
Marisol Soengas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7474175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
2	BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 2005, 436, 720-724.	27.8	1,933
3	Differential Requirement for Caspase 9 in Apoptotic Pathways In Vivo. Cell, 1998, 94, 339-352.	28.9	1,224
4	Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell, 2006, 10, 375-388.	16.8	921
5	Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature, 2001, 409, 207-211.	27.8	901
6	Apoptosis and melanoma chemoresistance. Oncogene, 2003, 22, 3138-3151.	5.9	757
7	Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nature Cell Biology, 2006, 8, 1053-1063.	10.3	296
8	An Organometallic Protein Kinase Inhibitor Pharmacologically Activates p53 and Induces Apoptosis in Human Melanoma Cells. Cancer Research, 2007, 67, 209-217.	0.9	224
9	BRAF and NRAS mutations in melanoma and melanocytic nevi. Melanoma Research, 2006, 16, 267-273.	1.2	213
10	Differential Regulation of Noxa in Normal Melanocytes and Melanoma Cells by Proteasome Inhibition: Therapeutic Implications. Cancer Research, 2005, 65, 6294-6304.	0.9	208
11	Artificial skin in perspective: concepts and applications. Pigment Cell and Melanoma Research, 2011, 24, 35-50.	3.3	185
12	Tumor cell-selective regulation of NOXA by c-MYC in response to proteasome inhibition. Proceedings of the United States of America, 2007, 104, 19488-19493.	7.1	171
13	Targeted Activation of Innate Immunity for Therapeutic Induction of Autophagy and Apoptosis in Melanoma Cells. Cancer Cell, 2009, 16, 103-114.	16.8	163
14	A Novel BH3 Mimetic Reveals a Mitogen-Activated Protein Kinase–Dependent Mechanism of Melanoma Cell Death Controlled by p53 and Reactive Oxygen Species. Cancer Research, 2006, 66, 11348-11359.	0.9	138
15	UNR/CSDE1 Drives a Post-transcriptional Program to Promote Melanoma Invasion and Metastasis. Cancer Cell, 2016, 30, 694-707.	16.8	131
16	Melanoma Proliferation and Chemoresistance Controlled by the DEK Oncogene. Cancer Research, 2009, 69, 6405-6413.	0.9	127
17	Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine. Nature, 2017, 546, 676-680.	27.8	123
18	Proteasome Inhibitor PS-341 Induces Apoptosis in Cisplatin-resistant Squamous Cell Carcinoma Cells by Induction of Noxa, Journal of Biological Chemistry, 2006, 281, 31440-31447.	3.4	111

MARISOL SOENGAS

#	Article	lF	CITATIONS
19	ROC1/RBX1 E3 Ubiquitin Ligase Silencing Suppresses Tumor Cell Growth via Sequential Induction of G2-M Arrest, Apoptosis, and Senescence. Cancer Research, 2009, 69, 4974-4982.	0.9	106
20	Bcl-2 Orchestrates a Cross-talk between Endothelial and Tumor Cells that Promotes Tumor Growth. Cancer Research, 2007, 67, 9685-9693.	0.9	94
21	Melanoma models for the next generation of therapies. Cancer Cell, 2021, 39, 610-631.	16.8	90
22	RAB7 Controls Melanoma Progression by Exploiting a Lineage-Specific Wiring of the Endolysosomal Pathway. Cancer Cell, 2014, 26, 61-76.	16.8	86
23	The state of melanoma: challenges and opportunities. Pigment Cell and Melanoma Research, 2016, 29, 404-416.	3.3	77
24	Control of Tumorigenesis and Chemoresistance by the DEK Oncogene. Clinical Cancer Research, 2010, 16, 2932-2938.	7.0	71
25	Mitogen-Activated Protein Kinase Inhibition Induces Translocation of Bmf to Promote Apoptosis in Melanoma. Cancer Research, 2009, 69, 1985-1994.	0.9	70
26	Midkine rewires the melanoma microenvironment toward a tolerogenic and immune-resistant state. Nature Medicine, 2020, 26, 1865-1877.	30.7	62
27	The State of Melanoma: Emergent Challenges and Opportunities. Clinical Cancer Research, 2021, 27, 2678-2697.	7.0	53
28	p62/SQSTM1 Fuels Melanoma Progression by Opposing mRNA Decay of a Selective Set of Pro-metastatic Factors. Cancer Cell, 2019, 35, 46-63.e10.	16.8	50
29	KLF9-dependent ROS regulate melanoma progression in stage-specific manner. Oncogene, 2019, 38, 3585-3597.	5.9	49
30	Lineage-specific roles of the cytoplasmic polyadenylation factor CPEB4 in the regulation of melanoma drivers. Nature Communications, 2016, 7, 13418.	12.8	46
31	Chemical Blockage of the Proteasome Inhibitory Function of Bortezomib. Journal of Biological Chemistry, 2006, 281, 1107-1118.	3.4	41
32	Proteasome inhibition and ROS generation by 4â€nerolidylcatechol induces melanoma cell death. Pigment Cell and Melanoma Research, 2012, 25, 354-369.	3.3	32
33	Metastatic risk and resistance to BRAF inhibitors in melanoma defined by selective allelic loss of <i>ATG5</i> . Autophagy, 2016, 12, 1776-1790.	9.1	31
34	Proteasome Inhibitor PS-341 Induces Apoptosis in Cisplatin-resistant Squamous Cell Carcinoma Cells by Induction of Noxa. Journal of Biological Chemistry, 2006, 281, 31440-31447.	3.4	31
35	ATG5 Mediates a Positive Feedback Loop between Wnt Signaling and Autophagy in Melanoma. Cancer Research, 2017, 77, 5873-5885.	0.9	26
36	DEK is a potential marker for aggressive phenotype and irinotecan-based therapy response in metastatic colorectal cancer. BMC Cancer, 2014, 14, 965.	2.6	24

MARISOL SOENGAS

#	Article	IF	CITATIONS
37	Vesicular trafficking mechanisms in endothelial cells as modulators of the tumor vasculature and targets of antiangiogenic therapies. FEBS Journal, 2016, 283, 25-38.	4.7	22
38	Systems analysis identifies melanoma-enriched pro-oncogenic networks controlled by the RNA binding protein CELF1. Nature Communications, 2017, 8, 2249.	12.8	22
39	The gluttonous side of malignant melanoma: basic and clinical implications of macroautophagy. Pigment Cell and Melanoma Research, 2011, 24, 1116-1132.	3.3	21
40	Self-killing of melanoma cells by cytosolic delivery of dsRNA: Wiring innate immunity for a coordinated mobilization of endosomes, autophagosomes and the apoptotic machinery in tumor cells. Autophagy, 2010, 6, 148-150.	9.1	20
41	<scp>DEK</scp> oncogene is overexpressed during melanoma progression. Pigment Cell and Melanoma Research, 2017, 30, 194-202.	3.3	19
42	RAB7 counteracts PI3K-driven macropinocytosis activated at early stages of melanoma development. Oncotarget, 2015, 6, 11848-11862.	1.8	19
43	Understanding Tumor-Antigen Presentation in the New Era of Cancer Immunotherapy. Current Pharmaceutical Design, 2016, 22, 6234-6250.	1.9	19
44	Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis. Nature Communications, 2022, 13, 2760.	12.8	19
45	Anti-oxidant treatment enhances anti-tumor cytotoxicity of (-)-gossypol. Cancer Biology and Therapy, 2008, 7, 767-776.	3.4	17
46	Mitophagy or how to control the Jekyll and Hyde embedded in mitochondrial metabolism: implications for melanoma progression and drug resistance. Pigment Cell and Melanoma Research, 2012, 25, 721-731.	3.3	16
47	Comment on "Absence of Senescence-Associated β-Galactosidase Activity in Human Melanocytic Nevi In Vivo― Journal of Investigative Dermatology, 2008, 128, 1582-1583.	0.7	15
48	Physiological models for in vivo imaging and targeting the lymphatic system: Nanoparticles and extracellular vesicles. Advanced Drug Delivery Reviews, 2021, 175, 113833.	13.7	15
49	The nuclear corepressor 1 and the thyroid hormone receptor β suppress breast tumor lymphangiogenesis. Oncotarget, 2016, 7, 78971-78984.	1.8	15
50	p53 and p73: seeing double?. Nature Genetics, 2000, 26, 391-392.	21.4	13
51	Structural Features of φ29 Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 1997, 272, 303-310.	3.4	12
52	TYRP1 mRNA goes fishing for miRNAs in melanoma. Nature Cell Biology, 2017, 19, 1311-1312.	10.3	12
53	Hyperactivated endolysosomal trafficking in melanoma. Oncotarget, 2015, 6, 2583-2584.	1.8	12
54	Structural Features of φ29 Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 1997, 272, 295-302.	3.4	8

4

MARISOL SOENGAS

#	Article	IF	CITATIONS
55	Evaluation of the potential therapeutic effects of a double-stranded RNA mimic complexed with polycations inÂanÂexperimental mouse model ofÂendometriosis. Fertility and Sterility, 2015, 104, 1310-1318.	1.0	7
56	Location, Location, Location: Spatio-Temporal Cues That Define the Cell of Origin in Melanoma. Cell Stem Cell, 2017, 21, 559-561.	11.1	7
57	Ins and outs of tumour control. Nature, 2008, 454, 586-587.	27.8	4
58	Lymph: (Fe)rrying Melanoma to Safety. Cancer Cell, 2020, 38, 446-448.	16.8	4
59	Evaluation of the antiproliferative, proapoptotic, and antiangiogenic effects of a double-stranded RNA mimic complexed with polycations inÂan experimental mouse model ofÂleiomyoma. Fertility and Sterility, 2016, 105, 529-538.	1.0	3
60	Unmet needs in melanoma research. Pigment Cell and Melanoma Research, 2014, 27, 1003-1003.	3.3	2
61	TRANSAUTOPHAGY: European network for multidisciplinary research and translation of autophagy knowledge. Autophagy, 2016, 12, 614-617.	9.1	2
62	Live imaging of neolymphangiogenesis identifies acute antimetastatic roles of dsRNA mimics. EMBO Molecular Medicine, 2021, 13, e12924.	6.9	1
63	Looping tumor suppression. Pigment Cell and Melanoma Research, 2008, 21, 592-593.	3.3	0
64	Ze'ev Ronai. Pigment Cell and Melanoma Research, 2013, 26, 924-924.	3.3	0
65	Let's make it happen: for gender equality in science!. Pigment Cell and Melanoma Research, 2015, 28, 641-642.	3.3	0
66	Activation of p53 Signaling Is Synergistically Enhanced by Bcl-2 Inhibition through Induction of Noxa and Bak/Bax Heterodimers Resulting in Apoptosis of AML Stem Cells. Blood, 2008, 112, 2940-2940.	1.4	0
67	BO-110, a dsRNA-Based Anticancer Agent. Advances in Delivery Science and Technology, 2014, , 453-470.	0.4	Ο