List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/747269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kainic acid seizures in the rat. Progress in Neurobiology, 1994, 42, 1-32.	5.7	649
2	Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends in Neurosciences, 1999, 22, 25-30.	8.6	451
3	Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11534-11539.	7.1	424
4	Functional changes in neuropeptide Y- and somatostatin-containing neurons induced by limbic seizures in the rat. Neuroscience, 1992, 50, 831-846.	2.3	243
5	Important role of hypothalamic Y2 receptors in body weight regulation revealed in conditional knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8938-8943.	7.1	229
6	Multiple and Plastic Receptors Mediate Tonic GABAA Receptor Currents in the Hippocampus. Journal of Neuroscience, 2005, 25, 10016-10024.	3.6	227
7	Anticonvulsant and Antiepileptogenic Effects Mediated by Adeno-Associated Virus Vector Neuropeptide Y Expression in the Rat Hippocampus. Journal of Neuroscience, 2004, 24, 3051-3059.	3.6	222
8	Arcuate NPY Controls Sympathetic Output and BAT Function via a Relay of Tyrosine Hydroxylase Neurons in the PVN. Cell Metabolism, 2013, 17, 236-248.	16.2	213
9	Patterns of mRNA and protein expression for 12 GABAA receptor subunits in the mouse brain. Neuroscience, 2013, 236, 345-372.	2.3	201
10	Neuropeptide Y inhibits potassiumâ€stimulated glutamate release through Y ₂ receptors in rat hippocampal slices <i>in vitro</i> . British Journal of Pharmacology, 1994, 113, 737-740.	5.4	181
11	Reduced anxiety and improved stress coping ability in mice lacking NPY‥2 receptors. European Journal of Neuroscience, 2003, 18, 143-148.	2.6	173
12	Neuropeptide Y biosynthesis is markedly induced in mossy fibers during temporal lobe epilepsy of the rat. Neuroscience Letters, 1990, 112, 143-148.	2.1	163
13	Somatostatin, neuropeptide Y, neurokinin B and cholecystokinin immunoreactivity in two chronic models of temporal lobe epilepsy. Neuroscience, 1995, 69, 831-845.	2.3	155
14	Distribution of the major ?-aminobutyric acidA receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat. Journal of Comparative Neurology, 2001, 433, 526-549.	1.6	155
15	Overexpression of NPY and Y2 receptors in epileptic brain tissue: an endogenous neuroprotective mechanism in temporal lobe epilepsy?. Neuropeptides, 2004, 38, 245-252.	2.2	150
16	Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain, 2008, 131, 1506-1515.	7.6	146
17	GABA and Its Receptors in Epilepsy. Advances in Experimental Medicine and Biology, 2004, 548, 92-103.	1.6	139
18	Simultaneous Determination of Serotonin, 5-Hydroxyindoleacetic Acid, 3,4-Dihydroxyphenylacetic Acid and Homovanillic Acid by High Performance Liquid Chromatography with Electrochemical Detection. Journal of Neurochemistry, 1982, 38, 840-843.	3.9	138

#	Article	IF	CITATIONS
19	Distribution of neurons expressing neurokinin B in the rat brain: Immunohistochemistry and in situ hybridization. Journal of Comparative Neurology, 1992, 317, 341-356.	1.6	136
20	Plasticity of Y1 and Y2 Receptors and Neuropeptide Y Fibers in Patients with Temporal Lobe Epilepsy. Journal of Neuroscience, 2001, 21, 5804-5812.	3.6	133
21	The Central and Basolateral Amygdala Are Critical Sites of Neuropeptide Y/Y2 Receptor-Mediated Regulation of Anxiety and Depression. Journal of Neuroscience, 2010, 30, 6282-6290.	3.6	132
22	Neuropeptides-immunoreactivity and their mRNA expression in kindling: functional implications for limbic epileptogenesis. Brain Research Reviews, 1996, 22, 27-50.	9.0	130
23	Neuronal plasticity in animal models and the epileptic human hippocampus. Epilepsia, 2009, 50, 29-31.	5.1	124
24	Up-Regulation of Neuropeptide Y-Y ₂ Receptors in an Animal Model of Temporal Lobe Epilepsy. Molecular Pharmacology, 1998, 53, 6-13.	2.3	117
25	Enhanced Rate of Expression and Biosynthesis of Neuropeptide Y After Kainic Acid-Induced Seizures. Journal of Neurochemistry, 1991, 56, 525-530.	3.9	116
26	The antiâ€epileptic actions of neuropeptide Y in the hippocampus are mediated by Y ₂ and not Y ₅ receptors. European Journal of Neuroscience, 2005, 22, 1417-1430.	2.6	114
27	Neuropeptide Y in the dentate gyrus. Progress in Brain Research, 2007, 163, 285-297.	1.4	109
28	Differential NPY mRNA expression in granule cells and interneurons of the rat dentate gyrus after kainic acid injection. Hippocampus, 1994, 4, 474-482.	1.9	94
29	Seizure susceptibility and epileptogenesis are decreased in transgenic rats overexpressing neuropeptide Y. Neuroscience, 2002, 110, 237-243.	2.3	90
30	Progressive loss of phasic, but not tonic, GABAA receptor-mediated inhibition in dentate granule cells in a model of post-traumatic epilepsy in rats. Neuroscience, 2011, 194, 208-219.	2.3	88
31	The role of Neuropeptide Y in fear conditioning and extinction. Neuropeptides, 2016, 55, 111-126.	2.2	88
32	Kainic acid-induced changes of serotonin and dopamine metabolism in the striatum and substantia nigra of the rat. European Journal of Pharmacology, 1981, 74, 279-286.	3.5	87
33	Altered expression of GABAa and GABAb receptor subunit mRNAs in the hippocampus after kindling and electrically induced status epilepticus. Neuroscience, 2005, 134, 691-704.	2.3	87
34	Amygdala NPY Circuits Promote the Development of Accelerated Obesity under Chronic Stress Conditions. Cell Metabolism, 2019, 30, 111-128.e6.	16.2	83
35	Chromogranins in rat brain: characterization, topographical distribution and regulation of synthesis. Brain Research, 1990, 532, 87-94.	2.2	81
36	Sexâ€dependent control of murine emotionalâ€affective behaviour in health and colitis by peptide YY and neuropeptide Y. British Journal of Pharmacology, 2011, 163, 1302-1314.	5.4	76

#	Article	IF	CITATIONS
37	Increased Expression of GABA _A Receptor β-Subunits in the Hippocampus of Patients with Temporal Lobe Epilepsy. Journal of Neuropathology and Experimental Neurology, 2003, 62, 820-834.	1.7	75
38	Increased novelty-induced motor activity and reduced depression-like behavior in neuropeptide Y (NPY)–Y4 receptor knockout mice. Neuroscience, 2009, 158, 1717-1730.	2.3	72
39	Temporal lobe epilepsy of the rat: differential expression of mRNAs of chromogranin B, secretogranin II, synaptin/synaptophysin and p65 in subfields of the hippocampus. Molecular Brain Research, 1992, 16, 1-12.	2.3	71
40	Altered GABA transmission in a mouse model of increased trait anxiety. Neuroscience, 2011, 183, 71-80.	2.3	71
41	Autoradiographic analysis of neuropeptide Y receptor binding sites in the rat hippocampus after kainic acid-induced limbic seizures. Neuroscience, 1996, 70, 47-55.	2.3	70
42	Distinct Changes in Peptide YY Binding to, and mRNA Levels of, Y1 and Y2 Receptors in the Rat Hippocampus Associated with Kindling Epileptogenesis. Journal of Neurochemistry, 1998, 70, 1615-1622.	3.9	70
43	Expression of GABA receptor subunits in the hippocampus and thalamus after experimental traumatic brain injury. Neuropharmacology, 2015, 88, 122-133.	4.1	70
44	Electrical Kindling of the Hippocampus is Associated with Functional Activation of Neuropeptide Y-containing Neurons. European Journal of Neuroscience, 1993, 5, 1534-1538.	2.6	67
45	Altered expression of NPY-Y1 receptors in kainic acid induced epilepsy in rats. Neuroscience Letters, 1997, 230, 129-132.	2.1	67
46	Sequel of spontaneous seizures after kainic acid-induced status epilepticus and associated neuropathological changes in the subiculum and entorhinal cortex. Neuropharmacology, 2012, 63, 806-817.	4.1	67
47	Parvalbumin interneurons and calretinin fibers arising from the thalamic nucleus reuniens degenerate in the subiculum after kainic acid-induced seizures. Neuroscience, 2011, 189, 316-329.	2.3	65
48	Evidence for an endogenous factor interfering with 3H-diazepam binding to rat brain membranes. European Journal of Pharmacology, 1978, 49, 323-326.	3.5	64
49	Expression of plasma membrane GABA transporters but not of the vesicular GABA transporter in dentate granule cells after kainic acid seizures. Hippocampus, 2003, 13, 806-815.	1.9	63
50	Selective Silencing of Hippocampal Parvalbumin Interneurons Induces Development of Recurrent Spontaneous Limbic Seizures in Mice. Journal of Neuroscience, 2017, 37, 8166-8179.	3.6	63
51	Gene therapy in epilepsy: The focus on NPY. Peptides, 2007, 28, 377-383.	2.4	62
52	Anticonvulsant effects and behavioural outcomes of rAAV serotype 1 vector-mediated neuropeptide Y overexpression in rat hippocampus. Gene Therapy, 2010, 17, 643-652.	4.5	62
53	Synthesis and biological evaluation of 14-alkoxymorphinans. 1. Highly potent opioid agonists in the series of (-)-14-methoxy-N-methylmorphinan-6-ones. Journal of Medicinal Chemistry, 1984, 27, 1575-1579.	6.4	61
54	Functional changes in somatostatin and neuropeptide Y containing neurons in the rat hippocampus in chronic models of limbic seizures. Epilepsy Research, 1996, 26, 267-279.	1.6	61

#	Article	IF	CITATIONS
55	NPY controls fear conditioning and fear extinction by combined action on Y ₁ and Y ₂ receptors. British Journal of Pharmacology, 2012, 166, 1461-1473.	5.4	58
56	<i>> GAL ₃ receptor </i> > KO mice exhibit an anxiety-like phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7138-7143.	7.1	57
57	Neuropeptide Levels after Pentylenetetrazol Kindling in the Rat. European Journal of Neuroscience, 1990, 2, 98-103.	2.6	55
58	Somatostatin Precursor in the Rat Striatum: Changes After Local Injection of Kainic Acid. Journal of Neurochemistry, 1985, 45, 1441-1447.	3.9	54
59	Differential increases in brain levels of neuropeptide Y and vasoactive intestinal polypeptide after kainic acid-induced seizures in the rat. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 339-339, 173-177.	3.0	54
60	Reduction of A1 adenosine receptors in rat hippocampus after kainic acid-induced limbic seizures. Neuroscience Letters, 2000, 284, 49-52.	2.1	52
61	Afamin is synthesized by cerebrovascular endothelial cells and mediates αâ€ŧocopherol transport across an <i>in vitro</i> model of the blood–brain barrier. Journal of Neurochemistry, 2009, 108, 707-718.	3.9	50
62	Enhancement of GABA _A -current run-down in the hippocampus occurs at the first spontaneous seizure in a model of temporal lobe epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3180-3185.	7.1	49
63	Hunger Promotes Fear Extinction by Activation of an Amygdala Microcircuit. Neuropsychopharmacology, 2016, 41, 431-439.	5.4	48
64	Structure and function of the amygdaloid NPY system: NPY Y2 receptors regulate excitatory and inhibitory synaptic transmission in the centromedial amygdala. Brain Structure and Function, 2016, 221, 3373-3391.	2.3	47
65	Increased expression of Nogoâ€A in hippocampal neurons of patients with temporal lobe epilepsy. European Journal of Neuroscience, 2004, 20, 195-206.	2.6	43
66	α2-adrenoceptors modulate kainic acid-induced limbic seizures. European Journal of Pharmacology, 1985, 113, 263-269.	3.5	41
67	Changes in the expression of GABAA receptor subunit mRNAs in parahippocampal areas after kainic acid induced seizures. Frontiers in Neural Circuits, 2013, 7, 142.	2.8	41
68	Altered expression of GABAB receptors in the hippocampus after kainic-acid-induced seizures in rats. Molecular Brain Research, 2003, 113, 107-115.	2.3	40
69			

#	Article	IF	CITATIONS
73	Hypothalamic <scp>CNTF</scp> volume transmission shapes cortical noradrenergic excitability upon acute stress. EMBO Journal, 2018, 37, .	7.8	33
74	In vivo synthesis of substance P in the corpus striatum of the rat and its transport to the substantia nigra. Brain Research, 1982, 238, 127-135.	2.2	32
75	Neuropeptide Y Overexpression Using Recombinant Adenoassociated Viral Vectors. Neurotherapeutics, 2009, 6, 300-306.	4.4	32
76	Rapid changes in expression of class I and IV histone deacetylases during epileptogenesis in mouse models of temporal lobe epilepsy. Experimental Neurology, 2015, 273, 92-104.	4.1	32
77	Changes in the GABA-ergic system induced by trimethyltin application in the rat. Molecular Brain Research, 2001, 97, 1-6.	2.3	31
78	Increased brain levels of cholecystokinin octapeptide after kainic acid-induced seizures in the rat. Neuroscience Letters, 1986, 69, 208-211.	2.1	30
79	Neuropeptide Y-Y2 receptor knockout mice: influence of genetic background on anxiety-related behaviors. Neuroscience, 2011, 176, 420-430.	2.3	30
80	Somatostatin and Neuropeptide Y Neurons Undergo Different Plasticity in Parahippocampal Regions in Kainic AcidYInduced Epilepsy. Journal of Neuropathology and Experimental Neurology, 2012, 71, 312-329.	1.7	30
81	Arcuate nucleus and lateral hypothalamic CART neurons in the mouse brain exert opposing effects on energy expenditure. ELife, 2018, 7, .	6.0	30
82	Serotonergic denervation partially protects rat striatum from kainic acid toxicity. Nature, 1982, 299, 254-256.	27.8	29
83	Effects of antidepressant drug treatment on levels of NPY or prepro-NPY-mRNA in the rat brain. Neurochemistry International, 1993, 22, 183-187.	3.8	29
84	Somatostatin Receptor Type 2 Undergoes Plastic Changes in the Human Epileptic Dentate Gyrus. Journal of Neuropathology and Experimental Neurology, 2005, 64, 956-969.	1.7	29
85	Distribution of Alarin Immunoreactivity in the Mouse Brain. Journal of Molecular Neuroscience, 2012, 46, 18-32.	2.3	29
86	Glutamate decarboxylase ⁶⁷ is expressed in hippocampal mossy fibers of temporal lobe epilepsy patients. Hippocampus, 2012, 22, 590-603.	1.9	28
87	Kainic acid seizures cause enhanced expression of cholecystokinin-octapeptide in the cortex and hippocampus of the rat. Synapse, 1993, 15, 221-228.	1.2	27
88	Expression of class <scp>II</scp> histone deacetylases in two mouse models of temporal lobe epilepsy. Journal of Neurochemistry, 2016, 136, 717-730.	3.9	27
89	Glutamate-stimulated neuropeptide Y mRNA expression in the rat dentate gyrus: A prominent role of metabotropic glutamate receptors. , 1998, 8, 274-288.		26
90	Trimethyltin intoxication induces marked changes in neuropeptide expression in the rat hippocampus. Synapse, 1998, 29, 333-342.	1.2	26

#	Article	IF	CITATIONS
91	An orally effective, long-acting dopaminergic prodrug: (â^')-10,11-methylenedioxy-N-propylnoraporphine. European Journal of Pharmacology, 1982, 77, 87-88.	3.5	24
92	Cholinergic Deficit Induced by Ethylcholine Aziridinium (AF64A) Transiently Affects Somatostatin and Neuropeptide Y Levels in Rat Brain. Journal of Neurochemistry, 1990, 54, 1608-1613.	3.9	24
93	Effect of anticonvulsant treatment on kainic acid-induced increases in peptide levels. European Journal of Pharmacology, 1990, 181, 241-246.	3.5	24
94	NPY Y2 receptors in the central amygdala reduce cued but not contextual fear. Neuropharmacology, 2015, 99, 665-674.	4.1	24
95	Structural and Functional Remodeling of Amygdala GABAergic Synapses in Associative Fear Learning. Neuron, 2019, 104, 781-794.e4.	8.1	24
96	Delayed stress-induced differences in locomotor and depression-related behaviour in female neuropeptide-Y Y1 receptor knockout mice. Journal of Psychopharmacology, 2010, 24, 1541-1549.	4.0	23
97	Immunohistochemical distribution of 10 <scp>GABA_A</scp> receptor subunits in the forebrain of the rhesus monkey <scp><i>Macaca mulatta</i></scp> . Journal of Comparative Neurology, 2020, 528, 2551-2568.	1.6	20
98	Capsaicin Does Not Change Tissue Levels of Glutamic Acid, Its Uptake, or Release in the Rat Spinal Cord. Journal of Neurochemistry, 1982, 38, 1383-1386.	3.9	19
99	Altered hippocampal expression of neuropeptide Y, somatostatin, and glutamate decarboxylase in Ihara's epileptic rats and spontaneously epileptic rats. Neuroscience Letters, 2000, 287, 105-108.	2.1	18
100	Secretoneurin: A marker in rat hippocampal pathways. , 1997, 377, 29-40.		17
101	Dynamic upâ€regulation of prodynorphin transcription in temporal lobe epilepsy. Hippocampus, 2009, 19, 1051-1054.	1.9	17
102	Cysteamine-Induced Decrease of Somatostatin in Rat Brain Synaptosomesin Vitro*. Endocrinology, 1987, 121, 1383-1389.	2.8	16
103	Pancreatic polypeptide and its central Y ₄ receptors are essential for cued fear extinction and permanent suppression of fear. British Journal of Pharmacology, 2016, 173, 1925-1938.	5.4	16
104	Calciumâ€binding proteins in focal cortical dysplasia. Epilepsia, 2015, 56, 1207-1216.	5.1	15
105	Neuropeptide Y2 receptors in anteroventral BNST control remote fear memory depending on extinction training. Neurobiology of Learning and Memory, 2018, 149, 144-153.	1.9	14
106	Distinct gradients of various neurotransmitter markers in caudate nucleus and putamen of the human brain. Journal of Neurochemistry, 2020, 152, 650-662.	3.9	14
107	Chromogranins in Temporal Lobe Epilepsy. Epilepsia, 2000, 41, S111-S114.	5.1	13
108	Differences between Adenosine Triphosphatases from Monocotylous and Dicotylous Plants. Plant Physiology, 1977, 59, 155-157.	4.8	12

#	Article	IF	CITATIONS
109	Kainic acid induced seizures cause a marked increase in the expression of neurokinin-3 receptor mRNA in the rat cerebellum. Neuroscience Letters, 1994, 181, 158-160.	2.1	12
110	BIOCHEMICAL, BEHAVIORAL, AND PHARMACOLOGIC STUDIES OF THE EFFECTS OF DIHYDROXYTRYPTAMINES IN THE RODENT BRAIN. Annals of the New York Academy of Sciences, 1978, 305, 198-207.	3.8	11
111	Neuropeptide Y and somatostatin immunoreactivity in the rat hippocampus after moderate hypoxia. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 354, 67-71.	3.0	11
112	Effect of neuropeptide Y Y2 receptor deletion on emotional stressâ€induced neuronal activation in mice. Synapse, 2009, 63, 236-246.	1.2	11
113	Secretoneurin, substance P and neuropeptide Y in the oxygen-induced retinopathy in C57Bl/6N mice. Peptides, 2012, 37, 252-257.	2.4	11
114	A Low-Molecular-Weight ATPase from Wheat-Seedling Mitochondria. FEBS Journal, 1976, 68, 13-19.	0.2	10
115	Metabotropic glutamate receptors mediate activation of NPY-Y2 receptor expression in the rat dentate gyrus. NeuroReport, 1998, 9, 2347-2351.	1.2	10
116	Effect of Local Injection of Cysteamine and Cystamine on Somatostatin and Neuropeptide Y Levels in the Rat Striatum. Journal of Neurochemistry, 1988, 50, 1682-1686.	3.9	9
117	Selective increase of dark phase water intake in neuropeptide-Y Y2 and Y4 receptor knockout mice. Behavioural Brain Research, 2006, 168, 255-260.	2.2	9
118	Effects of galanin receptor 2 and receptor 3 knockout in mouse models of acute seizures. Epilepsia, 2018, 59, e166-e171.	5.1	9
119	Evidence for Neuronal Localization of Histamine-N-Methyltransferase in Rat Brain. Journal of Neurochemistry, 1981, 37, 525-526.	3.9	8
120	Neurochemical characterization of preprotachykinin B(50–79) immunoreactivity in the rat. Regulatory Peptides, 1995, 57, 183-192.	1.9	8
121	Trimethyltin-Induced Expression of Neuropeptide Y Y2 Receptors in Rat Dentate Gyrus. Neurotoxicology and Teratology, 1998, 20, 607-610.	2.4	8
122	Effective G-protein coupling of Y2 receptors along axonal fiber tracts and its relevance for epilepsy. Neuropeptides, 2017, 61, 49-55.	2.2	8
123	Silencing of Hippocampal Somatostatin Interneurons Induces Recurrent Spontaneous Limbic Seizures in Mice. Neuroscience, 2022, 487, 155-165.	2.3	8
124	Role of neuropeptide Y (NPY) in the differentiation of Trpm-5-positive olfactory microvillar cells. Neuropeptides, 2018, 68, 90-98.	2.2	7
125	Increased expression of GABAA receptor subunits associated with tonic inhibition in patients with temporal lobe epilepsy. Brain Communications, 2021, 3, fcab239.	3.3	7
126	Lipid mediator nâ€3 docosapentaenoic acidâ€derived protectin D1 enhances synaptic inhibition of hippocampal principal neurons by interaction with a Gâ€proteinâ€coupled receptor. FASEB Journal, 2022, 36, e22203.	0.5	6

#	Article	IF	CITATIONS
127	Quantitative determination of neuroactive substances in the CNS of the spider Cupiennius salei keys. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1992, 102, 447-450.	0.2	5
128	Perception of species-specific vocalizations in rats : role of the cholinergic septo-hippocampal pathway and aging. International Journal of Developmental Neuroscience, 1998, 16, 715-727.	1.6	2
129	Experiments to localize the site for the anxiogenic action of NPY mediated by Y2 receptors in the mouse brain. BMC Pharmacology, 2007, 7, A14.	0.4	2
130	Regulation of Parvalbumin Interactome in the Perilesional Cortex after Experimental Traumatic Brain Injury. Neuroscience, 2021, 475, 52-72.	2.3	2
131	Somatostatin-and Neuropeptide Y-Mediated Neurotransmission in Kindling Epileptogenesis. Advances in Behavioral Biology, 1998, , 313-325.	0.2	2
132	Current topics in brain dopamine research: a tribute to Professor Oleh Hornykiewicz. Wiener Klinische Wochenschrift, 2006, 118, 563-565.	1.9	1
133	The role of NPY in expression and extinction of conditioned fear. BMC Pharmacology, 2009, 9, A33.	0.4	1
134	Reduced fear conditioning after viral vector mediated neuropeptide Y administration into the basolateral amygdala. BMC Pharmacology, 2011, 11, A3.	0.4	1
135	Secretoneurin: A marker in rat hippocampal pathways. Journal of Comparative Neurology, 1997, 377, 29-40.	1.6	1
136	Plastische Ver�nderungen von Neuropeptiden bei Patienten mit Temporallappenepilepsie. Zeitschrift Fur Epileptologie, 2003, 16, 235-242.	0.7	0
137	Neuropeptide Y and Its Receptors in Kindling Epileptogenesis. , 2005, , 249-261.		Ο
138	Mesiale Temporallappenepilepsie: Morphologische und neurochemische Plastizitädes Hippokampus. E-Neuroforum, 2006, 12, 144-151.	0.1	0
139	Increased novelty-induced motor activity and reduced depression-like behavior in NPY Y4 receptor knockout mice. BMC Pharmacology, 2008, 8, .	0.4	Ο
140	Neurodegeneration and plastic changes in parahippocampal regions of the rat after kainic acid-induced epilepsy. BMC Pharmacology, 2008, 8, .	0.4	0
141	Establishing a new mouse model for investigating the function of amygdala neurons in anxiety. BMC Pharmacology, 2008, 8, A35.	0.4	0
142	Long-term depression-like effect of a single immune challenge in neuropeptide Y Y2 and Y4 receptor knockout mice. BMC Pharmacology, 2008, 8, .	0.4	0
143	Neuropeptide Y in the basolateral amygdala modulates the acquisition of conditioned fear. BMC Pharmacology, 2010, 10, .	0.4	0
144	Neurodegeneration and histochemical plasticity in the rat subiculum after kainic acid-induced epilepsy. BMC Pharmacology, 2011, 11, .	0.4	0

#	Article	IF	CITATIONS
145	Neuropeptide Y Y2 receptors modulate trace fear conditioning and spatial memory in the dorsal hippocampus. BMC Pharmacology, 2011, 11, .	0.4	0
146	Fear learning induces structural and functional plasticity at GABAergic synapses in the basolateral amygdala. BMC Pharmacology, 2011, 11, A42.	0.4	0
147	Neuropeptide Y modulates fear and fear extinction in distinct nuclei of the amygdala. BMC Pharmacology & Toxicology, 2012, 13, .	2.4	0
148	Arcuate NPY Controls Sympathetic Output and BAT Function via a Relay of Tyrosine Hydroxylase Neurons in the PVN. Cell Metabolism, 2013, 18, 144.	16.2	0
149	NPY Y2 receptor reduces excitatory and inhibitory synaptic transmission in the centromedial amygdala. Neuropeptides, 2016, 55, 4.	2.2	0
150	Hunger promotes fear extinction by activation of an amygdala microcircuit. Neuropeptides, 2016, 55, 19-20.	2.2	0
151	Pathways and mechanisms of NPY and Y2 receptors for controlling conditioned fear. Neuropeptides, 2016, 55, 22.	2.2	0
152	Epilepsy, Brain Injury and Cell Death. , 2007, , 363-374.		0
153	Purification and Characterization of Neuroendocrine Peptides from Rat Brain: Prosomatostatin Isolation. Methods in Neurosciences, 1991, , 306-321.	0.5	Ο