
Consuelo Gajate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7470360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clusters of apoptotic signaling molecule-enriched rafts, CASMERs: membrane platforms for protein assembly in Fas/CD95 signaling and targets in cancer therapy. Biochemical Society Transactions, 2022, 50, 1105-1118.	3.4	5
2	Identification of new FK866 analogues with potent anticancer activity against pancreatic cancer. European Journal of Medicinal Chemistry, 2022, 239, 114504.	5.5	5
3	Methylsulfanylpyridine based diheteroaryl isocombretastatin analogs as potent anti-proliferative agents. European Journal of Medicinal Chemistry, 2021, 209, 112933.	5.5	5
4	Mitochondrial Targeting Involving Cholesterol-Rich Lipid Rafts in the Mechanism of Action of the Antitumor Ether Lipid and Alkylphospholipid Analog Edelfosine. Pharmaceutics, 2021, 13, 763.	4.5	13
5	Neutrophils drive endoplasmic reticulum stress-mediated apoptosis in cancer cells through arginase-1 release. Scientific Reports, 2021, 11, 12574.	3.3	19
6	Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer. Cancers, 2021, 13, 4173.	3.7	11
7	Lipid Raft Isolation by Sucrose Gradient Centrifugation and Visualization of Raft-Located Proteins by Fluorescence Microscopy: The Use of Combined Techniques to Assess Fas/CD95 Location in Rafts During Apoptosis Triggering. Methods in Molecular Biology, 2021, 2187, 147-186.	0.9	11
8	Induction of Apoptosis in Human Pancreatic Cancer Stem Cells by the Endoplasmic Reticulum-Targeted Alkylphospholipid Analog Edelfosine and Potentiation by Autophagy Inhibition. Cancers, 2021, 13, 6124.	3.7	7
9	Potent colchicine-site ligands with improved intrinsic solubility by replacement of the 3,4,5-trimethoxyphenyl ring with a 2-methylsulfanyl-6-methoxypyridine ring. Bioorganic Chemistry, 2020, 98, 103755.	4.1	13
10	Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy. Journal of Lipid Research, 2020, 61, 611-635.	4.2	150
11	A Potent Isoprenylcysteine Carboxylmethyltransferase (ICMT) Inhibitor Improves Survival in Ras-Driven Acute Myeloid Leukemia. Journal of Medicinal Chemistry, 2019, 62, 6035-6046.	6.4	29
12	Novel therapeutic approaches for pancreatic cancer by combined targeting of RAF→MEK→ERK signaling and autophagy survival response. Annals of Translational Medicine, 2019, 7, S153-S153.	1.7	22
13	Induction of cell killing and autophagy by amphiphilic pyrrolidine derivatives on human pancreatic cancer cells. European Journal of Medicinal Chemistry, 2018, 150, 457-478.	5.5	6
14	Antitumor activity of <i>Lepidium latifolium</i> and identification of the epithionitrile 1•yanoâ€2,3•pithiopropane as its major active component. Molecular Carcinogenesis, 2018, 57, 347-360.	2.7	18
15	Substitution at the indole 3 position yields highly potent indolecombretastatins against human tumor cells. European Journal of Medicinal Chemistry, 2018, 158, 167-183.	5.5	16
16	Isolation of Lipid Rafts Through Discontinuous Sucrose Gradient Centrifugation and Fas/CD95 Death Receptor Localization in Raft Fractions. Methods in Molecular Biology, 2017, 1557, 125-138.	0.9	13
17	Development of a Nucleotide Exchange Inhibitor That Impairs Ras Oncogenic Signaling. Chemistry - A European Journal, 2017, 23, 1676-1685.	3.3	13
18	Mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets in the antileishmanial and anticancer activities of ether lipid edelfosine. PLoS Neglected Tropical Diseases, 2017, 11, e0005805.	3.0	44

CONSUELO GAJATE

#	Article	IF	CITATIONS
19	Fas/CD95, Lipid Rafts, and Cancer. Resistance To Targeted Anti-cancer Therapeutics, 2017, , 187-227.	0.1	1
20	The alkylphospholipid edelfosine shows activity against Strongyloides venezuelensis and induces apoptosis-like cell death. Acta Tropica, 2016, 162, 180-187.	2.0	8
21	Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy. , 2016, 165, 114-131.		61
22	Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 584-606.	4.9	48
23	Triggers and signaling cross-talk controlling cell death commitment. Cell Cycle, 2015, 14, 465-466.	2.6	10
24	Lipid raft-mediated Fas/CD95 apoptotic signaling in leukemic cells and normal leukocytes and therapeutic implications. Journal of Leukocyte Biology, 2015, 98, 739-759.	3.3	43
25	Lipid rafts as major platforms for signaling regulation in cancer. Advances in Biological Regulation, 2015, 57, 130-146.	2.3	251
26	Endoplasmic reticulum targeting in Ewing's sarcoma by the alkylphospholipid analog edelfosine. Oncotarget, 2015, 6, 14596-14613.	1.8	20
27	Lipid Rafts, Endoplasmic Reticulum and Mitochondria in the Antitumor Action of the Alkylphospholipid Analog Edelfosine. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 509-527.	1.7	51
28	Drug Uptake, Lipid Rafts, and Vesicle Trafficking Modulate Resistance to an Anticancer Lysophosphatidylcholine Analogue in Yeast. Journal of Biological Chemistry, 2013, 288, 8405-8418.	3.4	41
29	Rapid human melanoma cell death induced by sanguinarine through oxidative stress. European Journal of Pharmacology, 2013, 705, 109-118.	3.5	41
30	Lipid raft-mediated Akt signaling as a therapeutic target in mantle cell lymphoma. Blood Cancer Journal, 2013, 3, e118-e118.	6.2	75
31	Antitumor alkyl-lysophospholipid analog edelfosine induces apoptosis in pancreatic cancer by targeting endoplasmic reticulum. Oncogene, 2012, 31, 2627-2639.	5.9	66
32	Apoptotic mechanisms are involved in the death of <i><scp>S</scp>trongyloides venezuelensis</i> after triggering of nitric oxide. Parasite Immunology, 2012, 34, 570-580.	1.5	8
33	Involvement of mitochondrial and B-RAF/ERK signaling pathways in berberine-induced apoptosis in human melanoma cells. Anti-Cancer Drugs, 2011, 22, 507-518.	1.4	44
34	Lipid Rafts and Fas/CD95 Signaling in Cancer Chemotherapy. Recent Patents on Anti-Cancer Drug Discovery, 2011, 6, 274-283.	1.6	37
35	Involvement of lipid rafts in the localization and dysfunction effect of the antitumor ether phospholipid edelfosine in mitochondria. Cell Death and Disease, 2011, 2, e158-e158.	6.3	56
36	Lipid raft-targeted therapy in multiple myeloma. Oncogene, 2010, 29, 3748-3757.	5.9	105

Consuelo Gajate

#	Article	IF	CITATIONS
37	Lipid rafts, death receptors and CASMERs: new insights for cancer therapy. Future Oncology, 2010, 6, 491-494.	2.4	27
38	<i>In vitro</i> and <i>In vivo</i> Selective Antitumor Activity of Edelfosine against Mantle Cell Lymphoma and Chronic Lymphocytic Leukemia Involving Lipid Rafts. Clinical Cancer Research, 2010, 16, 2046-2054.	7.0	87
39	Lipid rafts and clusters of apoptotic signaling molecule-enriched rafts in cancer therapy. Future Oncology, 2010, 6, 811-821.	2.4	54
40	Novel Anti-Inflammatory Action of Edelfosine Lacking Toxicity with Protective Effect in Experimental Colitis. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 439-449.	2.5	36
41	Involvement of mitochondria and recruitment of Fas/CD95 signaling in lipid rafts in resveratrol-mediated antimyeloma and antileukemia actions. Oncogene, 2009, 28, 3221-3234.	5.9	79
42	Lipid raft connection between extrinsic and intrinsic apoptotic pathways. Biochemical and Biophysical Research Communications, 2009, 380, 780-784.	2.1	84
43	Antitumor Alkyl Ether Lipid Edelfosine: Tissue Distribution and Pharmacokinetic Behavior in Healthy and Tumor-Bearing Immunosuppressed Mice. Clinical Cancer Research, 2009, 15, 858-864.	7.0	39
44	Involvement of Raft Aggregates Enriched in Fas/CD95 Death-Inducing Signaling Complex in the Antileukemic Action of Edelfosine in Jurkat Cells. PLoS ONE, 2009, 4, e5044.	2.5	90
45	Proapoptotic role of Hsp90 by its interaction with c-Jun N-terminal kinase in lipid rafts in edelfosine-mediated antileukemic therapy. Oncogene, 2008, 27, 1779-1787.	5.9	52
46	Edelfosine Is Incorporated into Rafts and Alters Their Organization. Journal of Physical Chemistry B, 2008, 112, 11643-11654.	2.6	70
47	Differential gene expression patterns coupled to commitment and acquisition of phenotypic hallmarks during neutrophil differentiation of human leukaemia HL-60 cells. Gene, 2008, 419, 16-26.	2.2	37
48	Aplidin, a Marine Organism–Derived Compound with Potent Antimyeloma Activity <i>In vitro</i> and <i>In vivo</i> . Cancer Research, 2008, 68, 5216-5225.	0.9	98
49	Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood, 2007, 109, 711-719.	1.4	256
50	Endoplasmic Reticulum Stress in the Proapoptotic Action of Edelfosine in Solid Tumor Cells. Cancer Research, 2007, 67, 10368-10378.	0.9	84
51	Mitochondrial-derived ROS in edelfosine-induced apoptosis in yeasts and tumor cells. Acta Pharmacologica Sinica, 2007, 28, 888-894.	6.1	29
52	Fas/CD95 death receptor and lipid rafts: New targets for apoptosis-directed cancer therapy. Drug Resistance Updates, 2006, 9, 51-73.	14.4	134
53	Effects of the anti-neoplastic agent ET-18-OCH3 and some analogs on the biophysical properties of model membranes. International Journal of Pharmaceutics, 2006, 318, 28-40.	5.2	12
54	Combinatorial SNARE Complexes Modulate the Secretion of Cytoplasmic Granules in Human Neutrophils. Journal of Immunology, 2006, 177, 2831-2841.	0.8	113

CONSUELO GAJATE

#	Article	IF	CITATIONS
55	FasL-Independent Activation of Fas. , 2006, , 13-27.		13
56	Differential Targets and Subcellular Localization of Antitumor Alkyl-lysophospholipid in Leukemic Versus Solid Tumor Cells. Journal of Biological Chemistry, 2006, 281, 14833-14840.	3.4	53
57	DNA and Non-DNA Targets in the Mechanism of Action of the Antitumor Drug Trabectedin. Chemistry and Biology, 2005, 12, 1201-1210.	6.0	65
58	Further Naphthylcombretastatins. An Investigation on the Role of the Naphthalene Moiety. Journal of Medicinal Chemistry, 2005, 48, 556-568.	6.4	101
59	Cytotoxicity of an Anti-cancer Lysophospholipid through Selective Modification of Lipid Raft Composition. Journal of Biological Chemistry, 2005, 280, 38047-38058.	3.4	78
60	Cytoskeleton-mediated Death Receptor and Ligand Concentration in Lipid Rafts Forms Apoptosis-promoting Clusters in Cancer Chemotherapy. Journal of Biological Chemistry, 2005, 280, 11641-11647.	3.4	157
61	ET-18-OCH3 (Edelfosine): A Selective Antitumour Lipid Targeting Apoptosis Through Intracellular Activation of Fas / CD95 Death Receptor. Current Medicinal Chemistry, 2004, 11, 3163-3184.	2.4	113
62	Intracellular Triggering of Fas Aggregation and Recruitment of Apoptotic Molecules into Fas-enriched Rafts in Selective Tumor Cell Apoptosis. Journal of Experimental Medicine, 2004, 200, 353-365.	8.5	195
63	Fluorescent Phenylpolyene Analogues of the Ether Phospholipid Edelfosine for the Selective Labeling of Cancer Cells. Journal of Medicinal Chemistry, 2004, 47, 5333-5335.	6.4	25
64	Synthesis and Biological Evaluation of New Selective Cytotoxic Cyclolignans Derived from Podophyllotoxinâ€. Journal of Medicinal Chemistry, 2004, 47, 1214-1222.	6.4	54
65	Microtubules, microtubule-interfering agents and apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2003, 8, 413-450.	4.9	424
66	Rapid and selective apoptosis in human leukemic cells induced by Aplidine through a Fas/CD95- and mitochondrial-mediated mechanism. Clinical Cancer Research, 2003, 9, 1535-45.	7.0	59
67	Differential Cytostatic and Apoptotic Effects of Ecteinascidin-743 in Cancer Cells. Journal of Biological Chemistry, 2002, 277, 41580-41589.	3.4	72
68	Biological Activities, Mechanisms of Action and Biomedical Prospect of the Antitumor Ether Phospholipid ET-18-OCH3 (Edelfosine), A Proapoptotic Agent in Tumor Cells. Current Drug Metabolism, 2002, 3, 491-525.	1.2	158
69	The antitumor ether lipid ET-18-OCH3 induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood, 2001, 98, 3860-3863.	1.4	256
70	Intracellular triggering of Fas, independently of FasL, as a new mechanism of antitumor ether lipid-induced apoptosis. , 2000, 85, 674-682.		123
71	Involvement of mitochondria and caspase-3 in ET-18-OCH3-induced apoptosis of human leukemic cells. , 2000, 86, 208-218.		93
72	Induction of apoptosis in leukemic cells by the reversible microtubule-disrupting agent 2-methoxy-5-(2',3',4'-trimethoxyphenyl)-2,4,6-cycloheptatrien-1 -one: protection by Bcl-2 and Bcl-X(L) and cell cycle arrest. Cancer Research, 2000, 60, 2651-9.	0.9	56

CONSUELO GAJATE

#	Article	IF	CITATIONS
73	Induction of apoptosis in human mitogen-activated peripheral blood T-lymphocytes by the ether phospholipid ET-18-OCH3 : Involvement of the Fas receptor/ligand system. British Journal of Pharmacology, 1999, 127, 813-825.	5.4	47
74	The Human Leukemia Cell Line HL-60 as a Cell Culture Model To Study Neutrophil Functions and Inflammatory Cell Responses. , 1998, , 264-297.		19
75	Involvement of c- <i>Jun</i> NH ₂ -Terminal Kinase Activation and c- <i>Jun</i> in the Induction of Apoptosis by the Ether Phospholipid 1- <i>O</i> -Octadecyl-2- <i>O</i> -methyl- <i>rac</i> -glycero-3-phosphocholine. Molecular Pharmacology, 1998. 53. 602-612.	2.3	88
76	Major co-localization of the extracellular-matrix degradative enzymes heparanase and gelatinase in tertiary granules of human neutrophils. Biochemical Journal, 1997, 327, 917-923.	3.7	99
77	Dissociation of the effects of the antitumour ether lipid ET-18-OCH3 on cytosolic calcium and on apoptosis. British Journal of Pharmacology, 1997, 121, 1364-1368.	5.4	15
78	Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (Edelfosine): molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-X(L). Cancer Research, 1997, 57, 1320-8.	0.9	165
79	C-Fos Is Not Essential for Apoptosis. Biochemical and Biophysical Research Communications, 1996, 218, 267-272.	2.1	48
80	The ether lipid 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine induces expression of fos and jun proto-oncogenes and activates AP-1 transcription factor in human leukaemic cells. Biochemical Journal, 1994, 302, 325-329.	3.7	36
81	Involvement of phospholipase D in the activation of transcription factor AP-1 in human T lymphoid Jurkat cells. Journal of Immunology, 1994, 153, 2457-69.	0.8	50
82	Localization of rap1 and rap2 proteins in the gelatinase-containing granules of human neutrophils. FEBS Letters, 1993, 326, 209-214.	2.8	28
83	Differences in expression of transcription factor AP-1 in human promyelocytic HL-60 cells during differentiation towards macrophages versus granulocytes. Biochemical Journal, 1993, 294, 137-144.	3.7	65
84	Cytochrome b co-fractionates with gelatinase-containing granules in human neutrophils. Molecular and Cellular Biochemistry, 1991, 105, 49-60.	3.1	25