List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7469107/publications.pdf Version: 2024-02-01

		71102	19190
121	15,396	41	118
papers	citations	h-index	g-index
104	104	104	16124
124	124	124	16134
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for <i>Fungi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6241-6246.	7.1	4,012
2	A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12794-12797.	7.1	2,120
3	Choosing and Using a Plant DNA Barcode. PLoS ONE, 2011, 6, e19254.	2.5	946
4	Rapid Diversification of a Species-Rich Genus of Neotropical Rain Forest Trees. Science, 2001, 293, 2242-2245.	12.6	710
5	Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends in Ecology and Evolution, 2001, 16, 142-147.	8.7	587
6	Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants, 2019, 5, 461-470.	9.3	467
7	A proposal for a standardised protocol to barcode all land plants. Taxon, 2007, 56, 295-299.	0.7	457
8	Selecting barcoding loci for plants: evaluation of seven candidate loci with speciesâ€level sampling in three divergent groups of land plants. Molecular Ecology Resources, 2009, 9, 439-457.	4.8	344
9	From barcodes to genomes: extending the concept of DNA barcoding. Molecular Ecology, 2016, 25, 1423-1428.	3.9	322
10	Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae). Botanical Journal of the Linnean Society, 2003, 142, 1-40.	1.6	313
11	How much effort is required to isolate nuclear microsatellites from plants?. Molecular Ecology, 2003, 12, 1339-1348.	3.9	288
12	Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Global Environmental Change, 2015, 34, 48-58.	7.8	281
13	Extinction risk and threats to plants and fungi. Plants People Planet, 2020, 2, 389-408.	3.3	242
14	Refining the DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19451-19452.	7.1	239
15	Telling plant species apart with DNA: from barcodes to genomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150338.	4.0	234
16	Selection of candidate coding DNA barcoding regions for use on land plants. Botanical Journal of the Linnean Society, 2009, 159, 1-11.	1.6	231
17	Understanding and monitoring the consequences of human impacts on intraspecific variation. Evolutionary Applications, 2017, 10, 121-139.	3.1	145
18	Genome skimming herbarium specimens for DNA barcoding and phylogenomics. Plant Methods, 2018, 14, 43	4.3	132

#	Article	IF	CITATIONS
19	Comparative analysis of population genetic structure in Athyrium distentifolium (Pteridophyta) using AFLPs and SSRs from anonymous and transcribed gene regions. Molecular Ecology, 2005, 14, 1681-1695.	3.9	121
20	Conserving taxonomic complexity. Trends in Ecology and Evolution, 2005, 20, 164-168.	8.7	113
21	DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. New Phytologist, 2011, 191, 288-300.	7.3	109
22	Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biology, 2021, 19, 232.	3.8	109
23	Conservation Priorities in a Biodiversity Hotspot: Analysis of Narrow Endemic Plant Species in New Caledonia. PLoS ONE, 2013, 8, e73371.	2.5	104
24	Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in <i>Araucaria</i> ?. Molecular Ecology Resources, 2015, 15, 1067-1078.	4.8	100
25	DNA Barcoding Methods for Land Plants. Methods in Molecular Biology, 2012, 858, 223-252.	0.9	97
26	Partitioning and diversity of nuclear and organelle markers in native and introduced populations of Epipactis helleborine (Orchidaceae). American Journal of Botany, 2001, 88, 1409-1418.	1.7	91
27	Population genetic structure in European populations of Spiranthes romanzoffiana set in the context of other genetic studies on orchids. Heredity, 2004, 92, 218-227.	2.6	91
28	Identifying the early genetic consequences of habitat degradation in a highly threatened tropical conifer, <i>Araucaria nemorosa</i> Laubenfels. Molecular Ecology, 2007, 16, 3581-3591.	3.9	86
29	A taxonomic, genetic and ecological data resource for the vascular plants of Britain and Ireland. Scientific Data, 2022, 9, 1.	5.3	86
30	The resilience of forest fragmentation genetics—no longer a paradox—we were just looking in the wrong place. Heredity, 2015, 115, 97-99.	2.6	78
31	SHORT COMMUNICATION: Do farmers reduce genetic diversity when they domesticate tropical trees? A case study from Amazonia. Molecular Ecology, 2005, 14, 497-501.	3.9	70
32	The use of molecular markers to study patterns of genotypic diversity in some invasive alienFallopiaspp. (Polygonaceae). Molecular Ecology, 1998, 7, 1681-1691.	3.9	69
33	Taxonomic complexity and breeding system transitions: conservation genetics of the Epipactis leptochila complex (Orchidaceae). Molecular Ecology, 2002, 11, 1957-1964.	3.9	68
34	Neighbour joining trees, dominant markers and population genetic structure. Heredity, 2004, 92, 490-498.	2.6	65
35	DNA barcoding plants in biodiversity hot spots: Progress and outstanding questions. Heredity, 2008, 101, 1-2.	2.6	62
36	The Treasure Vault Can be Opened: Large-Scale Genome Skimming Works Well Using Herbarium and Silica Gel Dried Material. Plants, 2020, 9, 432.	3.5	59

#	Article	IF	CITATIONS
37	Evidence for spatial structure and directional gene flow in a population of an aquatic plant, Potamogeton coloratus. Heredity, 1998, 80, 414-421.	2.6	56
38	A recircumscription of Begonia based on nuclear ribosomal sequences. Plant Systematics and Evolution, 2003, 241, 193-211.	0.9	56
39	Cryptic genetic bottlenecks during restoration of an endangered tropical conifer. Biological Conservation, 2008, 141, 1953-1961.	4.1	51
40	DNA barcoding of European <i>Herbertus</i> (Marchantiopsida, Herbertaceae) and the discovery and description of a new species. Molecular Ecology Resources, 2012, 12, 36-47.	4.8	50
41	From writing to reading the encyclopedia of life. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150321.	4.0	48
42	A Phylogeny of <1>Begonia 1 Using Nuclear Ribosomal Sequence Data and Morphological Characters. Systematic Botany, 2005, 30, 671-682.	0.5	45
43	Isozyme evidence for the parentage and multiple origins ofPotamogeton �suecicus (P. pectinatus �P.) Tj ET	Qq1 J 0.7	84314 rgB⊺ 44
44	The relationship between flower size, inbreeding coefficient and inferred selfing rate in British Euphrasia species. Heredity, 2005, 94, 44-51.	2.6	43
45	Early evolution in a hybrid swarm between outcrossing and selfing lineages in Geum. Heredity, 2011, 107, 246-255.	2.6	42
46	De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China. GigaScience, 2019, 8, .	6.4	42
47	Patterns of clonal diversity in three species of sub-arctic willow (Salix lanata, Salix lapponum and) Tj ETQq1 1 0.7	84314 rgE	BT /Qverlock
48	Population genetic divergence corresponds with speciesâ€level biodiversity patterns in the large genus <i>Begonia</i> . Molecular Ecology, 2008, 17, 2643-2651.	3.9	41
49	AFLP markers provide insights into the evolutionary relationships and diversification of New Caledonian <i>Araucaria</i> species (Araucariaceae). American Journal of Botany, 2012, 99, 68-81.	1.7	39
50	Genetic variability in two hydrophilous species ofPotamogeton, P. pectinatus andP. filiformis (Potamogetonaceae). Plant Systematics and Evolution, 1996, 202, 233-254.	0.9	38
51	Can plastid genome sequencing be used for species identification in Lauraceae?. Botanical Journal of the Linnean Society, 2021, 197, 1-14.	1.6	38
52	Origins and genetic conservation of tropical trees in agroforestry systems: a case study from the Peruvian Amazon. Conservation Genetics, 2008, 9, 361-372.	1.5	36
53	Evolutionary Diversification of New Caledonian Araucaria. PLoS ONE, 2014, 9, e110308.	2.5	36
54	Testing genome skimming for species discrimination in the large and taxonomically difficult genus <i>Rhododendron</i> . Molecular Ecology Resources, 2022, 22, 404-414.	4.8	35

#	Article	IF	CITATIONS
55	Genetic variability in British populations ofPotamogeton coloratus (Potamogetonaceae). Plant Systematics and Evolution, 1995, 197, 71-85.	0.9	33
56	The origin of a mega-diverse genus: datingBegonia(Begoniaceae) using alternative datasets, calibrations and relaxed clock methods. Botanical Journal of the Linnean Society, 2009, 159, 363-380.	1.6	33
57	Authentication of Eleutherococcus and Rhodiola herbal supplement products in the United Kingdom. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 403-409.	2.8	33
58	Development of EST-SSRs from the Alpine Lady-fern, Athyrium distentifolium. Molecular Ecology Notes, 2003, 3, 287-290.	1.7	32
59	Barcode UK: A complete DNA barcoding resource for the flowering plants and conifers of the United Kingdom. Molecular Ecology Resources, 2021, 21, 2050-2062.	4.8	32
60	Seeing the fruit for the trees in Borneo. Conservation Letters, 2011, 4, 184-191.	5.7	31
61	Process-Based Species Action Plans: an approach to conserve contemporary evolutionary processes that sustain diversity in taxonomically complex groups. Botanical Journal of the Linnean Society, 2012, 168, 194-203.	1.6	31
62	Chloroplast DNA phylogeography of the arctic-montane species Saxifraga hirculus (Saxifragaceae). Heredity, 2006, 96, 222-231.	2.6	30
63	Chloroplast DNA variation and hybridization between invasive populations of Japanese knotweed and giant knotweed (Fallopia, Polygonaceae). Botanical Journal of the Linnean Society, 1999, 129, 139-154.	1.6	27
64	Extending glacial refugia for a European tree: genetic markers show that Iberian populations of white elm are native relicts and not introductions. Heredity, 2014, 112, 105-113.	2.6	27
65	Understanding climate change impacts on biome and plant distributions in the Andes: Challenges and opportunities. Journal of Biogeography, 2022, 49, 1420-1442.	3.0	27
66	The Future of DNA Barcoding: Reflections from Early Career Researchers. Diversity, 2021, 13, 313.	1.7	26
67	<i>Ficus insipida</i> subsp. <i>insipida</i> (Moraceae) reveals the role of ecology in the phylogeography of widespread Neotropical rain forest tree species. Journal of Biogeography, 2014, 41, 1697-1709.	3.0	25
68	The early evolution of the mega-diverse genus Begonia (Begoniaceae) inferred from organelle DNA phylogenies. Biological Journal of the Linnean Society, 0, 101, 243-250.	1.6	24
69	Bringing together approaches to reporting on within species genetic diversity. Journal of Applied Ecology, 2022, 59, 2227-2233.	4.0	24
70	Genetics, taxonomy and the conservation of British Euphrasia. Conservation Genetics, 2008, 9, 1547-1562.	1.5	22
71	Importance of demography and dispersal for the resilience and restoration of a critically endangered tropical conifer <i>Araucaria nemorosa</i> . Diversity and Distributions, 2012, 18, 248-259.	4.1	21
72	DNA barcoding a taxonomically complex hemiparasitic genus reveals deep divergence between ploidy levels but lack of species-level resolution. AoB PLANTS, 2018, 10, ply026.	2.3	21

#	Article	IF	CITATIONS
73	Detecting and predicting forest degradation: A comparison of ground surveys and remote sensing in Tanzanian forests. Plants People Planet, 2021, 3, 268-281.	3.3	20
74	Morphological, ecological and genetic evidence for distinguishingAnastrophyllum joergenseniiSchiffn. andA. alpinumSteph. (Jungermanniopsida: Lophoziaceae). Journal of Bryology, 2006, 28, 108-117.	1.2	19
75	DNA barcoding: potential users. Genomics Society and Policy, 2007, 3, 1.	0.2	19
76	Are native bluebells (Hyacinthoides non-scripta) at risk from alien congenerics? Evidence from distributions and co-occurrence in Scotland. Biological Conservation, 2009, 142, 61-74.	4.1	18
77	Determinants of fine-scale spatial genetic structure in three co-occurring rain forest canopy trees in Borneo. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 47-56.	2.7	18
78	Fifty years of vegetation change in oceanic-montane liverwort-rich heath in Scotland. Plant Ecology and Diversity, 2014, 7, 457-470.	2.4	18
79	A transcriptome-based resolution for a key taxonomic controversy in Cupressaceae. Annals of Botany, 2019, 123, 153-167.	2.9	18
80	Partitioning and diversity of nuclear and organelle markers in native and introduced populations of Epipactis helleborine (Orchidaceae). American Journal of Botany, 2001, 88, 1409-18.	1.7	18
81	Phylogeny and taxonomy of the bluebell genus <i>Hyacinthoides</i> , Asparagaceae [Hyacinthaceae]. Taxon, 2010, 59, 68-82.	0.7	16
82	Lichens under threat from ash dieback. Nature, 2012, 491, 672-672.	27.8	16
83	Conservation genetics and phylogenetics of New CaledonianRetrophyllum(Podocarpaceae) species. New Zealand Journal of Botany, 2002, 40, 175-188.	1.1	15
84	PATTERNS OF MATING, GENERATION OF DIVERSITY, AND FITNESS OF OFFSPRING IN A <i>GEUM</i> HYBRID SWARM. Evolution; International Journal of Organic Evolution, 2013, 67, 2728-2740.	2.3	14
85	<scp>DNA</scp> barcoding herbaceous and woody plant species at a subalpine forest dynamics plot in Southwest China. Ecology and Evolution, 2018, 8, 7195-7205.	1.9	14
86	Significant differences in outcrossing rate, self-incompatibility, and inbreeding depression between two widely hybridizing species of Geum. Biological Journal of the Linnean Society, 2010, 101, 977-990.	1.6	13
87	Current knowledge, status, and future for plant and fungal diversity in Great Britain and the UK Overseas Territories. Plants People Planet, 2020, 2, 557-579.	3.3	13
88	Taxonomic complexity, population genetics, and plant conservation in Scotland. Botanical Journal of Scotland, 2003, 55, 55-63.	0.3	12
89	Morphological and molecular investigation of the parentage and maternity of <i>Anacamptis</i> × <i>albuferensis</i> (<i>A. fragrans</i> × <i>A. robusta</i>), a new hybrid orchid from Mallorca, Spain. Taxon, 2004, 53, 43-54.	0.7	12
90	Hidden in plain view: Cryptic diversity in the emblematic <i>Araucaria</i> of New Caledonia. American Journal of Botany, 2016, 103, 888-898.	1.7	12

#	Article	IF	CITATIONS
91	International Barcode of Life: Focus on big biodiversity in South Africa. Genome, 2017, 60, 875-879.	2.0	12
92	Stopping the stutter: Improvements in sequence quality from regions with mononucleotide repeats can increase the usefulness of non–coding regions for DNA barcoding. Taxon, 2010, 59, 694-697.	0.7	11
93	Using target capture to address conservation challenges: Populationâ€level tracking of a globallyâ€ŧraded herbal medicine. Molecular Ecology Resources, 2022, 22, 212-224.	4.8	11
94	Conservation genetics of an arctic species, Saxifraga rivularis L., in Britain. Botanical Journal of the Linnean Society, 1998, 128, 1-14.	1.6	10
95	Isolation of polymorphic microsatellite markers for Begonia sutherlandii Hook. f Molecular Ecology Notes, 2002, 2, 185-186.	1.7	10
96	Characterization of nuclear microsatellites in New Caledonian Araucaria species. Molecular Ecology Notes, 2003, 4, 62-63.	1.7	10
97	Genetic diversity and distinctiveness in Scottish alpine plants. Plant Ecology and Diversity, 2008, 1, 329-338.	2.4	9
98	Regeneration capacity of oceanic-montane liverworts: implications for community distribution and conservation. Journal of Bryology, 2013, 35, 12-19.	1.2	9
99	Preliminary insights from DNA barcoding into the diversity of mosses colonising modern building surfaces . Bryophyte Diversity and Evolution, 2016, 38, 1.	1.1	9
100	Untapped resources for medical research. Science, 2020, 369, 781-782.	12.6	9
101	ARAUCARIA GOROENSIS (ARAUCARIACEAE), A NEW MONKEY PUZZLE FROM NEW CALEDONIA, AND NOMENCLATURAL NOTES ON ARAUCARIA MUELLERI. Edinburgh Journal of Botany, 2017, 74, 123-139.	0.4	8
102	Polymorphic microsatellite markers for the Socotran endemic herb Begonia socotrana. Molecular Ecology Notes, 2002, 2, 159-160.	1.7	7
103	Transplanting the leafy liverwort <i>Herbertus hutchinsiae</i> : a suitable conservation tool to maintain oceanic-montane liverwort-rich heath?. Plant Ecology and Diversity, 2016, 9, 175-185.	2.4	6
104	Globally rare oceanic-montane liverworts with disjunct distributions: evidence for long-distance dispersal. Biodiversity and Conservation, 2020, 29, 3245-3264.	2.6	6
105	Isolation of polymorphic microsatellite markers for British Euphrasia L Molecular Ecology Notes, 2003, 3, 626-628.	1.7	5
106	Development of EST-derived microsatellite markers forArabidopsis lyratasubspeciespetraea(L.). Molecular Ecology Notes, 2007, 7, 631-634.	1.7	5
107	Do taxon-specific DNA barcodes improve species discrimination relative to universal barcodes in Lauraceae?. Botanical Journal of the Linnean Society, 2022, 199, 741-753.	1.6	5
108	Is hybridisation a threat to <i>Rumex aquaticus</i> in Britain?. Plant Ecology and Diversity, 2015, 8, 465-474.	2.4	4

#	Article	IF	CITATIONS
109	Paternity analysis reveals constraints on hybridization potential between native and introduced bluebells (Hyacinthoides). Conservation Genetics, 2019, 20, 571-584.	1.5	4
110	Chloroplast DNA variation and hybridization between invasive populations of Japanese knotweed and giant knotweed (Fallopia, Polygonaceae). Botanical Journal of the Linnean Society, 1999, 129, 139-154.	1.6	4
111	Isolation of microsatellite primers for <i>Melampyrum sylvaticum</i> (Orobanchaceae), an endangered plant in the United Kingdom. American Journal of Botany, 2012, 99, e457-9.	1.7	3
112	Ten nuclear microsatellites markers cross-amplifying in Scaevola montana and S. coccinea (Goodeniaceae), a locally common and a narrow endemic plant species of ultramafic scrublands in New Caledonia. Conservation Genetics Resources, 2012, 4, 725-728.	0.8	3
113	Development of polymorphic microsatellite markers for tree peony Paeonia delavayi (Paeoniaceae) using ddRAD-seq data. Molecular Biology Reports, 2019, 46, 4605-4610.	2.3	3
114	DNA barcoding identifies cryptic animal tool materials. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2020699118.	7.1	3
115	Conservation genetics of the annual hemiparasitic plant Melampyrum sylvaticum (Orobanchaceae) in the UK and Scandinavia. Conservation Genetics, 2016, 17, 547-556.	1.5	2
116	Assessing Hotspots of Evolutionary History with Data from Multiple Phylogenies: An Analysis of Endemic Clades from New Caledonia. Topics in Biodiversity and Conservation, 2016, , 237-262.	1.0	2
117	Using DNA Sequence Data to Enhance Understanding and Conservation of Plant Diversity at the Species Level. , 2017, , 23-48.		2
118	Morphology and pollen fertility of native and non-native bluebells in Great Britain. Plant Ecology and Diversity, 2020, 13, 351-361.	2.4	2
119	High levels of population differentiation in two New Caledonian Scaevola species (Goodeniaceae) and its implications for conservation prioritisation and restoration. Australian Journal of Botany, 2017, 65, 140.	0.6	1
120	Molecular Tools for Screening Biodiversity. Edited by A. Karp, P. G. Isaac and D. S. Ingram Edinburgh Journal of Botany, 1999, 56, 157-158.	0.4	0
121	Molecular systematics of plants II: DNA sequencing. (Ed. by DOUGLAS E. SOLTIS, PAMELA S. SOLTIS and) Tj ETQq1 Academic Publishing. Price h/b: ¥187.00. ISBN 0 412 11121 7 New Phytologist, 1999, 143, 457.	1 0.7843 7.3	314 rgBT /⊖∖ 0