Steven R Higgins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7472857/publications.pdf

Version: 2024-02-01

40 papers 1,938 citations

331670 21 h-index 315739 38 g-index

42 all docs 42 docs citations

42 times ranked 2247 citing authors

#	Article	IF	CITATIONS
1	Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochimica Acta, 2004, 424, 131-142.	2.7	688
2	The structure of hematite (\hat{l} ±-Fe2O3) (001) surfaces in aqueous media: scanning tunneling microscopy and resonant tunneling calculations of coexisting O and Fe terminations. Geochimica Et Cosmochimica Acta, 2003, 67, 985-1000.	3.9	125
3	Dissolution kinetics of magnesite in acidic aqueous solution, a hydrothermal atomic force microscopy (HAFM) study: step orientation and kink dynamics. Geochimica Et Cosmochimica Acta, 2001, 65, 4257-4266.	3.9	81
4	Point of zero charge of a corundum-water interface probed with optical second harmonic generation (SHG) and atomic force microscopy (AFM): New approaches to oxide surface charge. Geochimica Et Cosmochimica Acta, 2001, 65, 3055-3063.	3.9	77
5	A hydrothermal atomic force microscope for imaging in aqueous solution up to 150 °C. Review of Scientific Instruments, 1998, 69, 2994-2998.	1.3	72
6	Acidic dissolution of plagioclase: in-situ observations by hydrothermal atomic force microscopy. Geochimica Et Cosmochimica Acta, 1999, 63, 3183-3191.	3.9	72
7	Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces. Environmental Science & Environmental Science & 2015, 49, 9733-9741.	10.0	68
8	Self-limiting growth on dolomite: Experimental observations with in situ atomic force microscopy. Geochimica Et Cosmochimica Acta, 2005, 69, 2085-2094.	3.9	56
9	Dissolution kinetics of magnesite in acidic aqueous solution: a hydrothermal atomic force microscopy study assessing step kinetics and dissolution flux. Geochimica Et Cosmochimica Acta, 2002, 66, 3201-3210.	3.9	54
10	Kink Dynamics and Step Growth on Barium Sulfate (001):Â A Hydrothermal Scanning Probe Microscopy Study. Journal of Physical Chemistry B, 2000, 104, 6978-6982.	2.6	53
11	Dissolution Kinetics of the Barium Sulfate (001) Surface by Hydrothermal Atomic Force Microscopy. Langmuir, 1998, 14, 4967-4971.	3.5	49
12	Effects of crystal orientation on the dissolution of calcite by chemical and microscopic analysis. Chemical Geology, 2013, 360-361, 10-21.	3.3	48
13	Dissolution kinetics of calcite at 50–70°C: An atomic force microscopic study under near-equilibrium conditions. Geochimica Et Cosmochimica Acta, 2010, 74, 4285-4297.	3.9	47
14	Dissolution of the periclase (001) surface; a scanning force microscope study. American Mineralogist, 1999, 84, 144-151.	1.9	39
15	Effects of magnesium ions on near-equilibrium calcite dissolution: Step kinetics and morphology. Geochimica Et Cosmochimica Acta, 2011, 75, 719-733.	3.9	36
16	Hydrothermal atomic force microscopy observations of barite step growth rates as a function of the aqueous barium-to-sulfate ratio. Geochimica Et Cosmochimica Acta, 2016, 183, 1-13.	3.9	33
17	Growth and dissolution kinetics at the dolomite-water interface: An in-situ scanning probe microscopy study. American Mineralogist, 2005, 90, 963-968.	1.9	31
18	Magnesite Step Growth Rates as a Function of the Aqueous Magnesium: Carbonate Ratio. Crystal Growth and Design, 2014, 14, 6033-6040.	3.0	28

#	Article	IF	Citations
19	Chemical dissolution of the galena (001) surface observed using electrochemical scanning tunneling microscopy. Geochimica Et Cosmochimica Acta, 1996, 60, 3067-3073.	3.9	25
20	Unraveling the Effects of Strontium Incorporation on Barite Growthâ€"In Situ and Ex Situ Observations Using Multiscale Chemical Imaging. Crystal Growth and Design, 2018, 18, 5521-5533.	3.0	23
21	X-ray photoelectron spectroscopic studies of dolomite surfaces exposed to undersaturated and supersaturated aqueous solutions. Geochimica Et Cosmochimica Acta, 2006, 70, 3342-3350.	3.9	21
22	Dissolution Kinetics, Step and Surface Morphology of Magnesite (104) Surfaces in Acidic Aqueous Solution at 60 °C by Atomic Force Microscopy under Defined Hydrodynamic Conditions. Journal of Physical Chemistry B, 2002, 106, 6696-6705.	2.6	20
23	Friction characteristics of Cd-rich carbonate films on calcite surfaces: implications for compositional differentiation at the nanometer scale. Geochemical Transactions, 2009, 10, 7.	0.7	19
24	Dissolution Kinetics and Mechanisms at Dolomite–Water Interfaces: Effects of Electrolyte Specific Ionic Strength. Environmental Science & Electrolyte Specific Rechnology, 2013, 47, 110-118.	10.0	18
25	Growth kinetics of step edges on celestite (001) surfaces as a function of temperature, saturation state, ionic strength, and aqueous strontium:sulfate ratio: An in-situ atomic force microscopy study. Geochimica Et Cosmochimica Acta, 2016, 175, 222-238.	3.9	18
26	Investigation of growth, coverage and effectiveness of plasma assisted nano-films of fluorocarbon. Applied Surface Science, 2006, 252, 5676-5686.	6.1	17
27	Near molecular-scale growth of natural minerals: Experimental methods and errors in length-dependent step speeds with scanning probe microscopy. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150, 235-247.	1.7	15
28	Dissolution kinetics and topographic relaxation on celestite (001) surfaces: The effect of solution saturation state studied using Atomic Force Microscopy. Geochimica Et Cosmochimica Acta, 2008, 72, 759-770.	3.9	15
29	Specific surface area of hierarchical graphitic substrates suitable for multi-functional applications. Materials Letters, 2012, 88, 160-163.	2.6	15
30	Measuring the Silver Composition of Nanocolloids by Inductively Coupled Plasma–Optical Emission Spectroscopy: A Laboratory Experiment for Chemistry and Engineering Students. Journal of Chemical Education, 2015, 92, 1061-1065.	2.3	12
31	Model nucleation and growth studies of nanoscale oxide coatings suitable for modification of microcellular and nano-structured carbon. Surface and Coatings Technology, 2008, 203, 65-72.	4.8	10
32	Using atomic force spectroscopy to study oil/mineral interactions at reservoir temperatures and pressures. Fuel, 2020, 259, 116194.	6.4	10
33	Quantitative Lateral Force Microscopy Study of the Dolomite (104)â^'Water Interface. Langmuir, 2007, 23, 8909-8915.	3.5	9
34	Response to comment on "Point of zero charge of a corundum-water interface probed with optical second harmonic generation (SHG) and atomic force microscopy (AFM): new approaches to oxide surface charge― Geochimica Et Cosmochimica Acta, 2003, 67, 321-322.	3.9	8
35	Properties of Ca-Rich and Mg-Rich Carbonate Films on Dolomite: Implications for Compositional Surface Mapping with Scanning Force Microscopy. Langmuir, 2010, 26, 4769-4775.	3.5	7
36	Hydrothermal Atomic Force Microscopy Investigation of Barite Growth: Role of Spectator Ions in Elementary Step Edge Growth Kinetics and Hillock Morphology. Crystal Growth and Design, 2017, 17, 6085-6095.	3.0	7

#	Article	IF	CITATIONS
37	A Raman-Based Imaging Method for Characterizing the Molecular Adsorption and Spatial Distribution of Silver Nanoparticles on Hydrated Mineral Surfaces. Environmental Science & Environmental Science	10.0	7
38	Strontium incorporation during calcite growth: Implications for chemical mapping using friction force microscopy. Chemical Geology, 2015, 411, 274-282.	3.3	4
39	A computer program for automated step edge motion analysis from scanning probe microscopy images. Surface Science, 2009, 603, 1034-1040.	1.9	1
40	Experimental Nanomaterials and Nanoscience - An Interdisciplinary Laboratory Course., 0,,.		0