Tomasz K Prajsnar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/747742/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /0	Dverlock 10) Tf 50 742
2	A novel vertebrate model of <i>Staphylococcus aureus</i> infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens. Cellular Microbiology, 2008, 10, 2312-2325.	2.1	185
3	A privileged intraphagocyte niche is responsible for disseminated infection of <i> <scp>S</scp> taphylococcus aureus </i> in a zebrafish model. Cellular Microbiology, 2012, 14, 1600-1619.	2.1	107
4	Intracellular <i>Staphylococcus aureus</i> eludes selective autophagy by activating a host cell kinase. Autophagy, 2016, 12, 2069-2084.	9.1	97
5	Macrophages target <i>Salmonella</i> by Lc3-associated phagocytosis in a systemic infection model. Autophagy, 2019, 15, 796-812.	9.1	82
6	Human skin commensals augment Staphylococcus aureus pathogenesis. Nature Microbiology, 2018, 3, 881-890.	13.3	80
7	Clonal Expansion during Staphylococcus aureus Infection Dynamics Reveals the Effect of Antibiotic Intervention. PLoS Pathogens, 2014, 10, e1003959.	4.7	73
8	The Lysozyme-Induced Peptidoglycan <i>N</i> -Acetylglucosamine Deacetylase PgdA (EF1843) Is Required for Enterococcus faecalis Virulence. Journal of Bacteriology, 2012, 194, 6066-6073.	2.2	69
9	A Spaetzle-like role for nerve growth factor β in vertebrate immunity to <i>Staphylococcus aureus</i> . Science, 2014, 346, 641-646.	12.6	68
10	Identification and Characterization of $\ddot{I}fS$, a Novel Component of the Staphylococcus aureus Stress and Virulence Responses. PLoS ONE, 2008, 3, e3844.	2.5	62
11	RNA-seq and Tn-seq reveal fitness determinants of vancomycin-resistant Enterococcus faecium during growth in human serum. BMC Genomics, 2017, 18, 893.	2.8	57
12	The autophagic response to <i>Staphylococcus aureus</i> provides an intracellular niche in neutrophils. Autophagy, 2021, 17, 888-902.	9.1	49
13	Polymersomes Eradicating Intracellular Bacteria. ACS Nano, 2020, 14, 8287-8298.	14.6	47
14	A transgenic zebrafish line for in vivo visualisation of neutrophil myeloperoxidase. PLoS ONE, 2019, 14, e0215592.	2.5	42
15	Zebrafish as a Novel Vertebrate Model To Dissect Enterococcal Pathogenesis. Infection and Immunity, 2013, 81, 4271-4279.	2.2	40
16	Decoration of the enterococcal polysaccharide antigen EPA is essential for virulence, cell surface charge and interaction with effectors of the innate immune system. PLoS Pathogens, 2019, 15, e1007730.	4.7	31
17	Existence of a ColonizingStaphylococcus aureusStrain Isolated in Diabetic Foot Ulcers. Diabetes, 2015, 64, 2991-2995.	0.6	28
18	Zebrafish as a new model to study effects of periodontal pathogens on cardiovascular diseases. Scientific Reports, 2016, 6, 36023.	3.3	25

TOMASZ K PRAJSNAR

#	Article	IF	CITATIONS
19	Neutrophils use selective autophagy receptor Sqstm1/p62 to target <i>Staphylococcus aureus</i> for degradation <i>in vivo</i> in zebrafish. Autophagy, 2021, 17, 1448-1457.	9.1	21
20	Bacterial size matters: Multiple mechanisms controlling septum cleavage and diplococcus formation are critical for the virulence of the opportunistic pathogen Enterococcus faecalis. PLoS Pathogens, 2017, 13, e1006526.	4.7	18
21	Rubicon-Dependent Lc3 Recruitment to Salmonella-Containing Phagosomes Is a Host Defense Mechanism Triggered Independently From Major Bacterial Virulence Factors. Frontiers in Cellular and Infection Microbiology, 2019, 9, 279.	3.9	18
22	Tilapia Lake Virus-Induced Neuroinflammation in Zebrafish: Microglia Activation and Sickness Behavior. Frontiers in Immunology, 2021, 12, 760882.	4.8	17
23	Construction and Use of Staphylococcus aureus Strains to Study Within-Host Infection Dynamics. Methods in Molecular Biology, 2018, 1736, 17-27.	0.9	2
24	Human-specific staphylococcal virulence factors enhance pathogenicity in a humanised zebrafish C5a receptor model. Journal of Cell Science, 2021, 134, .	2.0	2
25	The Role of Galanin during Bacterial Infection in Larval Zebrafish. Cells, 2021, 10, 2011.	4.1	2
26	Co-operation during Staphylococcus aureus pathogenesis. Journal of Infection, 2015, 71, 684.	3.3	0
27	Use of Larval Zebrafish Model to Study Within-Host Infection Dynamics. Methods in Molecular Biology, 2018, 1736, 147-156.	0.9	0
28	Phagosomal Acidification Is Required to Kill Streptococcus pneumoniae in a Zebrafish Model. Cellular Microbiology, 2022, 2022, 1-13.	2.1	0