
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7476317/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Transducer Cascades for Biological Literature-Based Discovery. Information (Switzerland), 2022, 13, 262.                                                                                                                 | 2.9  | 0         |
| 2  | Characterization of New Monoclonal PF4-Specific Antibodies as Useful Tools for Studies on Typical and Autoimmune Heparin-Induced Thrombocytopenia. Thrombosis and Haemostasis, 2021, 121, 322-331.                       | 3.4  | 29        |
| 3  | Accurate determination of epitope for antibodies with unknown 3D structures. MAbs, 2021, 13, 1961349.                                                                                                                    | 5.2  | 8         |
| 4  | The RanBP2/RanCAP1-SUMO complex gates β-arrestin2 nuclear entry to regulate the Mdm2-p53 signaling axis. Oncogene, 2021, 40, 2243-2257.                                                                                  | 5.9  | 13        |
| 5  | Agonist anti-ChemR23 mAb reduces tissue neutrophil accumulation and triggers chronic inflammation resolution. Science Advances, 2021, 7, .                                                                               | 10.3 | 34        |
| 6  | 4C3 Human Monoclonal Antibody: A Proof of Concept for Non-pathogenic Proteinase 3<br>Anti-neutrophil Cytoplasmic Antibodies in Granulomatosis With Polyangiitis. Frontiers in<br>Immunology, 2020, 11, 573040.           | 4.8  | 6         |
| 7  | Biased Signaling and Allosteric Modulation at the FSHR. Frontiers in Endocrinology, 2019, 10, 148.                                                                                                                       | 3.5  | 26        |
| 8  | Methods to Determine Interaction Interfaces Between Î <sup>2</sup> -Arrestins and Their Protein Partners. Methods<br>in Molecular Biology, 2019, 1957, 177-194.                                                          | 0.9  | 0         |
| 9  | A recycling anti-transferrin receptor-1 monoclonal antibody as an efficient therapy for<br>erythroleukemia through target up-regulation and antibody-dependent cytotoxic effector functions.<br>MAbs, 2019, 11, 593-605. | 5.2  | 17        |
| 10 | G proteinâ€dependent signaling triggers a βâ€arrestinâ€scaffolded p70S6K/ rpS6 module that controls 5'TOP<br>mRNA translation. FASEB Journal, 2018, 32, 1154-1169.                                                       | 0.5  | 24        |
| 11 | MAbTope: A Method for Improved Epitope Mapping. Journal of Immunology, 2018, 201, 3096-3105.                                                                                                                             | 0.8  | 26        |
| 12 | A logic-based method to build signaling networks and propose experimental plans. Scientific Reports, 2018, 8, 7830.                                                                                                      | 3.3  | 4         |
| 13 | Follicle-Stimulating Hormone Receptor: Advances and Remaining Challenges. International Review of<br>Cell and Molecular Biology, 2018, 338, 1-58.                                                                        | 3.2  | 23        |
| 14 | Advances in computational modeling approaches of pituitary gonadotropin signaling. Expert Opinion on Drug Discovery, 2018, 13, 799-813.                                                                                  | 5.0  | 4         |
| 15 | Postembryonic Fish Brain Proliferation Zones Exhibit Neuroepithelial-Type Gene Expression Profile.<br>Stem Cells, 2017, 35, 1505-1518.                                                                                   | 3.2  | 15        |
| 16 | Î <sup>2</sup> -arrestin signalling and bias in hormone-responsive GPCRs. Molecular and Cellular Endocrinology, 2017, 449, 28-41.                                                                                        | 3.2  | 40        |
| 17 | Antibodies targeting G protein-coupled receptors: Recent advances and therapeutic challenges. MAbs, 2017, 9, 735-741.                                                                                                    | 5.2  | 19        |
| 18 | 5B9, a monoclonal antiplatelet factor 4/heparin IgG with a human Fc fragment that mimics<br>heparinâ€induced thrombocytopenia antibodies. Journal of Thrombosis and Haemostasis, 2017, 15,<br>2065-2075.                 | 3.8  | 25        |

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Comprehensive View of the $\hat{l}^2$ -Arrestinome. Frontiers in Endocrinology, 2017, 8, 32.                                                                                     | 3.5 | 29        |
| 20 | Eculizumab epitope on complement C5: Progress towards a better understanding of the mechanism of action. Molecular Immunology, 2016, 77, 126-131.                                  | 2.2 | 21        |
| 21 | Profiling of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications in steroidogenesis. Molecular and Cellular Endocrinology, 2016, 436, 10-22. | 3.2 | 41        |
| 22 | Computational modeling approaches in gonadotropin signaling. Theriogenology, 2016, 86, 22-31.                                                                                      | 2.1 | 5         |
| 23 | Unraveling the molecular architecture of a G protein-coupled receptor/β-arrestin/Erk module complex.<br>Scientific Reports, 2015, 5, 10760.                                        | 3.3 | 50        |
| 24 | Assessing Gonadotropin Receptor Function by Resonance Energy Transfer-Based Assays. Frontiers in Endocrinology, 2015, 6, 130.                                                      | 3.5 | 75        |
| 25 | Biased signalling in follicle stimulating hormone action. Molecular and Cellular Endocrinology, 2014, 382, 452-459.                                                                | 3.2 | 54        |
| 26 | Integrating microRNAs into the complexity of gonadotropin signaling networks. Frontiers in Cell and Developmental Biology, 2013, 1, 3.                                             | 3.7 | 9         |
| 27 | mRNA-Selective Translation Induced by FSH in Primary Sertoli Cells. Molecular Endocrinology, 2012, 26, 669-680.                                                                    | 3.7 | 29        |
| 28 | Competing G proteinâ€coupled receptor kinases balance G protein and βâ€arrestin signaling. Molecular<br>Systems Biology, 2012, 8, 590.                                             | 7.2 | 77        |
| 29 | Community-Wide Assessment of Protein-Interface Modeling Suggests Improvements to Design<br>Methodology. Journal of Molecular Biology, 2011, 414, 289-302.                          | 4.2 | 131       |
| 30 | Mapping the follicle-stimulating hormone-induced signaling networks. Frontiers in Endocrinology, 2011, 2, 45.                                                                      | 3.5 | 130       |
| 31 | A Collaborative Filtering Approach for Protein-Protein Docking Scoring Functions. PLoS ONE, 2011, 6, e18541.                                                                       | 2.5 | 27        |
| 32 | Novel pathways in gonadotropin receptor signaling and biased agonism. Reviews in Endocrine and Metabolic Disorders, 2011, 12, 259-274.                                             | 5.7 | 59        |
| 33 | Using Kendall-Ï", Meta-Bagging to Improve Protein-Protein Docking Predictions. Lecture Notes in<br>Computer Science, 2011, , 284-295.                                              | 1.3 | 4         |
| 34 | The Translation Regulatory Subunit eIF3f Controls the Kinase-Dependent mTOR Signaling Required for<br>Muscle Differentiation and Hypertrophy in Mouse. PLoS ONE, 2010, 5, e8994.   | 2.5 | 86        |
| 35 | Comparing Voronoi and Laguerre Tessellations in the Protein-Protein Docking Context. , 2009, , .                                                                                   |     | 3         |
| 36 | Developmental regulation of p70 S6 kinase by a G protein-coupled receptor dynamically modelized in<br>primary cells. Cellular and Molecular Life Sciences, 2009, 66, 3487-3503.    | 5.4 | 48        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Towards a systems biology approach of G protein-coupled receptor signalling: Challenges and expectations. Comptes Rendus - Biologies, 2009, 332, 947-957.                                                                                                  | 0.2 | 22        |
| 38 | Crystal structure of the YML079w protein from Saccharomyces cerevisiae reveals a new sequence family of the jelly-roll fold. Protein Science, 2009, 14, 209-215.                                                                                           | 7.6 | 13        |
| 39 | The VIZIER project: Preparedness against pathogenic RNA viruses. Antiviral Research, 2008, 78, 37-46.                                                                                                                                                      | 4.1 | 26        |
| 40 | DiMoVo: a Voronoi tessellation-based method for discriminating crystallographic and biological protein–protein interactions. Bioinformatics, 2008, 24, 652-658.                                                                                            | 4.1 | 83        |
| 41 | Production and Crystallization of Protein Domains: How Useful are Disorder Predictions ?. Current<br>Protein and Peptide Science, 2007, 8, 151-160.                                                                                                        | 1.4 | 8         |
| 42 | A new protein protein docking scoring function based on interface residue properties.<br>Bioinformatics, 2007, 23, 555-562.                                                                                                                                | 4.1 | 53        |
| 43 | High-throughput crystal-optimization strategies in the South Paris Yeast Structural Genomics<br>Project: one size fits all?. Acta Crystallographica Section D: Biological Crystallography, 2005, 61,<br>664-670.                                           | 2.5 | 14        |
| 44 | HalX: an open-source LIMS (Laboratory Information Management System) for small- to large-scale<br>laboratories. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 671-678.                                                           | 2.5 | 23        |
| 45 | A docking analysis of the statistical physics of protein–protein recognition. Physical Biology, 2005, 2, S17-S23.                                                                                                                                          | 1.8 | 14        |
| 46 | Crystal structure and confirmation of the alanine:glyoxylate aminotransferase activity of the YFL030w yeast protein. Biochimie, 2005, 87, 1041-1047.                                                                                                       | 2.6 | 12        |
| 47 | Crystal Structure of the Bifunctional Chorismate Synthase from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 619-625.                                                                                                              | 3.4 | 29        |
| 48 | Structure of Protein Phosphatase Methyltransferase 1 (PPM1), a Leucine Carboxyl Methyltransferase<br>Involved in the Regulation of Protein Phosphatase 2A Activity. Journal of Biological Chemistry, 2004,<br>279, 8351-8358.                              | 3.4 | 82        |
| 49 | Crystal Structure of the YDR533c S. cerevisiae Protein, a Class II Member of the Hsp31 Family.<br>Structure, 2004, 12, 839-847.                                                                                                                            | 3.3 | 31        |
| 50 | Voronoi and Voronoi-related tessellations in studies of protein structure and interaction. Current<br>Opinion in Structural Biology, 2004, 14, 233-241.                                                                                                    | 5.7 | 157       |
| 51 | Design of a data model for developing laboratory information management and analysis systems for protein production. Proteins: Structure, Function and Bioinformatics, 2004, 58, 278-284.                                                                  | 2.6 | 27        |
| 52 | Crystal structure of the YGR205w protein from Saccharomyces cerevisiae : Close structural resemblance to E. coli pantothenate kinase. Proteins: Structure, Function and Bioinformatics, 2004, 54, 776-783.                                                 | 2.6 | 17        |
| 53 | The Paris-Sud yeast structural genomics pilot-project: from structure to function. Biochimie, 2004, 86, 617-623.                                                                                                                                           | 2.6 | 18        |
| 54 | Origin and evolution of transmembrane Chl-binding proteins: hydrophobic cluster analysis suggests a<br>common one-helix ancestor for prokaryotic (Pcb) and eukaryotic (LHC) antenna protein superfamilies.<br>FEMS Microbiology Letters, 2003, 222, 59-68. | 1.8 | 16        |

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A structural genomics initiative on yeast proteins. Journal of Synchrotron Radiation, 2003, 10, 4-8.                                                                               | 2.4 | 20        |
| 56 | Crystal Structure of the Yeast Phox Homology (PX) Domain Protein Grd19p Complexed to<br>Phosphatidylinositol-3-phosphate. Journal of Biological Chemistry, 2003, 278, 50371-50376. | 3.4 | 64        |
| 57 | Deciphering globular protein sequence-structure relationships: from observation to prediction.<br>Theoretical Chemistry Accounts, 2001, 106, 113-120.                              | 1.4 | 3         |
| 58 | Sequence and structural features of the T-fold, an original tunnelling building unit. Proteins:<br>Structure, Function and Bioinformatics, 2000, 39, 142-154.                      | 2.6 | 55        |
| 59 | Functional specificity conferred by the unique plasticity of fully α-helical Ras and Rho GAPs. FEBS<br>Letters, 2000, 477, 99-105.                                                 | 2.8 | 4         |
| 60 | The Uteroglobin Fold. Annals of the New York Academy of Sciences, 2000, 923, 90-112.                                                                                               | 3.8 | 29        |
| 61 | "Topohydrophobic positions" as key markers of globular protein folds. Theoretical Chemistry<br>Accounts, 1999, 101, 2-8.                                                           | 1.4 | 14        |
| 62 | Structure modelling and site-directed mutagenesis of the rat aromatic L-amino acid pyridoxal<br>5´-phosphate-dependent decarboxylase: A functional study. , 1999, 37, 191-203.     |     | 13        |
| 63 | The immunoglobulin fold family: sequence analysis and 3D structure comparisons. Protein Engineering, Design and Selection, 1999, 12, 563-571.                                      | 2.1 | 219       |
| 64 | Predicting the protein folding nucleus from a sequence. FEBS Letters, 1999, 452, 283-289.                                                                                          | 2.8 | 44        |
| 65 | Populations of hydrophobic amino acids within protein globular domains: Identification of conserved<br>"topohydrophobic―positions. , 1998, 33, 329-342.                            |     | 52        |
| 66 | Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cellular and Molecular Life Sciences, 1997, 53, 621-645.     | 5.4 | 468       |