
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7470784/publications.pdf Version: 2024-02-01

Οινγομ ΔΝ

#	Article	IF	CITATIONS
1	Improved zinc-ion storage performance of the metal-free organic anode by the effect of binder. Chemical Engineering Journal, 2022, 428, 131092.	6.6	28
2	Achieving high-performance energy storage device of Li3V2(PO4)3 // LiCrTiO4 Li-ion full cell. Journal of Power Sources, 2022, 518, 230770.	4.0	6
3	Dual redox groups enable organic cathode material with a high capacity for aqueous zinc-organic batteries. Electrochimica Acta, 2022, 404, 139620.	2.6	21
4	Polyaniline nanoarrays/carbon cloth as binder-free and flexible cathode for magnesium ion batteries. Chemical Engineering Journal, 2022, 433, 133772.	6.6	34
5	Electronic Structure Modulation in MoO ₂ /MoP Heterostructure to Induce Fast Electronic/Ionic Diffusion Kinetics for Lithium Storage. Advanced Science, 2022, 9, e2104504.	5.6	58
6	Lowâ€strain TiP ₂ O ₇ with threeâ€dimensional ion channels as longâ€life and highâ€rate anode material for Mgâ€ion batteries. , 2022, 1, 140-147.		90
7	CaV ₆ O ₁₆ ·2.8H ₂ O with Ca ²⁺ Pillar and Water Lubrication as a Highâ€Rate and Longâ€Life Cathode Material for Caâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	28
8	Flexible three-dimensional-networked iron vanadate nanosheet arrays/carbon cloths as high-performance cathodes for magnesium ion batteries. Science China Materials, 2022, 65, 2197-2206.	3.5	13
9	Cheese-like porous SnP2O7 composite as a long-life and high-rate anode material for potassium-ion batteries. Chemical Engineering Journal, 2022, 439, 135777.	6.6	12
10	Defect engineering in molybdenum-based electrode materials for energy storage. EScience, 2022, 2, 278-294.	25.0	83
11	Mo ₂ C Nanoparticles Embedded in Carbon Nanowires with Surface Pseudocapacitance Enables Highâ€Energy and Highâ€Power Sodium Ion Capacitors. Small, 2022, 18, e2200805.	5.2	20
12	Polydopamine-assisted in-situ formation of dense MOF layer on polyolefin separator for synergistic enhancement of lithium-sulfur battery. Nano Research, 2022, 15, 8048-8055.	5.8	24
13	Incorporating Nearâ€Pseudocapacitance Insertion Ni/Coâ€Based Hexacyanoferrate and Lowâ€Cost Metallic Zn for Aqueous Kâ€lon Batteries. ChemSusChem, 2022, 15, .	3.6	7
14	MnO ₂ Polymorphs as Cathode Materials for Rechargeable Caâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	21
15	Surface pseudocapacitance of mesoporous Mo3N2 nanowire anode toward reversible high-rate sodium-ion storage. Journal of Energy Chemistry, 2021, 55, 295-303.	7.1	31
16	Insight into pre-sodiation in Na3V2(PO4)2F3/C @ hard carbon full cells for promoting the development of sodium-ion battery. Chemical Engineering Journal, 2021, 413, 127565.	6.6	38
17	Insights into the storage mechanism of VS4 nanowire clusters in aluminum-ion battery. Nano Energy, 2021, 79, 105384.	8.2	64
18	Revealing the Origin of Highly Efficient Polysulfide Anchoring and Transformation on Anionâ€Substituted Vanadium Nitride Host. Advanced Functional Materials, 2021, 31, 2008034.	7.8	39

#	Article	IF	CITATIONS
19	Structural properties and electrochemical performance of different polymorphs of Nb2O5 in magnesium-based batteries. Journal of Energy Chemistry, 2021, 58, 586-592.	7.1	13
20	Recent Progress and Challenges in the Optimization of Electrode Materials for Rechargeable Magnesium Batteries. Small, 2021, 17, e2004108.	5.2	62
21	Electrochemical activation induced multi-valence variation of (NH ₄) ₂ V ₄ O ₉ as a high-performance cathode material for zinc-ion batteries. Chemical Communications, 2021, 57, 3615-3618.	2.2	16
22	Building carbon cloth-based dendrite-free potassium metal anodes for potassium metal pouch cells. Journal of Materials Chemistry A, 2021, 9, 23046-23054.	5.2	27
23	Generating H ⁺ in Catholyte and OH [–] in Anolyte: An Approach to Improve the Stability of Aqueous Zinc-Ion Batteries. ACS Energy Letters, 2021, 6, 684-686.	8.8	49
24	CNTs/LiV3O8/Y2O3 Composites with Enhanced Electrochemical Performances as Cathode Materials for Rechargeable Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 8219-8228.	4.0	1
25	Unexpected discovery of magnesium-vanadium spinel oxide containing extractable Mg2+ as a high-capacity cathode material for magnesium ion batteries. Chemical Engineering Journal, 2021, 405, 127005.	6.6	34
26	Organicâ€Inorganic Superlattices of Vanadium Oxide@PolyanilineÂfor Highâ€Performance Magnesiumâ€Ion Batteries. ChemSusChem, 2021, 14, 2093-2099.	3.6	38
27	High-capacity and small-polarization aluminum organic batteries based on sustainable quinone-based cathodes with Al3+ insertion. Cell Reports Physical Science, 2021, 2, 100354.	2.8	32
28	Quicker and More Zn ²⁺ Storage Predominantly from the Interface. Advanced Materials, 2021, 33, e2100359.	11.1	111
29	Crystal defect modulation in cathode materials for non-lithium ion batteries: Progress and challenges. Materials Today, 2021, 45, 169-190.	8.3	53
30	Revealing the Multiâ€Electron Reaction Mechanism of Na ₃ V ₂ O ₂ (PO ₄) ₂ F Towards Improved Lithium Storage. ChemSusChem, 2021, 14, 2984-2991.	3.6	6
31	Sulfur-linked carbonyl polymer as a robust organic cathode for rapid and durable aluminum batteries. Journal of Energy Chemistry, 2021, 63, 320-327.	7.1	22
32	Recovery of kitchen bio-waste from spent black tea as hierarchical biomorphic carbon electrodes for ultra-long lifespan potassium-ion storage. Applied Surface Science, 2021, 555, 149675.	3.1	10
33	Porous yolk-shell structured Na3(VO)2(PO4)2F microspheres with enhanced Na-ion storage properties. Journal of Materials Science and Technology, 2021, 83, 83-89.	5.6	19
34	MOF derived TiO2 with reversible magnesium pseudocapacitance for ultralong-life Mg metal batteries. Chemical Engineering Journal, 2021, 418, 128491.	6.6	28
35	Designs and applications of multi-functional covalent organic frameworks in rechargeable batteries. Energy Storage Materials, 2021, 41, 354-379.	9.5	52
36	A room-temperature rechargeable dual-plating lithium–aluminium battery. Chemical Communications, 2021, 57, 11529-11532.	2.2	2

#	Article	IF	CITATIONS
37	Liquid Phaseâ€Induced Solid Solution Phase Mechanisms for Highly Stable and Ultrafast Energy Storage. Advanced Energy Materials, 2021, 11, 2102342.	10.2	6
38	Ultrathin Cobalt Phthalocyanine@Graphene Oxide Layer-Modified Separator for Stable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 60046-60053.	4.0	15
39	Three dimensional porous frameworks for lithium dendrite suppression. Journal of Energy Chemistry, 2020, 44, 73-89.	7.1	104
40	Constructing a disorder/order structure for enhanced magnesium storage. Chemical Engineering Journal, 2020, 382, 123049.	6.6	18
41	Vanadiumâ€Based Nanomaterials: A Promising Family for Emerging Metalâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1904398.	7.8	262
42	K0.23V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance. Journal of Alloys and Compounds, 2020, 819, 152971.	2.8	83
43	FeVO4â‹nH2O@rGO nanocomposite as high performance cathode materials for aqueous Zn-ion batteries. Journal of Alloys and Compounds, 2020, 818, 153372.	2.8	46
44	Insight into the capacity decay of layered sodium nickel manganese oxide cathodes in sodium ion batteries. Journal of Alloys and Compounds, 2020, 820, 153093.	2.8	9
45	Co onstruction of Sulfur Vacancies and Heterojunctions in Tungsten Disulfide to Induce Fast Electronic/Ionic Diffusion Kinetics for Sodiumâ€lon Batteries. Advanced Materials, 2020, 32, e2005802.	11.1	244
46	Intercalation-Type V ₂ O ₃ with Fast Mg ²⁺ Diffusion Kinetics for High-Capacity and Long-Life Mg-Ion Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 16164-16171.	3.2	13
47	Methanol-derived high-performance Na ₃ V ₂ (PO ₄) ₃ /C: from kilogram-scale synthesis to pouch cell safety detection. Nanoscale, 2020, 12, 21165-21171.	2.8	10
48	Fast and stable Mg2+ intercalation in a high voltage NaV2O2(PO4)2F/rGO cathode material for magnesium-ion batteries. Science China Materials, 2020, 63, 1651-1662.	3.5	36
49	Highly Efficient Non-Nucleophilic Mg(CF ₃ SO ₃) ₂ -Based Electrolyte for High-Power Mg/S Battery. ACS Applied Materials & Interfaces, 2020, 12, 17474-17480.	4.0	54
50	Facile and scalable synthesis of a sulfur, selenium and nitrogen co-doped hard carbon anode for high performance Na- and K-ion batteries. Journal of Materials Chemistry A, 2020, 8, 14993-15001.	5.2	56
51	Recent Advances in the Rational Design and Synthesis of Twoâ€Dimensional Materials for Multivalent Ion Batteries. ChemSusChem, 2020, 13, 1071-1092.	3.6	25
52	VOPO ₄ ·2H ₂ O as a new cathode material for rechargeable Ca-ion batteries. Chemical Communications, 2020, 56, 3805-3808.	2.2	67
53	Urchin-like Spinel MgV ₂ O ₄ as a Cathode Material for Aqueous Zinc-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 3681-3688.	3.2	99
54	N-Doped carbon coated bismuth nanorods with a hollow structure as an anode for superior-performance potassium-ion batteries. Nanoscale, 2020, 12, 4309-4313.	2.8	41

QINYOU AN

#	Article	IF	CITATIONS
55	Self-adaptive FeP@C nanocages for reversible and long-term lithium-ion batteries. Chemical Engineering Journal, 2020, 395, 125124.	6.6	19
56	Crystal regulation towards rechargeable magnesium battery cathode materials. Materials Horizons, 2020, 7, 1971-1995.	6.4	69
57	Intercalation pseudocapacitance of FeVO4·nH2O nanowires anode for high-energy and high-power sodium-ion capacitor. Nano Energy, 2020, 73, 104838.	8.2	48
58	In situ construction of amorphous hierarchical iron oxyhydroxide nanotubes via selective dissolution-regrowth strategy for enhanced lithium storage. Science China Materials, 2020, 63, 1993-2001.	3.5	11
59	Constructing volcanic-like mesoporous hard carbon with fast electrochemical kinetics for potassium-ion batteries and hybrid capacitors. Applied Surface Science, 2020, 525, 146563.	3.1	22
60	Uncovering the Cu-driven electrochemical mechanism of transition metal chalcogenides based electrodes. Energy Storage Materials, 2019, 16, 625-631.	9.5	56
61	Interchain-Expanded Vanadium Tetrasulfide with Fast Kinetics for Rechargeable Magnesium Batteries. ACS Applied Materials & Interfaces, 2019, 11, 31954-31961.	4.0	43
62	A high energy density hybrid magnesium–lithium ion battery based on LiV3O8@GO cathode. Electrochimica Acta, 2019, 320, 134556.	2.6	8
63	Salt-controlled dissolution in pigment cathode for high-capacity and long-life magnesium organic batteries. Nano Energy, 2019, 65, 103902.	8.2	49
64	Recent Advances and Prospects of Cathode Materials for Rechargeable Aqueous Zincâ€lon Batteries. Advanced Materials Interfaces, 2019, 6, 1900387.	1.9	169
65	Polyol Solvation Effect on Tuning the Universal Growth of Binary Metal Oxide Nanodots@Graphene Oxide Heterostructures for Electrochemical Applications. Chemistry - A European Journal, 2019, 25, 14604-14612.	1.7	2
66	Surface Pseudocapacitive Mechanism of Molybdenum Phosphide for Highâ€Energy and Highâ€Power Sodiumâ€ion Capacitors. Advanced Energy Materials, 2019, 9, 1900967.	10.2	62
67	Strongly Coupled Pyridineâ€V ₂ O ₅ · <i>n</i> H ₂ O Nanowires with Intercalation Pseudocapacitance and Stabilized Layer for High Energy Sodium Ion Capacitors. Small, 2019, 15, e1900379.	5.2	35
68	Hierarchical Mn ₃ O ₄ /Graphene Microflowers Fabricated via a Selective Dissolution Strategy for Alkali-Metal-Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 14120-14125.	4.0	26
69	Manganese ion pre-intercalated hydrated vanadium oxide as a high-performance cathode for magnesium ion batteries. Journal of Materials Chemistry A, 2019, 7, 10644-10650.	5.2	62
70	Vanadium Oxide Pillared by Interlayer Mg2+ Ions and Water as Ultralong-Life Cathodes for Magnesium-Ion Batteries. CheM, 2019, 5, 1194-1209.	5.8	180
71	Novel hollow Ni0.33Co0.67Se nanoprisms for high capacity lithium storage. Nano Research, 2019, 12, 1371-1374.	5.8	22
72	Metallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries. Journal of Alloys and Compounds, 2019, 787, 9-16.	2.8	80

#	Article	IF	CITATIONS
73	Revealing the atomistic origin of the disorder-enhanced Na-storage performance in NaFePO4 battery cathode. Nano Energy, 2019, 57, 608-615.	8.2	67
74	Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy, 2019, 58, 347-354.	8.2	72
75	Ultrastable and High-Performance Zn/VO ₂ Battery Based on a Reversible Single-Phase Reaction. Chemistry of Materials, 2019, 31, 699-706.	3.2	227
76	Novel NaTi2(PO4)3 nanowire clusters as high performance cathodes for Mg-Na hybrid-ion batteries. Nano Energy, 2019, 55, 526-533.	8.2	32
77	Magnesium storage performance and mechanism of CuS cathode. Nano Energy, 2018, 47, 210-216.	8.2	183
78	Multidimensional Synergistic Nanoarchitecture Exhibiting Highly Stable and Ultrafast Sodiumâ€ion Storage. Advanced Materials, 2018, 30, e1707122.	11.1	112
79	Pseudocapacitive layered iron vanadate nanosheets cathode for ultrahigh-rate lithium ion storage. Nano Energy, 2018, 47, 294-300.	8.2	87
80	Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for Highâ€Performance Zincâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1702463.	10.2	650
81	Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chemical Communications, 2018, 54, 4041-4044.	2.2	167
82	High-rate and long-life VS2 cathodes for hybrid magnesium-based battery. Energy Storage Materials, 2018, 12, 61-68.	9.5	106
83	Water‣ubricated Intercalation in V ₂ O ₅ •nH ₂ O for High apacity and Highâ€Rate Aqueous Rechargeable Zinc Batteries. Advanced Materials, 2018, 30, 1703725.	11.1	1,084
84	Lithium- and Magnesium-Storage Mechanisms of Novel Hexagonal NbSe ₂ . ACS Applied Materials & Interfaces, 2018, 10, 36988-36995.	4.0	42
85	Nanostructured Conversionâ€Type Negative Electrode Materials for Lowâ€Cost and Highâ€Performance Sodiumâ€ion Batteries. Advanced Functional Materials, 2018, 28, 1804458.	7.8	132
86	Nickel-iron bimetallic diselenides with enhanced kinetics for high-capacity and long-life magnesium batteries. Nano Energy, 2018, 54, 360-366.	8.2	82
87	Amorphous CuSnO ₃ nanospheres anchored on interconnected carbon networks for use as novel anode materials for high-performance sodium ion batteries. Inorganic Chemistry Frontiers, 2018, 5, 2756-2762.	3.0	20
88	Pseudocapacitive layered birnessite sodium manganese dioxide for high-rate non-aqueous sodium ion capacitors. Journal of Materials Chemistry A, 2018, 6, 12259-12266.	5.2	26
89	ZnSe Microsphere/Multiwalled Carbon Nanotube Composites as High-Rate and Long-Life Anodes for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 19626-19632.	4.0	111
90	Interlayer‣pacingâ€Regulated VOPO ₄ Nanosheets with Fast Kinetics for Highâ€Capacity and Durable Rechargeable Magnesium Batteries. Advanced Materials, 2018, 30, e1801984.	11.1	171

#	Article	IF	CITATIONS
91	Amine-assisted synthesis of FeS@N-C porous nanowires for highly reversible lithium storage. Nano Research, 2018, 11, 6206-6216.	5.8	20
92	A rechargeable aluminum-ion battery based on a VS ₂ nanosheet cathode. Physical Chemistry Chemical Physics, 2018, 20, 22563-22568.	1.3	97
93	Sodium Ion Capacitor Using Pseudocapacitive Layered Ferric Vanadate Nanosheets Cathode. IScience, 2018, 6, 212-221.	1.9	63
94	Vanadium-Based Cathode Materials for Rechargeable Multivalent Batteries: Challenges and Opportunities. Electrochemical Energy Reviews, 2018, 1, 169-199.	13.1	142
95	New anatase phase VTi _{2.6} O _{7.2} ultrafine nanocrystals for high-performance rechargeable magnesium-based batteries. Journal of Materials Chemistry A, 2018, 6, 13901-13907.	5.2	19
96	Layered VS ₂ Nanosheetâ€Based Aqueous Zn Ion Battery Cathode. Advanced Energy Materials, 2017, 7, 1601920.	10.2	961
97	A high-voltage rechargeable magnesium-sodium hybrid battery. Nano Energy, 2017, 34, 188-194.	8.2	84
98	Emerging Prototype Sodiumâ€ion Full Cells with Nanostructured Electrode Materials. Small, 2017, 13, 1604181.	5.2	96
99	Operando Xâ€ray Diffraction Characterization for Understanding the Intrinsic Electrochemical Mechanism in Rechargeable Battery Materials. Small Methods, 2017, 1, 1700083.	4.6	58
100	KTi ₂ (PO ₄) ₃ with Large Ion Diffusion Channel for Highâ€Efficiency Sodium Storage. Advanced Energy Materials, 2017, 7, 1700247.	10.2	21
101	Pseudocapacitive titanium oxynitride mesoporous nanowires with iso-oriented nanocrystals for ultrahigh-rate sodium ion hybrid capacitors. Journal of Materials Chemistry A, 2017, 5, 10827-10835.	5.2	94
102	VO ₂ Nanoflakes as the Cathode Material of Hybrid Magnesium–Lithium-Ion Batteries with High Energy Density. ACS Applied Materials & Interfaces, 2017, 9, 17060-17066.	4.0	101
103	FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries. Nano Research, 2017, 10, 3202-3211.	5.8	91
104	Robust LiTi ₂ (PO ₄) ₃ microflowers as high-rate and long-life cathodes for Mg-based hybrid-ion batteries. Journal of Materials Chemistry A, 2017, 5, 13950-13956.	5.2	30
105	Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy, 2017, 35, 281-289.	8.2	247
106	Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy, 2017, 35, 396-404.	8.2	313
107	New-type K0.7Fe0.5Mn0.5O2 cathode with an expanded and stabilized interlayer structure for high-capacity sodium-ion batteries. Nano Energy, 2017, 35, 71-78.	8.2	60
108	Three-dimensional graphene frameworks wrapped Li3V2(PO4)3 with reversible topotactic sodium-ion storage. Nano Energy, 2017, 32, 347-352.	8.2	50

QINYOU AN

#	Article	IF	CITATIONS
109	NiSe ₂ Nanooctahedra as an Anode Material for High-Rate and Long-Life Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2017, 9, 311-316.	4.0	234
110	Robust three-dimensional graphene skeleton encapsulated Na3V2O2(PO4)2F nanoparticles as a high-rate and long-life cathode of sodium-ion batteries. Nano Energy, 2017, 41, 452-459.	8.2	110
111	Mesoporous NiS ₂ Nanospheres Anode with Pseudocapacitance for Highâ€Rate and Longâ€Life Sodiumâ€Ion Battery. Small, 2017, 13, 1701744.	5.2	168
112	Self-adaptive mesoporous CoS@alveolus-like carbon yolk-shell microsphere for alkali cations storage. Nano Energy, 2017, 41, 109-116.	8.2	73
113	Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nature Communications, 2017, 8, 339.	5.8	304
114	Nanoribbons and nanoscrolls intertwined three-dimensional vanadium oxide hydrogels for high-rate lithium storage at high mass loading level. Nano Energy, 2017, 40, 73-81.	8.2	44
115	H ₂ V ₃ O ₈ Nanowires as High-Capacity Cathode Materials for Magnesium-Based Battery. ACS Applied Materials & Interfaces, 2017, 9, 28667-28673.	4.0	97
116	Highâ€Performance Aqueous Zinc–Ion Battery Based on Layered H ₂ V ₃ O ₈ Nanowire Cathode. Small, 2017, 13, 1702551.	5.2	455
117	Greigite Fe ₃ S ₄ as a new anode material for high-performance sodium-ion batteries. Chemical Science, 2017, 8, 160-164.	3.7	119
118	Layerâ€byâ€Layer Na ₃ V ₂ (PO ₄) ₃ Embedded in Reduced Graphene Oxide as Superior Rate and Ultralongâ€Life Sodiumâ€Ion Battery Cathode. Advanced Energy Materials, 2016, 6, 1600389.	10.2	282
119	A High-Rate V ₂ O ₅ Hollow Microclew Cathode for an All-Vanadium-Based Lithium-Ion Full Cell. Small, 2016, 12, 1082-1090.	5.2	55
120	In operando observation of temperature-dependent phase evolution in lithium-incorporation olivine cathode. Nano Energy, 2016, 22, 406-413.	8.2	31
121	Low-temperature solution-processed p-type vanadium oxide for perovskite solar cells. Chemical Communications, 2016, 52, 8099-8102.	2.2	71
122	Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries. Nano Energy, 2016, 24, 130-138.	8.2	57
123	Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries. Nano Energy, 2016, 25, 145-153.	8.2	230
124	Cycling-Stable Cathodes: The Capturing of Ionized Oxygen in Sodium Vanadium Oxide Nanorods Cathodes under Operando Conditions (Adv. Funct. Mater. 36/2016). Advanced Functional Materials, 2016, 26, 6498-6498.	7.8	0
125	The Capturing of Ionized Oxygen in Sodium Vanadium Oxide Nanorods Cathodes under Operando Conditions. Advanced Functional Materials, 2016, 26, 6555-6562.	7.8	18
126	Cathodic polarization suppressed sodium-ion full cell with a 3.3 V high-voltage. Nano Energy, 2016, 28, 216-223.	8.2	97

#	Article	IF	CITATIONS
127	Mixed-phase mullite electrocatalyst for pH-neutral oxygen reduction in magnesium-air batteries. Nano Energy, 2016, 27, 8-16.	8.2	81
128	Flexible additive free H ₂ V ₃ O ₈ nanowire membrane as cathode for sodium ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 12074-12079.	1.3	79
129	Novel layered Li ₃ V ₂ (PO ₄) ₃ /rGO&C sheets as high-rate and long-life lithium ion battery cathodes. Chemical Communications, 2016, 52, 8730-8732.	2.2	27
130	Flexible electrode for long-life rechargeable sodium-ion batteries: effect of oxygen vacancy in MoO _{3â~'x} . Journal of Materials Chemistry A, 2016, 4, 5402-5405.	5.2	82
131	Energy Storage: Novel Polygonal Vanadium Oxide Nanoscrolls as Stable Cathode for Lithium Storage (Adv. Funct. Mater. 12/2015). Advanced Functional Materials, 2015, 25, 1766-1766.	7.8	0
132	Enhancing sodium-ion battery performance with interlayer-expanded MoS2–PEO nanocomposites. Nano Energy, 2015, 15, 453-461.	8.2	269
133	Graphene decorated vanadium oxide nanowire aerogel for long-cycle-life magnesium battery cathodes. Nano Energy, 2015, 18, 265-272.	8.2	170
134	Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Research, 2015, 8, 481-490.	5.8	74
135	Nanoflakeâ€Assembled Hierarchical Na ₃ V ₂ (PO ₄) ₃ /C Microflowers: Superior Li Storage Performance and Insertion/Extraction Mechanism. Advanced Energy Materials, 2015, 5, 1401963.	10.2	169
136	Threeâ€Dimensional Interconnected Vanadium Pentoxide Nanonetwork Cathode for Highâ€Rate Longâ€Life Lithium Batteries. Small, 2015, 11, 2654-2660.	5.2	59
137	Novel Polygonal Vanadium Oxide Nanoscrolls as Stable Cathode for Lithium Storage. Advanced Functional Materials, 2015, 25, 1773-1779.	7.8	54
138	Hydrated vanadium pentoxide with superior sodium storage capacity. Journal of Materials Chemistry A, 2015, 3, 8070-8075.	5.2	190
139	Lattice Breathing Inhibited Layered Vanadium Oxide Ultrathin Nanobelts for Enhanced Sodium Storage. ACS Applied Materials & Interfaces, 2015, 7, 18211-18217.	4.0	94
140	Self-template synthesis of hollow shell-controlled Li ₃ VO ₄ as a high-performance anode for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 18839-18842.	5.2	57
141	Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 20902-20908.	4.0	210
142	Metastable amorphous chromium-vanadium oxide nanoparticles with superior performance as a new lithium battery cathode. Nano Research, 2014, 7, 1604-1612.	5.8	21
143	Nanoflakesâ€Assembled Threeâ€Dimensional Hollowâ€Porous V ₂ O ₅ as Lithium Storage Cathodes with Highâ€Rate Capacity. Small, 2014, 10, 3032-3037.	5.2	90
144	Top-down fabrication of three-dimensional porous V ₂ O ₅ hierarchical microplates with tunable porosity for improved lithium battery performance. Journal of Materials Chemistry A, 2014, 2, 3297-3302.	5.2	76

QINYOU AN

#	Article	IF	CITATIONS
145	Amorphous Vanadium Oxide Matrixes Supporting Hierarchical Porous Fe ₃ O ₄ /Graphene Nanowires as a High-Rate Lithium Storage Anode. Nano Letters, 2014, 14, 6250-6256.	4.5	257
146	Electrochemical Nanowire Devices for Energy Storage. IEEE Nanotechnology Magazine, 2014, 13, 10-15.	1.1	9
147	A unique hollow Li ₃ VO ₄ /carbon nanotube composite anode for high rate long-life lithium-ion batteries. Nanoscale, 2014, 6, 11072-11077.	2.8	96
148	Ultralong H ₂ V ₃ O ₈ nanowire bundles as a promising cathode for lithium batteries. New Journal of Chemistry, 2014, 38, 2075-2080.	1.4	39
149	Mesoporous VO ₂ nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Advances, 2014, 4, 33332-33337.	1.7	47
150	One-Pot Synthesized Bicontinuous Hierarchical Li ₃ V ₂ (PO ₄) ₃ /C Mesoporous Nanowires for High-Rate and Ultralong-Life Lithium-ion Batteries. Nano Letters, 2014, 14, 1042-1048.	4.5	230
151	Novel Li ₂ MnO ₃ nanowire anode with internal Li-enrichment for use in a Li-ion battery. Nanoscale, 2014, 6, 8124-8129.	2.8	17
152	A Bowknot-like RuO ₂ quantum dots@V ₂ O ₅ cathode with largely improved electrochemical performance. Physical Chemistry Chemical Physics, 2014, 16, 18680-18685.	1.3	17
153	Hierarchical Carbon Decorated Li ₃ V ₂ (PO ₄) ₃ as a Bicontinuous Cathode with Highâ€Rate Capability and Broad Temperature Adaptability. Advanced Energy Materials, 2014, 4, 1400107.	10.2	70
154	Nanoscroll Buffered Hybrid Nanostructural VO ₂ (B) Cathodes for Highâ€Rate and Longâ€Life Lithium Storage. Advanced Materials, 2013, 25, 2969-2973.	11.1	207
155	Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. Physical Chemistry Chemical Physics, 2013, 15, 16828.	1.3	74
156	Cucumber-Like V ₂ O ₅ /poly(3,4-ethylenedioxythiophene)&MnO ₂ Nanowires with Enhanced Electrochemical Cyclability. Nano Letters, 2013, 13, 740-745.	4.5	201
157	V2O5 quantum dots/graphene hybrid nanocomposite with stable cyclability for advanced lithium batteries. Nano Energy, 2013, 2, 916-922.	8.2	76
158	Pore-controlled synthesis of Mn ₂ O ₃ microspheres for ultralong-life lithium storage electrode. RSC Advances, 2013, 3, 1947-1952.	1.7	73
159	Nanowire Templated Semihollow Bicontinuous Graphene Scrolls: Designed Construction, Mechanism, and Enhanced Energy Storage Performance. Journal of the American Chemical Society, 2013, 135, 18176-18182.	6.6	187
160	Hybrid Nanostructures: Nanoscroll Buffered Hybrid Nanostructural VO2(B) Cathodes for High-Rate and Long-Life Lithium Storage (Adv. Mater. 21/2013). Advanced Materials, 2013, 25, 2968-2968.	11.1	3
161	Electrochemical Nanowire Devices for Energy Storage. , 2013, , .		0
162	Hierarchical mesoporous perovskite La ₀ _{.5} Sr _{0.5} CoO _{2.91} nanowires with ultrahigh capacity for Li-air batteries. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19569-19574.	3.3	315

#	Article	IF	CITATIONS
163	Substrate-Assisted Self-Organization of Radial β-AgVO ₃ Nanowire Clusters for High Rate Rechargeable Lithium Batteries. Nano Letters, 2012, 12, 4668-4673.	4.5	60
164	Topotactically synthesized ultralong LiV3O8 nanowire cathode materials for high-rate and long-life rechargeable lithium batteries. NPG Asia Materials, 2012, 4, e20-e20.	3.8	91