leukotriene E ₄ and Prostaglandin D ₂ Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation. A Clinical Observational Study. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 37-53.	5.6	49
12	Altered Epithelial Gene Expression in Peripheral Airways of Severe Asthma. PLoS ONE, 2017, 12, e0168680.	2.5	48
13	Transcriptomic gene signatures associated with persistent airflow limitation in patients with severe asthma. European Respiratory Journal, 2017, 50, 1602298.	6.7	44
14	Severe eosinophilic asthma with nasal polyposis: A phenotype for improved sinonasal and asthma outcomes with mepolizumab therapy. Journal of Allergy and Clinical Immunology, 2020, 145, 1713-1715.	2.9	42
15	Multidimensional endotypes of asthma: topological data analysis of cross-sectional clinical, pathological, and immunological data. Lancet, The, 2015, 385, S42.	13.7	38
16	Exhaled volatile organic compounds in adult asthma: a systematic review. European Respiratory Journal, 2019, 54, 1900056.	6.7	35
17	Connectivity patterns between multiple allergen specific IgE antibodies and their association with severe asthma. Journal of Allergy and Clinical Immunology, 2020, 146, 821-830.	2.9	33
18	Contribution of airway eosinophils in airway wall remodeling in asthma: Role of <i><scp>MMP</scp>â€10</i> and <i><scp>MET</scp></i> . Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1102-1112.	5.7	32

Peter Howarth

#	Article	IF	CITATIONS
19	Association of Differential Mast Cell Activation with Granulocytic Inflammation in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 397-411.	5.6	30
20	New Perspectives on Difficult Asthma; Sex and Age of Asthma-Onset Based Phenotypes. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 3396-3406.e4.	3.8	28
21	Allergic and eosinophilic asthma in the era of biomarkers and biologics: similarities, differences and misconceptions. Annals of Allergy, Asthma and Immunology, 2022, 129, 169-180.	1.0	28
22	Clinical evaluation of type 2 disease status in a realâ€world population of difficult to manage asthma using historic electronic healthcare records of blood eosinophil counts. Clinical and Experimental Allergy, 2021, 51, 811-820.	2.9	27
23	Sputum ACE2, TMPRSS2 and FURIN gene expression in severe neutrophilic asthma. Respiratory Research, 2021, 22, 10.	3.6	27
24	Protocol for the Wessex AsThma CoHort of difficult asthma (WATCH): a pragmatic real-life longitudinal study of difficult asthma in the clinic. BMC Pulmonary Medicine, 2019, 19, 99.	2.0	22
25	Mapping atopic dermatitis and anti–IL-22 response signatures to type 2–low severe neutrophilic asthma. Journal of Allergy and Clinical Immunology, 2022, 149, 89-101.	2.9	22
26	Realâ€world Omalizumab and Mepolizumab treated difficult asthma phenotypes and their clinical outcomes. Clinical and Experimental Allergy, 2021, 51, 1019-1032.	2.9	22
27	Small RNA Species and microRNA Profiles are Altered in Severe Asthma Nanovesicles from Broncho Alveolar Lavage and Associate with Impaired Lung Function and Inflammation. Non-coding RNA, 2019, 5, 51.	2.6	21
28	The Clinical Implications of Aspergillus Fumigatus Sensitization in Difficult-To-Treat Asthma Patients. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 4254-4267.e10.	3.8	21
29	Peripheral airways type 2 inflammation, neutrophilia and microbial dysbiosis in severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2070-2078.	5.7	18
30	Susceptibility to influenza virus infection of bronchial biopsies in asthma. Journal of Allergy and Clinical Immunology, 2017, 140, 309-312.e4.	2.9	17
31	Cigarette Smoke Causes Caspase-Independent Apoptosis of Bronchial Epithelial Cells from Asthmatic Donors. PLoS ONE, 2015, 10, e0120510.	2.5	17
32	Large-Scale Label-Free Quantitative Mapping of the Sputum Proteome. Journal of Proteome Research, 2018, 17, 2072-2091.	3.7	16
33	Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux. European Respiratory Journal, 2019, 53, 1900453.	6.7	15
34	Mepolizumab for chronic rhinosinusitis with nasal polyps (<scp>SYNAPSE</scp>): Inâ€depth sinus surgery analysis. Allergy: European Journal of Allergy and Clinical Immunology, 2023, 78, 812-821.	5.7	14
35	Urinary metabotype of severe asthma evidences decreased carnitine metabolism independent of oral corticosteroid treatment in the U-BIOPRED study. European Respiratory Journal, 2022, 59, 2101733.	6.7	13
36	Severe acute respiratory syndrome coronavirus 2 infection in those on mepolizumab therapy. Annals of Allergy, Asthma and Immunology, 2021, 126, 438-440.	1.0	12

Peter Howarth

#	Article	IF	CITATIONS
37	Eosinophilâ€derived neurotoxin and clinical outcomes with mepolizumab in severe eosinophilic asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2085-2088.	5.7	11
38	A multi-omics approach to delineate sputum microbiome-associated asthma inflammatory phenotypes. European Respiratory Journal, 2022, 59, 2102603.	6.7	11
39	Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation. European Respiratory Journal, 2022, 59, 2100142.	6.7	10
40	Vulnerability to acid reflux of the airway epithelium in severe asthma. European Respiratory Journal, 2022, , 2101634.	6.7	10
41	Evaluation of sputum eosinophil count as a predictor of treatment response to mepolizumab. ERJ Open Research, 2022, 8, 00560-2021.	2.6	9
42	Factors affecting adherence with treatment advice in a clinical trial of patients with severe asthma. European Respiratory Journal, 2022, 59, 2100768.	6.7	8
43	Nocturnal temperature-controlled laminar airflow device for adults with severe allergic asthma: the LASER RCT. Health Technology Assessment, 2019, 23, 1-140.	2.8	7
44	Prospective Italian realâ€world study of mepolizumab in severe eosinophilic asthma validates retrospective outcome reports. Clinical and Translational Allergy, 2021, 11, e12067.	3.2	7
45	Clinical assessment of speech correlates well with lung function during induced bronchoconstriction. Npj Primary Care Respiratory Medicine, 2015, 25, 15006.	2.6	6
46	Case series reporting the effectiveness of mycophenolate mofetil in treatment-resistant asthma. European Respiratory Journal, 2013, 42, 1134-1137.	6.7	5
47	Validation and further insight into the International Severe Asthma Registry (ISAR) eosinophil gradient algorithm in the Wessex AsThma CoHort of difficult asthma (WATCH) using historical blood eosinophil counts and induced sputum. Clinical and Experimental Allergy, 2022, 52, 792-796.	2.9	5
48	Response to mepolizumab treatment is sustained across 4-weekly dosing periods. ERJ Open Research, 2020, 6, 00068-2020.	2.6	4
49	Salbutamol but not ipratropium abolishes leukotriene D4-induced gas exchange abnormalities in asthma. European Journal of Clinical Pharmacology, 2012, 68, 1375-1383.	1.9	3
50	Association of endopeptidases, involved in SARSâ€CoVâ€2 infection, with microbial aggravation in sputum of severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1917-1921.	5.7	3
51	The effect of the COVID-19 pandemic on severe asthma care in Europe - will care change for good?. ERJ Open Research, 2022, 8, 00065-2022.	2.6	3
52	Clinical nasal decongestant activity with oral antihistamines. Clinical and Experimental Allergy Reviews, 2002, 2, 101-106.	0.3	2
53	Rigor Is Needed When Making Comparative Analyses of Biologics in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1508-1510.	5.6	2
54	Reply. Journal of Allergy and Clinical Immunology, 2020, 146, 683-684.	2.9	0