
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7476222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction of serum HIV-1 neutralization titers of VRC01 in HIV-uninfected Antibody Mediated Prevention (AMP) trial participants. Human Vaccines and Immunotherapeutics, 2022, 18, 1-10.	3.3	6
2	Stable Latent HIV Infection and Low-level Viremia Despite Treatment With the Broadly Neutralizing Antibody VRC07-523LS and the Latency Reversal Agent Vorinostat. Journal of Infectious Diseases, 2022, 225, 856-861.	4.0	22
3	Homologous and Heterologous Covid-19 Booster Vaccinations. New England Journal of Medicine, 2022, 386, 1046-1057.	27.0	418
4	Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science, 2022, 375, 43-50.	12.6	788
5	Safety and Pharmacokinetics of Monoclonal Antibodies VRC07-523LS and PGT121 Administered Subcutaneously for Human Immunodeficiency Virus Prevention. Journal of Infectious Diseases, 2022, 226, 510-520.	4.0	13
6	Enterovirus D68: a test case for the use of immunological surveillance to develop tools to mitigate the pandemic potential of emerging pathogens. Lancet Microbe, The, 2022, 3, e83-e85.	7.3	10
7	Safety and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in healthy adults: a phase 1 trial. Nature Medicine, 2022, 28, 383-391.	30.7	65
8	A single residue in influenza virus H2 hemagglutinin enhances the breadth of the B cell response elicited by H2 vaccination. Nature Medicine, 2022, 28, 373-382.	30.7	16
9	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
10	mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron. Cell, 2022, 185, 1556-1571.e18.	28.9	179
11	Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial. Nature Medicine, 2022, 28, 1022-1030.	30.7	34
12	Structure of an influenza group 2-neutralizing antibody targeting the hemagglutinin stem supersite. Structure, 2022, , .	3.3	1
13	Tyrosine O-sulfation proteoforms affect HIV-1 monoclonal antibody potency. Scientific Reports, 2022, 12, 8433.	3.3	8
14	Safety and immunogenicity of an HIV-1 prefusion-stabilized envelope trimer (Trimer 4571) vaccine in healthy adults: A first-in-human open-label, randomized, dose-escalation, phase 1 clinical trial. EClinicalMedicine, 2022, 48, 101477.	7.1	13
15	Early human B cell signatures of the primary antibody response to mRNA vaccination. Proceedings of the United States of America, 2022, 119, .	7.1	17
16	Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. New England Journal of Medicine, 2021, 384, 80-82.	27.0	665
17	Model Informed Development of VRC01 in Newborn Infants Using a Population Pharmacokinetics Approach. Clinical Pharmacology and Therapeutics, 2021, 109, 184-192.	4.7	6
18	Recombinant MVA-prime elicits neutralizing antibody responses by inducing antigen-specific B cells in the germinal center. Npj Vaccines, 2021, 6, 15.	6.0	5

#	Article	IF	CITATIONS
19	Pharmacokinetics and predicted neutralisation coverage of VRC01 in HIV-uninfected participants of the Antibody Mediated Prevention (AMP) trials. EBioMedicine, 2021, 64, 103203.	6.1	14
20	Development and deployment of COVID-19 vaccines for those most vulnerable. Science Translational Medicine, 2021, 13, .	12.4	60
21	A comprehensive influenza reporter virus panel for high-throughput deep profiling of neutralizing antibodies. Nature Communications, 2021, 12, 1722.	12.8	41
22	Coronavirus Occurrence in the Household Influenza Vaccine Evaluation (HIVE) Cohort of Michigan Households: Reinfection Frequency and Serologic Responses to Seasonal and Severe Acute Respiratory Syndrome Coronaviruses. Journal of Infectious Diseases, 2021, 224, 49-59.	4.0	26
23	<i>Plasmodium falciparum</i> –specific IgM B cells dominate in children, expand with malaria, and produce functional IgM. Journal of Experimental Medicine, 2021, 218, .	8.5	44
24	Fusion peptide priming reduces immune responses to HIV-1 envelope trimer base. Cell Reports, 2021, 35, 108937.	6.4	12
25	A sensitive method to quantify HIV-1 antibodies in mucosal samples. Journal of Immunological Methods, 2021, 491, 112995.	1.4	5
26	B cell engagement with HIV-1 founder virus envelope predicts development of broadly neutralizing antibodies. Cell Host and Microbe, 2021, 29, 564-578.e9.	11.0	18
27	A majority of uninfected adults show preexisting antibody reactivity against SARS-CoV-2. JCI Insight, 2021, 6, .	5.0	39
28	Safety, Tolerability, and Pharmacokinetics of a Long-Acting Broadly Neutralizing Human Immunodeficiency Virus Type 1 (HIV-1) Monoclonal Antibody VRC01LS in HIV-1–Exposed Newborn Infants. Journal of Infectious Diseases, 2021, 224, 1916-1924.	4.0	27
29	Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. New England Journal of Medicine, 2021, 384, 2259-2261.	27.0	603
30	A non-affinity purification process for GMP production of prefusion-closed HIV-1 envelope trimers from clades A and C for clinical evaluation. Vaccine, 2021, 39, 3379-3387.	3.8	13
31	Specific COVID-19 Symptoms Correlate with High Antibody Levels against SARS-CoV-2. ImmunoHorizons, 2021, 5, 466-476.	1.8	23
32	Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. Science, 2021, 373, .	12.6	174
33	Protective antibodies elicited by SARS-CoV-2 spike protein vaccination are boosted in the lung after challenge in nonhuman primates. Science Translational Medicine, 2021, 13, .	12.4	56
34	A Monoclonal Antibody for Malaria Prevention. New England Journal of Medicine, 2021, 385, 803-814.	27.0	95
35	mRNA-1273 protects against SARS-CoV-2 beta infection in nonhuman primates. Nature Immunology, 2021, 22, 1306-1315.	14.5	57
36	Rectal tissue and vaginal tissue from intravenous VRC01 recipients show protection against ex vivo HIV-1 challenge. Journal of Clinical Investigation, 2021, 131, .	8.2	17

#	Article	IF	CITATIONS
37	Durability of mRNA-1273 vaccine–induced antibodies against SARS-CoV-2 variants. Science, 2021, 373, 1372-1377.	12.6	459
38	Why are there so few (or so many) circulating coronaviruses?. Trends in Immunology, 2021, 42, 751-763.	6.8	7
39	lmmune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. Science, 2021, 373, eabj0299.	12.6	244
40	AZD1222/ChAdOx1 nCoV-19 vaccination induces a polyfunctional spike protein–specific T _H 1 response with a diverse TCR repertoire. Science Translational Medicine, 2021, 13, eabj7211.	12.4	80
41	Sequential staining of HIV gp140 to capture antigen-specific human B cells via flow cytometry. STAR Protocols, 2021, 2, 100771.	1.2	0
42	Protection against SARS-CoV-2 Beta variant in mRNA-1273 vaccine–boosted nonhuman primates. Science, 2021, 374, 1343-1353.	12.6	83
43	Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as primary or booster series in mice. Vaccine, 2021, 39, 7394-7400.	3.8	63
44	A multiclade env–gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nature Medicine, 2021, 27, 2234-2245.	30.7	80
45	Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science, 2021, , eab3435.	12.6	145
46	Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. New England Journal of Medicine, 2020, 383, 2427-2438.	27.0	1,242
47	A Hyper-IgM Syndrome Mutation in Activation-Induced Cytidine Deaminase Disrupts G-Quadruplex Binding and Genome-wide Chromatin Localization. Immunity, 2020, 53, 952-970.e11.	14.3	21
48	An mRNA Vaccine against SARS-CoV-2 — Preliminary Report. New England Journal of Medicine, 2020, 383, 1920-1931.	27.0	2,719
49	Development and Assessment of a Pooled Serum as Candidate Standard to Measure Influenza A Virus Group 1 Hemagglutinin Stalk-Reactive Antibodies. Vaccines, 2020, 8, 666.	4.4	6
50	Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine, 2020, 383, 1544-1555.	27.0	936
51	Immune Monitoring Reveals Fusion Peptide Priming to Imprint Cross-Clade HIV-Neutralizing Responses with a Characteristic Early B Cell Signature. Cell Reports, 2020, 32, 107981.	6.4	15
52	The Transcription Factor T-bet Resolves Memory B Cell Subsets with Distinct Tissue Distributions and Antibody Specificities in Mice and Humans. Immunity, 2020, 52, 842-855.e6.	14.3	144
53	Convergent Evolution in Breadth of Two VH6-1-Encoded Influenza Antibody Clonotypes from a Single Donor. Cell Host and Microbe, 2020, 28, 434-444.e4.	11.0	16
54	Glycan repositioning of influenza hemagglutinin stem facilitates the elicitation of protective cross-group antibody responses. Nature Communications, 2020, 11, 791.	12.8	36

#	Article	IF	CITATIONS
55	Higher PIK3C2B gene expression of H1N1+ specific B-cells is associated with lower H1N1 immunogenicity after trivalent influenza vaccination in HIV infected children. Clinical Immunology, 2020, 215, 108440.	3.2	10
56	Development of a 3Mut-Apex-Stabilized Envelope Trimer That Expands HIV-1 Neutralization Breadth When Used To Boost Fusion Peptide-Directed Vaccine-Elicited Responses. Journal of Virology, 2020, 94,	3.4	21
57	Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nature Medicine, 2020, 26, 228-235.	30.7	61
58	A Global Immunological Observatory to meet a time of pandemics. ELife, 2020, 9, .	6.0	52
59	Activation Dynamics and Immunoglobulin Evolution of Pre-existing and Newly Generated Human Memory B cell Responses to Influenza Hemagglutinin. Immunity, 2019, 51, 398-410.e5.	14.3	107
60	Safety and pharmacokinetics of broadly neutralising human monoclonal antibody VRC07-523LS in healthy adults: a phase 1 dose-escalation clinical trial. Lancet HIV,the, 2019, 6, e667-e679.	4.7	67
61	Safety, tolerability, pharmacokinetics, and immunogenicity of the therapeutic monoclonal antibody mAb114 targeting Ebola virus glycoprotein (VRC 608): an open-label phase 1 study. Lancet, The, 2019, 393, 889-898.	13.7	99
62	Dynamic Perspectives on the Search for a Universal Influenza Vaccine. Journal of Infectious Diseases, 2019, 219, S46-S56.	4.0	18
63	Outflanking immunodominance to target subdominant broadly neutralizing epitopes. Proceedings of the United States of America, 2019, 116, 13474-13479.	7.1	57
64	Safety and efficacy of VRC01 broadly neutralising antibodies in adults with acutely treated HIV (RV397): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet HIV,the, 2019, 6, e297-e306.	4.7	73
65	Prolonged evolution of the memory B cell response induced by a replicating adenovirus-influenza H5 vaccine. Science Immunology, 2019, 4, .	11.9	40
66	Design of Nanoparticulate Group 2 Influenza Virus Hemagglutinin Stem Antigens That Activate Unmutated Ancestor B Cell Receptors of Broadly Neutralizing Antibody Lineages. MBio, 2019, 10, .	4.1	88
67	Longitudinal Analysis Reveals Early Development of Three MPER-Directed Neutralizing Antibody Lineages from an HIV-1-Infected Individual. Immunity, 2019, 50, 677-691.e13.	14.3	77
68	Immunization with Components of the Viral Fusion Apparatus Elicits Antibodies That Neutralize Epstein-Barr Virus in B Cells and Epithelial Cells. Immunity, 2019, 50, 1305-1316.e6.	14.3	107
69	Associating HIV-1 envelope glycoprotein structures with states on theÂvirus observed by smFRET. Nature, 2019, 568, 415-419.	27.8	156
70	Single Cell Profiling Reveals PTEN Overexpression in Influenza-Specific B cells in Aging HIV-infected individuals on Anti-retroviral Therapy. Scientific Reports, 2019, 9, 2482.	3.3	19
71	Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Nature Immunology, 2019, 20, 362-372.	14.5	211
72	Overexpression of T-bet in HIV infection is associated with accumulation of B cells outside germinal centers and poor affinity maturation. Science Translational Medicine, 2019, 11, .	12.4	65

#	Article	IF	CITATIONS
73	Immunity to Influenza: Catching a Moving Target To Improve Vaccine Design. Journal of Immunology, 2019, 202, 327-331.	0.8	4
74	Hemagglutinin head-specific responses dominate over stem-specific responses following prime boost with mismatched vaccines. JCI Insight, 2019, 4, .	5.0	15
75	Intranasal Live Influenza Vaccine Priming Elicits Localized B Cell Responses in Mediastinal Lymph Nodes. Journal of Virology, 2018, 92, .	3.4	30
76	A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite. Nature Medicine, 2018, 24, 408-416.	30.7	235
77	Is It Possible to Develop a "Universal―Influenza Virus Vaccine?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029413.	5.5	34
78	Quantitative Multiplexed Imaging Analysis Reveals a Strong Association between Immunogen-Specific B Cell Responses and Tonsillar Germinal Center Immune Dynamics in Children after Influenza Vaccination. Journal of Immunology, 2018, 200, 538-550.	0.8	38
79	Vectored delivery of anti-SIV envelope targeting mAb via AAV8 protects rhesus macaques from repeated limiting dose intrarectal swarm SIVsmE660 challenge. PLoS Pathogens, 2018, 14, e1007395.	4.7	37
80	Shaping a universally broad antibody response to influenza amidst a variable immunoglobulin landscape. Current Opinion in Immunology, 2018, 53, 96-101.	5.5	25
81	Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nature Medicine, 2018, 24, 857-867.	30.7	256
82	Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: A Phase 1 open-label clinical trial in healthy adults. PLoS Medicine, 2018, 15, e1002493.	8.4	174
83	Accumulation of follicular CD8+ T cells in pathogenic SIV infection. Journal of Clinical Investigation, 2018, 128, 2089-2103.	8.2	43
84	Follicular CD8 T cells accumulate in HIV infection and can kill infected cells in vitro via bispecific antibodies. Science Translational Medicine, 2017, 9, .	12.4	135
85	Structure-Based Design of a Soluble Prefusion-Closed HIV-1 Env Trimer with Reduced CD4 Affinity and Improved Immunogenicity. Journal of Virology, 2017, 91, .	3.4	81
86	Defining B cell immunodominance to viruses. Nature Immunology, 2017, 18, 456-463.	14.5	218
87	Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation. Cell Reports, 2017, 19, 719-732.	6.4	160
88	The aryl hydrocarbon receptor controls cell-fate decisions in B cells. Journal of Experimental Medicine, 2017, 214, 197-208.	8.5	83
89	Preferential induction of cross-group influenza A hemagglutinin stem–specific memory B cells after H7N9 immunization in humans. Science Immunology, 2017, 2, .	11.9	84
90	Crystal structures of trimeric HIV envelope with entry inhibitors BMS-378806 and BMS-626529. Nature Chemical Biology, 2017, 13, 1115-1122.	8.0	110

#	Article	IF	CITATIONS
91	Soluble Prefusion Closed DS-SOSIP.664-Env Trimers of Diverse HIV-1 Strains. Cell Reports, 2017, 21, 2992-3002.	6.4	69
92	An avian influenza H7 DNA priming vaccine is safe and immunogenic in a randomized phase I clinical trial. Npj Vaccines, 2017, 2, 15.	6.0	24
93	Longitudinal dynamics of the HIV-specific B cell response during intermittent treatment of primary HIV infection. PLoS ONE, 2017, 12, e0173577.	2.5	5
94	Safety and Immunogenicity of a rAd35-EnvA Prototype HIV-1 Vaccine in Combination with rAd5-EnvA in Healthy Adults (VRC 012). PLoS ONE, 2016, 11, e0166393.	2.5	14
95	Vaccine-Induced Antibodies that Neutralize Group 1 and Group 2 Influenza A Viruses. Cell, 2016, 166, 609-623.	28.9	270
96	Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation. Scientific Reports, 2016, 6, 36298.	3.3	29
97	Maintenance of HIV-Specific Memory B-Cell Responses in Elite Controllers Despite Low Viral Burdens. Journal of Infectious Diseases, 2016, 214, 390-398.	4.0	43
98	Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nature Medicine, 2016, 22, 762-770.	30.7	197
99	Immunogenicity of a Prefusion HIV-1 Envelope Trimer in Complex with a Quaternary-Structure-Specific Antibody. Journal of Virology, 2016, 90, 2740-2755.	3.4	58
100	Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design. Nature Structural and Molecular Biology, 2016, 23, 81-90.	8.2	162
101	Hemagglutinin of Influenza A Virus Antagonizes Type I Interferon (IFN) Responses by Inducing Degradation of Type I IFN Receptor 1. Journal of Virology, 2016, 90, 2403-2417.	3.4	68
102	Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults. Clinical and Experimental Immunology, 2015, 182, 289-301.	2.6	222
103	Single-Chain Soluble BG505.SOSIP gp140 Trimers as Structural and Antigenic Mimics of Mature Closed HIV-1 Env. Journal of Virology, 2015, 89, 5318-5329.	3.4	125
104	Reversible Reprogramming of Circulating Memory T Follicular Helper Cell Function during Chronic HIV Infection. Journal of Immunology, 2015, 195, 5625-5636.	0.8	74
105	A Simple Flow-Cytometric Method Measuring B Cell Surface Immunoglobulin Avidity Enables Characterization of Affinity Maturation to Influenza A Virus. MBio, 2015, 6, e01156.	4.1	34
106	Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Science Translational Medicine, 2015, 7, 319ra206.	12.4	390
107	Quality and quantity of T _{FH} cells are critical for broad antibody development in SHIV _{AD8} infection. Science Translational Medicine, 2015, 7, 298ra120.	12.4	119
108	H5N1 Vaccine–Elicited Memory B Cells Are Genetically Constrained by the IGHV Locus in the Recognition of a Neutralizing Epitope in the Hemagglutinin Stem. Journal of Immunology, 2015, 195, 602-610.	0.8	83

#	Article	IF	CITATIONS
109	Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nature Structural and Molecular Biology, 2015, 22, 522-531.	8.2	333
110	Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site. Cell, 2015, 162, 1090-1100.	28.9	278
111	Head-to-Head Comparison of Poxvirus NYVAC and ALVAC Vectors Expressing Identical HIV-1 Clade C Immunogens in Prime-Boost Combination with Env Protein in Nonhuman Primates. Journal of Virology, 2015, 89, 8525-8539.	3.4	35
112	Homologous Boosting with Adenoviral Serotype 5 HIV Vaccine (rAd5) Vector Can Boost Antibody Responses despite Preexisting Vector-Specific Immunity in a Randomized Phase I Clinical Trial. PLoS ONE, 2014, 9, e106240.	2.5	5
113	Abnormal B cell memory subsets dominate HIV-specific responses in infected individuals. Journal of Clinical Investigation, 2014, 124, 3252-3262.	8.2	130
114	Loss of Circulating CD4 T Cells with B Cell Helper Function during Chronic HIV Infection. PLoS Pathogens, 2014, 10, e1003853.	4.7	153
115	Flow Cytometry Reveals that H5N1 Vaccination Elicits Cross-Reactive Stem-Directed Antibodies from Multiple Ig Heavy-Chain Lineages. Journal of Virology, 2014, 88, 4047-4057.	3.4	220
116	HIV vaccine research and discovery in the nonhuman primates model. Current Opinion in HIV and AIDS, 2013, 8, 1.	3.8	13
117	A Multiplex Microsphere-Based Immunoassay Increases the Sensitivity of SIV-Specific Antibody Detection in Serum Samples and Mucosal Specimens Collected from Rhesus Macaques Infected with SIVmac239. BioResearch Open Access, 2013, 2, 171-178.	2.6	13
118	Virus Inhibition Activity of Effector Memory CD8 ⁺ T Cells Determines Simian Immunodeficiency Virus Load in Vaccinated Monkeys after Vaccine Breakthrough Infection. Journal of Virology, 2012, 86, 5877-5884.	3.4	37
119	Lymph node T cell responses predict the efficacy of live attenuated SIV vaccines. Nature Medicine, 2012, 18, 1673-1681.	30.7	130
120	CD8+ T cells in preventing HIV infection and disease. Aids, 2012, 26, 1281-1292.	2.2	71
121	AIDS Vaccines and Preexposure Prophylaxis: Is Synergy Possible?. AIDS Research and Human Retroviruses, 2011, 27, 669-680.	1.1	28
122	DNA/Ad5 vaccination with SIV epitopes induced epitope-specific CD4+ T cells, but few subdominant epitope-specific CD8+ T cells. Vaccine, 2011, 29, 7483-7490.	3.8	6
123	Enhanced Control of Pathogenic Simian Immunodeficiency Virus SIVmac239 Replication in Macaques Immunized with an Interleukin-12 Plasmid and a DNA Prime-Viral Vector Boost Vaccine Regimen. Journal of Virology, 2011, 85, 9578-9587.	3.4	63
124	The TRIM5α Genotype of Rhesus Macaques Affects Acquisition of Simian Immunodeficiency Virus SIVsmE660 Infection after Repeated Limiting-Dose Intrarectal Challenge. Journal of Virology, 2011, 85, 9637-9640.	3.4	60
125	Macaques Vaccinated with Simian Immunodeficiency Virus SIVmac239Δnef Delay Acquisition and Control Replication after Repeated Low-Dose Heterologous SIV Challenge. Journal of Virology, 2010, 84, 9190-9199.	3.4	58
126	Macaques vaccinated with live-attenuated SIV control replication of heterologous virus. Journal of Experimental Medicine, 2008, 205, 2537-2550.	8.5	139

#	Article	IF	CITATIONS
127	HIV vaccine design: insights from live attenuated SIV vaccines. Nature Immunology, 2006, 7, 19-23.	14.5	235
128	Vaccine-Induced Cellular Immune Responses Reduce Plasma Viral Concentrations after Repeated Low-Dose Challenge with Pathogenic Simian Immunodeficiency Virus SIVmac239. Journal of Virology, 2006, 80, 5875-5885.	3.4	237
129	Cytotoxic T-Lymphocyte Escape Does Not Always Explain the Transient Control of Simian Immunodeficiency Virus SIVmac239 Viremia in Adenovirus-Boosted and DNA-Primed Mamu-A*01-Positive Rhesus Macaques. Journal of Virology, 2005, 79, 15556-15566.	3.4	53
130	Attenuation of Simian Immunodeficiency Virus SIVmac239 Infection by Prophylactic Immunization with DNA and Recombinant Adenoviral Vaccine Vectors Expressing Gag. Journal of Virology, 2005, 79, 15547-15555.	3.4	249
131	Repeated Low-Dose Mucosal Simian Immunodeficiency Virus SIVmac239 Challenge Results in the Same Viral and Immunological Kinetics as High-Dose Challenge: a Model for the Evaluation of Vaccine Efficacy in Nonhuman Primates. Journal of Virology, 2004, 78, 3140-3144.	3.4	95
132	A Dominant Role for CD8 + -T-Lymphocyte Selection in Simian Immunodeficiency Virus Sequence Variation. Journal of Virology, 2004, 78, 14012-14022.	3.4	89
133	Consequences of Cytotoxic T-Lymphocyte Escape: Common Escape Mutations in Simian Immunodeficiency Virus Are Poorly Recognized in Nail`ve Hosts. Journal of Virology, 2004, 78, 10064-10073.	3.4	35
134	Major Histocompatibility Complex Class I Alleles Associated with Slow Simian Immunodeficiency Virus Disease Progression Bind Epitopes Recognized by Dominant Acute-Phase Cytotoxic-T-Lymphocyte Responses. Journal of Virology, 2003, 77, 9029-9040.	3.4	170
135	A novel technique for the fluorometric assessment of T lymphocyte antigen specific lysis. Journal of Immunological Methods, 2001, 249, 99-110.	1.4	150
136	A simple and rapid magnetic bead separation technique for the isolation of tetramer-positive virus-specific CD8 T cells. Aids, 2001, 15, 810-812.	2.2	12
137	Complementary strand analysis: a new approach for allelic separation in complex polyallelic genetic systems. Nucleic Acids Research, 1997, 25, 2236-2238.	14.5	19
138	Contribution of human leukocyte antigens to the antibody response to hepatitis B vaccination. Tissue Antigens, 1997, 50, 8-14.	1.0	102
139	T-Bet Enables Tissue-Restricted B Cell Memory and Influenza Hemagglutinin Stalk-Specific Antibodies. SSRN Electronic Journal, 0, , .	0.4	2
140	Antibody Reactivity Against SARS-CoV-2 in Adults from the Vancouver Metropolitan Area, Canada. SSRN Electronic Journal, 0, , .	0.4	0