## Beatriz MartÃ-n-Antonio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7474003/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole<br>(Solea senegalensis): Potential effects on the immune response. Fish and Shellfish Immunology, 2010,<br>28, 296-302.            | 3.6 | 158       |
| 2  | Antigen Presenting Cell-Mediated Expansion of Human Umbilical Cord Blood Yields Log-Scale<br>Expansion of Natural Killer Cells with Anti-Myeloma Activity. PLoS ONE, 2013, 8, e76781.                                               | 2.5 | 155       |
| 3  | Self-Renewing Human Bone Marrow Mesenspheres Promote Hematopoietic Stem Cell Expansion. Cell<br>Reports, 2013, 3, 1714-1724.                                                                                                        | 6.4 | 128       |
| 4  | Molecular characterization, phylogeny, and expression of c-type and g-type lysozymes in brill (Scophthalmus rhombus). Fish and Shellfish Immunology, 2008, 25, 57-65.                                                               | 3.6 | 109       |
| 5  | Cellular and molecular immune responses of the sea bass (Dicentrarchus labrax) experimentally infected with betanodavirus. Fish and Shellfish Immunology, 2010, 28, 303-311.                                                        | 3.6 | 77        |
| 6  | Development of a Novel Anti-CD19 Chimeric Antigen Receptor: A Paradigm for an Affordable CAR T Cell<br>Production at Academic Institutions. Molecular Therapy - Methods and Clinical Development, 2019, 12,<br>134-144.             | 4.1 | 77        |
| 7  | Point-Of-Care CAR T-Cell Production (ARI-0001) Using a Closed Semi-automatic Bioreactor: Experience<br>From an Academic Phase I Clinical Trial. Frontiers in Immunology, 2020, 11, 482.                                             | 4.8 | 77        |
| 8  | Intestinal microbiota variation in Senegalese sole (Solea senegalensis) under different feeding<br>regimes. Aquaculture Research, 2007, 38, 1213-1222.                                                                              | 1.8 | 65        |
| 9  | Natural Killer Cells: Angels and Devils for Immunotherapy. International Journal of Molecular<br>Sciences, 2017, 18, 1868.                                                                                                          | 4.1 | 59        |
| 10 | Genomic characterization and gene expression analysis of four hepcidin genes in the redbanded seabream (Pagrus auriga). Fish and Shellfish Immunology, 2009, 26, 483-491.                                                           | 3.6 | 57        |
| 11 | Fucosylation with fucosyltransferase VI or fucosyltransferase VII improves cord blood engraftment.<br>Cytotherapy, 2014, 16, 84-89.                                                                                                 | 0.7 | 42        |
| 12 | Impact of constitutional polymorphisms in VCAM1 and CD44 on CD34+ cell collection yield after<br>administration of granulocyte colony-stimulating factor to healthy donors. Haematologica, 2011, 96,<br>102-109.                    | 3.5 | 36        |
| 13 | Bone marrow mesenchymal stem cells from patients with aplastic anemia maintain functional and<br>immune properties and do not contribute to the pathogenesis of the disease. Haematologica, 2014, 99,<br>1168-1175.                 | 3.5 | 36        |
| 14 | Senescence in the Development and Response to Cancer with Immunotherapy: A Double-Edged Sword.<br>International Journal of Molecular Sciences, 2020, 21, 4346.                                                                      | 4.1 | 32        |
| 15 | Overexpression of GYS1, MIF, and MYC Is Associated With Adverse Outcome and Poor Response to<br>Azacitidine in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma<br>and Leukemia, 2015, 15, 236-244. | 0.4 | 31        |
| 16 | Immunotherapy: A Novel Era of Promising Treatments for Multiple Myeloma. International Journal of<br>Molecular Sciences, 2018, 19, 3613.                                                                                            | 4.1 | 30        |
| 17 | Nectin-2 Expression on Malignant Plasma Cells Is Associated with Better Response to TIGIT Blockade in Multiple Myeloma. Clinical Cancer Research, 2020, 26, 4688-4698.                                                              | 7.0 | 30        |
| 18 | A novel predictive approach for GVHD after allogeneic SCT based on clinical variables and cytokine gene polymorphisms. Blood Advances, 2018, 2, 1719-1737.                                                                          | 5.2 | 25        |

| #  | Article                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Preclinical development of a humanized chimeric antigen receptor against B cell maturation antigen for multiple myeloma. Haematologica, 2020, 106, 173-184.                                                                                                                                   | 3.5  | 25        |
| 20 | NK cells enhance CAR-T cell antitumor efficacy by enhancing immune/tumor cells cluster formation and improving CAR-T cell fitness. , 2021, 9, e002866.                                                                                                                                        |      | 21        |
| 21 | Loss of the Immune Checkpoint CD85j/LILRB1 on Malignant Plasma Cells Contributes to Immune Escape<br>in Multiple Myeloma. Journal of Immunology, 2018, 200, 2581-2591.                                                                                                                        | 0.8  | 19        |
| 22 | IL-15 Enhances the Persistence and Function of BCMA-Targeting CAR-T Cells Compared to IL-2 or IL-15/IL-7 by Limiting CAR-T Cell Dysfunction and Differentiation. Cancers, 2021, 13, 3534.                                                                                                     | 3.7  | 19        |
| 23 | Impact of global and gene-specific DNA methylation pattern in relapsed multiple myeloma patients treated with bortezomib. Leukemia Research, 2013, 37, 641-646.                                                                                                                               | 0.8  | 17        |
| 24 | Transmissible cytotoxicity of multiple myeloma cells by cord blood-derived NK cells is mediated by vesicle trafficking. Cell Death and Differentiation, 2015, 22, 96-107.                                                                                                                     | 11.2 | 17        |
| 25 | First report of CART treatment in AL amyloidosis and relapsed/refractory multiple myeloma. , 2021, 9, e003783.                                                                                                                                                                                |      | 17        |
| 26 | Gene and miRNA Expression Profiles of Hematopoietic Progenitor Cells Vary Depending on Their<br>Origin. Biology of Blood and Marrow Transplantation, 2014, 20, 630-639.                                                                                                                       | 2.0  | 15        |
| 27 | Natural Killer Cells in Immunotherapy: Are We Nearly There?. Cancers, 2020, 12, 3139.                                                                                                                                                                                                         | 3.7  | 15        |
| 28 | <i>In vitro</i> potential of human mesenchymal stem cells for corneal epithelial regeneration.<br>Regenerative Medicine, 2020, 15, 1409-1426.                                                                                                                                                 | 1.7  | 15        |
| 29 | Granulocyte colony-stimulating factor produces long-term changes in gene and microRNA expression profiles in CD34+ cells from healthy donors. Haematologica, 2014, 99, 243-251.                                                                                                               | 3.5  | 13        |
| 30 | Inflammaging, an Imbalanced Immune Response That Needs to Be Restored for Cancer Prevention and<br>Treatment in the Elderly. Cells, 2021, 10, 2562.                                                                                                                                           | 4.1  | 13        |
| 31 | Genomic polymorphisms of the innate immune system and allogeneic stem cell transplantation. Expert<br>Review of Hematology, 2010, 3, 411-427.                                                                                                                                                 | 2.2  | 11        |
| 32 | The Genotype of the Donor for the (GT)n Polymorphism in the Promoter/Enhancer of FOXP3 Is<br>Associated with the Development of Severe Acute GVHD but Does Not Affect the GVL Effect after<br>Myeloablative HLA-Identical Allogeneic Stem Cell Transplantation. PLoS ONE, 2015, 10, e0140454. | 2.5  | 11        |
| 33 | Deleterious Effect of Steroids on Cytomegalovirus Infection Rate after Allogeneic Stem Cell<br>Transplantation Depends on Pretransplant Cytomegalovirus Serostatus of Donors and Recipients.<br>Biology of Blood and Marrow Transplantation, 2018, 24, 2088-2093.                             | 2.0  | 11        |
| 34 | Extracellular NK histones promote immune cell anti-tumor activity by inducing cell clusters through binding to CD138 receptor. , 2019, 7, 259.                                                                                                                                                |      | 10        |
| 35 | Tumor Secretome to Adoptive Cellular Immunotherapy: Reduce Me Before I Make You My Partner.<br>Frontiers in Immunology, 2021, 12, 717850.                                                                                                                                                     | 4.8  | 10        |
| 36 | CAR-T cell therapy, a door is open to find innumerable possibilities of treatments for cancer patients.<br>Turkish Journal of Haematology, 2018, 35, 217-228.                                                                                                                                 | 0.5  | 9         |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | G to C Transition At Position â^173 of MIF Gene Associates with Poor Survival in Acute Myeloid<br>Leukemia Patients and After Allogeneic Stem Cell Transplantation (Allo-SCT). Blood, 2011, 118, 2530-2530.                                             | 1.4 | 9         |
| 38 | Exploring NKG2D and BCMA-CAR NK-92 for Adoptive Cellular Therapy to Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e24-e25.                                                                                                       | 0.4 | 8         |
| 39 | A constitutional variant in the transcription factor EP300 strongly influences the clinical outcome of patients submitted to allo-SCT. Bone Marrow Transplantation, 2012, 47, 1206-1211.                                                                | 2.4 | 7         |
| 40 | A variant in IRF3 impacts on the clinical outcome of AML patients submitted to Allo-SCT. Bone Marrow Transplantation, 2013, 48, 1205-1211.                                                                                                              | 2.4 | 7         |
| 41 | CAR Density Influences Antitumoral Efficacy of BCMA CAR-T Cells and Correlates with Clinical Outcome. Blood, 2021, 138, 735-735.                                                                                                                        | 1.4 | 7         |
| 42 | Defining an Ultra-Low Risk Group in Asymptomatic IgM Monoclonal Gammopathy. Cancers, 2021, 13, 2055.                                                                                                                                                    | 3.7 | 5         |
| 43 | A Gene Variant in IRF3 Impacts On the Clinical Outcome of Acute Myeloid Leukemia (AML) Patients<br>Submitted to Allogeneic Stem Cell Transplantation (allo-SCT). Blood, 2012, 120, 468-468.                                                             | 1.4 | 4         |
| 44 | A New Multiple Single-Nucleotide Polymorphisms Based Predictive Model for Grades III to IV and<br>Extensive Graft Versus Host Disease after Identical HLA-Allogeneic Stem-Cell. Blood, 2015, 126, 921-921.                                              | 1.4 | 4         |
| 45 | Gene Expression Analysis of the Bone Marrow Microenvironment Reveals Distinct Immunotypes in<br>Smoldering Multiple Myeloma Associated to Progression to Symptomatic Disease. Frontiers in<br>Immunology, 2021, 12, 792609.                             | 4.8 | 3         |
| 46 | CAR T cells targeting options in the fight against multiple myeloma. Panminerva Medica, 2021, 63, 37-45.                                                                                                                                                | 0.8 | 2         |
| 47 | Differential Gene Expression Involved In Angiogenesis, Metabolism, Cell Proliferation and<br>Self-Renewal and Pluripotency In Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML).<br>Blood, 2010, 116, 4646-4646.                         | 1.4 | 2         |
| 48 | Editorial: Understanding the Cytokine Release Syndrome: Toward Improving Cancer Immunotherapy.<br>Frontiers in Immunology, 2021, 12, 666703.                                                                                                            | 4.8 | 1         |
| 49 | 104â€BCMA-targeting CAR-T cells expanded in IL-15 have an improved phenotype for therapeutic use compared to those grown in IL-2 or IL-15/IL-7. , 2020, , .                                                                                             |     | 1         |
| 50 | Donor and Recipient Genotypes for Interleukin 1 Gene Single Nucleotide Polymorphisms (SNPs) Allow<br>Anticipation of Acute Graft Versus Host Disease after HLA-Identical Allogeneic Stem Cell<br>Transplantation (allo-SCT). Blood, 2014, 124, 666-666. | 1.4 | 1         |
| 51 | Cell-Cell Communication Between Multiple Myeloma (MM) Cells and Cord Blood Derived NK Cells<br>(CB-NK) Regulates Both Tumor Cell Death and Tumor Cell Survival. Blood, 2015, 126, 1787-1787.                                                            | 1.4 | 1         |
| 52 | Natural Killer Cells Transfer Antimicrobial and Antitumoral Histone H2AZ to Kill Multiple Myeloma<br>Cells Contributing to Transmissible Cytotoxicity. Blood, 2016, 128, 2115-2115.                                                                     | 1.4 | 1         |
| 53 | Bone marrow mesenchymal stem cells from aplastic anemia patients preserve functional and immune properties and do not contribute to the pathogenesis of the disease. Experimental Hematology, 2014, 42, S50.                                            | 0.4 | Ο         |
| 54 | Genetic Variability In the Transcriptional Factor EP300 Strongly Influences the Clinical Outcome of Allogeneic Stem Cell Transplantation (Allo-SCT). Blood, 2010, 116, 527-527.                                                                         | 1.4 | 0         |

| #  | Article                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Impact of Clobal and Gene-Specific DNA Methylation Pattern in Relapsed Multiple Myeloma Patients<br>Treated with Bortezomib. Blood, 2011, 118, 132-132.                                                                                                                                               | 1.4 | 0         |
| 56 | The Genotype in the Donor and Recipient for the Polymorphim â^'174 G/C of the IL-6 Influences the Outcome of HLA-Identical Related Stem Cell Transplantation,. Blood, 2011, 118, 4082-4082.                                                                                                           | 1.4 | 0         |
| 57 | A Recessive Gene Variant in TGFB1 in the Donor Influences the Acute Graft Versus Host Disease<br>Development and Impacts in the Outcome After Allogeneic Stem Cell Transplantation (Allo-SCT),.<br>Blood, 2011, 118, 4080-4080.                                                                       | 1.4 | 0         |
| 58 | -52G/A Gene Variant in the β-Defensin-1 (DEBF1) Influences the Development of Severe Acute Graft Versus<br>Host Disease (aGvHD) After Allogeneic Stem Cell Transplantation (Allo-SCT). Functional Association<br>of This Variant with a Low Anti- Inflammatory Response. Blood, 2011, 118, 3052-3052. | 1.4 | 0         |
| 59 | Mirnas and Gene Expression Profiles in CD34+ Cells Are Dependent On the Source of Progenitor Cells<br>Employed in Transplantation Blood, 2012, 120, 3020-3020.                                                                                                                                        | 1.4 | 0         |
| 60 | The G-CSF Produces Long-Term Changes in Gene and Mirnas Expression Profiles in CD34+ From Healthy Donors. Blood, 2012, 120, 588-588.                                                                                                                                                                  | 1.4 | 0         |
| 61 | Donor Genotypes For Interleukin-17A Gene Single Nucleotide Polymorphisms (SNPs) Allow Anticipation<br>Of Complications After HLA-Identical Allogeneic Stem Cell Transplantation (allo-SCT). Blood, 2013, 122,<br>4619-4619.                                                                           | 1.4 | 0         |
| 62 | NK Cells Kill Myeloma Cells By Increasing ER Stress and Decreasing Autophagy Levels. NKG2D and NKP30<br>Are Involved In These Processes. Blood, 2013, 122, 3487-3487.                                                                                                                                 | 1.4 | 0         |
| 63 | 102â€Cord-blood derived NK cells, and CAR-T cells, an attractive improved immunotherapy treatment to be considered for hematological malignancies. , 2020, , .                                                                                                                                        |     | 0         |