Maciej Wojtkowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7467683/publications.pdf

Version: 2024-02-01

229 papers 12,288 citations

57758 44 h-index 27406 106 g-index

230 all docs 230 docs citations

230 times ranked

5877 citing authors

#	Article	IF	CITATIONS
1	Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Optics Express, 2004, 12, 2404.	3.4	1,095
2	In vivo human retinal imaging by Fourier domain optical coherence tomography. Journal of Biomedical Optics, 2002, 7, 457.	2.6	1,014
3	Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. Optics Express, 2006, 14, 3225.	3.4	1,007
4	Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography. Ophthalmology, 2005, 112, 1734-1746.	5 . 2	633
5	Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Optics Express, 2005, 13, 3513.	3.4	479
6	Full range complex spectral optical coherence tomography technique in eye imaging. Optics Letters, 2002, 27, 1415.	3.3	421
7	Real-time in vivo imaging by high-speed spectral optical coherence tomography. Optics Letters, 2003, 28, 1745.	3.3	323
8	High-Definition and 3-dimensional Imaging of Macular Pathologies with High-speed Ultrahigh-Resolution Optical Coherence Tomography. Ophthalmology, 2006, 113, 2054-2065.e3.	5. 2	310
9	Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Optics Letters, 2000, 25, 820.	3.3	304
10	Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation. Nature Medicine, 2007, 13, 181-188.	30.7	304
11	High-speed optical coherence tomography: basics and applications. Applied Optics, 2010, 49, D30.	2.1	292
12	Ophthalmic imaging by spectral optical coherence tomography. American Journal of Ophthalmology, 2004, 138, 412-419.	3.3	287
13	Characterization of Outer Retinal Morphology with High-Speed, Ultrahigh-Resolution Optical Coherence Tomography., 2008, 49, 1571.		261
14	Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Optics Express, 2005, 13, 10523.	3.4	231
15	Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Optics Express, 2009, 17, 14880.	3.4	214
16	Retinal assessment using optical coherence tomography. Progress in Retinal and Eye Research, 2006, 25, 325-353.	15.5	199
17	Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera. Optics Express, 2009, 17, 4842.	3.4	193
18	Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography. Optics Letters, 2004, 29, 171.	3.3	192

#	Article	IF	Citations
19	Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography. Optics Express, 2008, 16, 6008.	3.4	192
20	Noninvasive Volumetric Imaging and Morphometry of the Rodent Retina with High-Speed, Ultrahigh-Resolution Optical Coherence Tomography., 2006, 47, 5522.		177
21	In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography. Optics Letters, 2006, 31, 2308.	3.3	171
22	Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]. Biomedical Optics Express, 2017, 8, 3248.	2.9	168
23	Optical distortion correction in Optical Coherence Tomography for quantitative ocular anterior segment by three-dimensional imaging. Optics Express, 2010, 18, 2782.	3.4	159
24	Efficient reduction of speckle noise in Optical Coherence Tomography. Optics Express, 2012, 20, 1337.	3.4	154
25	High-Speed Ultra–High-Resolution Optical Coherence Tomography Findings in Hydroxychloroquine Retinopathy. JAMA Ophthalmology, 2007, 125, 775.	2.4	131
26	Improved spectral optical coherence tomography using optical frequency comb. Optics Express, 2008, 16, 4163.	3 . 4	121
27	Scanning protocols dedicated to smart velocity ranging in Spectral OCT. Optics Express, 2009, 17, 23736.	3.4	118
28	Spectral Optical Coherence Tomography. Cornea, 2006, 25, 960-965.	1.7	100
29	Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography. Optics Express, 2009, 17, 10584.	3.4	96
30	Optical Coherence Tomography Scan Circle Location and Mean Retinal Nerve Fiber Layer Measurement Variability., 2008, 49, 2315.		94
31	Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system. Optics Express, 2011, 19, 14188.	3.4	92
32	Phase-resolved Doppler optical coherence tomographyâ€"limitations and improvements. Optics Letters, 2008, 33, 1425.	3.3	90
33	The Application of Optical Coherence Tomography to Non-Destructive Examination of Museum Objects. Studies in Conservation, 2004, 49, 107-114.	1.1	87
34	Corneal topography with high-speed swept source OCT in clinical examination. Biomedical Optics Express, 2011, 2, 2709.	2.9	83
35	Human infrared vision is triggered by two-photon chromophore isomerization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5445-54.	7.1	80
36	In Vivo Corneal High-Speed, Ultra–High-Resolution Optical Coherence Tomography. JAMA Ophthalmology, 2007, 125, 1027.	2.4	75

#	Article	IF	Citations
37	Peripapillary Nerve Fiber Layer Thickness Profile Determined with High Speed, Ultrahigh Resolution Optical Coherence Tomography High-Density Scanning., 2007, 48, 3154.		68
38	Corneal topography from spectral optical coherence tomography (sOCT). Biomedical Optics Express, 2011, 2, 3232.	2.9	67
39	Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography. Journal of Biomedical Optics, 2007, 12, 041212.	2.6	64
40	New Directions in Ophthalmic Optical Coherence Tomography. Optometry and Vision Science, 2012, 89, 524-542.	1.2	62
41	Correlation of spectral optical coherence tomography with fluorescein and indocyanine green angiography in multiple evanescent white dot syndrome. British Journal of Ophthalmology, 2008, 92, 1552-1557.	3.9	59
42	Averaging techniques for OCT imaging. Optics Express, 2013, 21, 9757.	3.4	57
43	Complex spectral OCT in human eye imaging in vivo. Optics Communications, 2004, 229, 79-84.	2.1	55
44	Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration. British Journal of Ophthalmology, 2009, 93, 603-609.	3.9	53
45	Peripapillary Schisis in Glaucoma Patients With Narrow Angles and Increased Intraocular Pressure. American Journal of Ophthalmology, 2007, 143, 697-699.e1.	3.3	51
46	In vivo volumetric imaging by crosstalk-free full-field OCT. Optica, 2019, 6, 608.	9.3	50
47	<title>Complex spectral interferometry OCT</title> ., 1998, 3564, 173.		49
48	Crosstalk-free volumetric in vivo imaging of a human retina with Fourier-domain full-field optical coherence tomography. Biomedical Optics Express, 2019, 10, 6390.	2.9	49
49	Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source. Optics Communications, 2005, 246, 569-578.	2.1	48
50	In vivo imaging of the human cornea with high-speed and high-resolution Fourier-domain full-field optical coherence tomography. Biomedical Optics Express, 2020, 11, 2849.	2.9	43
51	Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos. Scientific Reports, 2017, 7, 4165.	3.3	42
52	Optical Coherence Tomography for Artwork Diagnostics. Laser Chemistry, 2006, 2006, 1-11.	0.5	41
53	Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography. Optics Express, 2009, 17, 14281.	3.4	39
54	Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography. Optics Express, 2013, 21, 17711.	3.4	39

#	Article	IF	CITATIONS
55	Improved complex spectral domain OCT for in vivo eye imaging. Optics Communications, 2005, 249, 357-362.	2.1	38
56	Drusen with Accompanying Fluid underneath the Sensory Retina. Ophthalmology, 2011, 118, 82-92.	5.2	38
57	Single shot, time-resolved measurement of the coherence properties of OCT swept source lasers. Optics Letters, 2015, 40, 2277.	3.3	38
58	Tissue thickness calculation in ocular optical coherence tomography. Biomedical Optics Express, 2016, 7, 629.	2.9	38
59	Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies. Journal of Biomedical Optics, 2007, 12, 041207.	2.6	36
60	Dynamics of a short cavity swept source OCT laser. Optics Express, 2014, 22, 18177.	3.4	36
61	Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT. Biomedical Optics Express, 2013, 4, 1595.	2.9	34
62	Flow velocity measurements by frequency domain short coherence interferometry., 2002, 4619, 16.		33
63	Improved Visualization of Glaucomatous Retinal Damage Using High-speed Ultrahigh-Resolution Optical Coherence Tomography. Ophthalmology, 2008, 115, 782-789.e2.	5.2	31
64	A study of macular hole formation by serial spectral optical coherence tomography. Clinical and Experimental Ophthalmology, 2009, 37, 373-383.	2.6	31
65	Comparison of reflectivity maps and outer retinal topography in retinal disease by 3-D Fourier domain optical coherence tomography. Optics Express, 2009, 17, 4189.	3.4	30
66	Improved measurement of vibration amplitude in dynamic optical coherence elastography. Biomedical Optics Express, 2012, 3, 3138.	2.9	30
67	OCT angiography by absolute intensity difference applied to normal and diseased human retinas. Biomedical Optics Express, 2015, 6, 2738.	2.9	29
68	Assessment of the flow velocity of blood cells in a microfluidic device using joint spectral and time domain optical coherence tomography. Optics Express, 2013, 21, 24025.	3.4	28
69	Multi-meridian corneal imaging of air-puff induced deformation for improved detection of biomechanical abnormalities. Biomedical Optics Express, 2020, 11, 6337.	2.9	28
70	Spontaneous closure of stage III and IV idiopathic full-thickness macular holes—a two-case report. Graefe's Archive for Clinical and Experimental Ophthalmology, 2007, 246, 99-104.	1.9	27
71	Spectrometer calibration for spectroscopic Fourier domain optical coherence tomography. Biomedical Optics Express, 2016, 7, 5042.	2.9	27
72	Spatiotemporal optical coherence (STOC) manipulation suppresses coherent cross-talk in full-field swept-source optical coherence tomography. Biomedical Optics Express, 2019, 10, 2032.	2.9	27

#	Article	IF	CITATIONS
73	Microscopic OCT imaging with focus extension by ultrahigh-speed acousto-optic tunable lens and stroboscopic illumination. Optics Express, 2014, 22, 31746.	3.4	26
74	Noninvasive two-photon optical biopsy of retinal fluorophores. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22532-22543.	7.1	25
75	Computational aberration correction in spatiotemporal optical coherence (STOC) imaging. Optics Letters, 2020, 45, 1293.	3.3	25
76	Granular Corneal Dystrophy in 830-nm Spectral Optical Coherence Tomography. Cornea, 2008, 27, 830-832.	1.7	24
77	Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain. Biomedical Optics Express, 2016, 7, 4400.	2.9	24
78	Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using airâ€puff optical coherence tomography and corneal hysteresis. Journal of Biophotonics, 2019, 12, e201800154.	2.3	24
79	Two-photon imaging of the mammalian retina with ultrafast pulsing laser. JCI Insight, 2018, 3, .	5.0	24
80	Spectral Optical Coherence Tomography in Video-Rate and 3D Imaging of Contact Lens Wear. Optometry and Vision Science, 2007, 84, E1104-E1109.	1.2	23
81	Periscope for noninvasive two-photon imaging of murine retina in vivo. Biomedical Optics Express, 2015, 6, 3352.	2.9	23
82	High-speed OCT-based ocular biometer combined with an air-puff system for determination of induced retraction-free eye dynamics. Biomedical Optics Express, 2019, 10, 3663.	2.9	22
83	Multimode fiber enables control of spatial coherence in Fourier-domain full-field optical coherence tomography for in vivo corneal imaging. Optics Letters, 2021, 46, 1413.	3.3	22
84	Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units. Journal of Biomedical Optics, 2012, 17, 1.	2.6	21
85	Two-photon microperimetry: sensitivity of human photoreceptors to infrared light. Biomedical Optics Express, 2019, 10, 4551.	2.9	21
86	Quantitative optical inspection of contact lenses immersed in wet cell using swept source OCT. Optics Letters, 2014, 39, 4727.	3.3	19
87	Spectral OCT with speckle contrast reduction for evaluation of the healing process after PRK and transepithelial PRK. Biomedical Optics Express, 2014, 5, 1089.	2.9	19
88	Image registration and averaging of low laser power two-photon fluorescence images of mouse retina. Biomedical Optics Express, 2016, 7, 2671.	2.9	19
89	Visual acuity in two-photon infrared vision. Optica, 2017, 4, 1488.	9.3	19
90	Frequency-doubled femtosecond Er-doped fiber laser for two-photon excited fluorescence imaging. Biomedical Optics Express, 2020, 11, 4431.	2.9	19

#	Article	lF	Citations
91	Corneal Properties of Keratoconus Based on Scheimpflug Light Intensity Distribution. , 2019, 60, 3197.		18
92	Keratoconus Detection Based on a Single Scheimpflug Image. Translational Vision Science and Technology, 2020, 9, 36.	2.2	18
93	High-speed, Ultrahigh Resolution Optical Coherence Tomography of the Retina in Hunter Syndrome. Ophthalmic Surgery Lasers and Imaging Retina, 2007, 38, 423-428.	0.7	18
94	Analysis of the Outer Retina Reconstructed by High-Resolution, Three-Dimensional Spectral Domain Optical Coherence Tomography. Ophthalmic Surgery Lasers and Imaging Retina, 2009, 40, 102-108.	0.7	18
95	In vivo imaging of the human eye using a 2-photon-excited fluorescence scanning laser ophthalmoscope. Journal of Clinical Investigation, 2022, 132, .	8.2	18
96	Persistence of Cloquet's Canal in Normal Healthy Eyes. American Journal of Ophthalmology, 2006, 142, 862-864.	3.3	17
97	Fuchs' Endothelial Dystrophy in 830-nm Spectral Domain Optical Coherence Tomography. Ophthalmic Surgery Lasers and Imaging Retina, 2009, 40, 198-200.	0.7	17
98	High-Throughput Monitoring of Bacterial Cell Density in Nanoliter Droplets: Label-Free Detection of Unmodified Gram-Positive and Gram-Negative Bacteria. Analytical Chemistry, 2021, 93, 843-850.	6. 5	15
99	Coherent noise-free ophthalmic imaging by spectral optical coherence tomography. Journal Physics D: Applied Physics, 2005, 38, 2606-2611.	2.8	14
100	Air-Puff-Induced Dynamics of Ocular Components Measured with Optical Biometry., 2019, 60, 1979.		14
101	Multimode fiber as a tool to reduce cross talk in Fourier-domain full-field optical coherence tomography. Optics Letters, 2022, 47, 838.	3.3	14
102	Light-adapted flicker optoretinograms captured with a spatio-temporal optical coherence-tomography (STOC-T) system. Biomedical Optics Express, 2022, 13, 2186.	2.9	14
103	Quantitative assessment of oral mucosa and labial minor salivary glands in patients with Sjögren's syndrome using swept source OCT. Biomedical Optics Express, 2014, 5, 259.	2.9	13
104	Corneal tissue properties following scleral lens wear using Scheimpflug imaging. Ophthalmic and Physiological Optics, 2020, 40, 595-606.	2.0	13
105	Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup. Optics Express, 2015, 23, 27724.	3.4	11
106	Fourier domain OCT imaging of the human eye in vivo. , 2002, 4619, 230.		10
107	Imaging of the lens capsule with an ultrahigh-resolution spectral optical coherence tomography prototype based on a femtosecond laser. British Journal of Ophthalmology, 2010, 94, 275-277.	3.9	10
108	Control of the optical field coherence by spatiotemporal light modulation. Optics Letters, 2013, 38, 4817.	3.3	10

#	Article	IF	CITATIONS
109	Multimodal instrument for high-sensitivity autofluorescence and spectral optical coherence tomography of the human eye fundus. Biomedical Optics Express, 2013, 4, 2683.	2.9	9
110	Sensitivity of Mammalian Cone Photoreceptors to Infrared Light. Neuroscience, 2019, 416, 100-108.	2.3	9
111	Optical coherence tomography diagnostics for onco-urology. Review of clinical perspectives. Central European Journal of Urology, 2013, 66, 136-41.	0.3	9
112	High-speed frequency swept light source for Fourier domain OCT at 20 kHz A-scan rate. , 2005, , .		8
113	Photoreceptor Disruption Secondary to Posterior Vitreous Detachment as Visualized Using High-Speed Ultrahigh-Resolution Optical Coherence Tomography. JAMA Ophthalmology, 2007, 125, 1579.	2.4	8
114	Two-photon microperimetry with picosecond pulses. Biomedical Optics Express, 2021, 12, 462.	2.9	8
115	High-speed imaging of retinal pathology using ultrahigh-resolution spectral/Fourier domain optical coherence tomography in the ophthalmology clinic., 2005, 5690, 72.		7
116	Real-time in vivo ophthalmic imaging by ultrafast spectral optical coherence tomography., 2003, 4956, 50.		6
117	Three-dimensional in vivo imaging by spectral OCT. , 2004, , .		6
118	In vivo imaging of posterior capsule opacification using Spectral Optical Coherence Tomography. Journal of Cataract and Refractive Surgery, 2006, 32, 1892-1895.	1.5	6
119	In vivo brain imaging with multimodal optical coherence microscopy in a mouse model of thromboembolic photochemical stroke. Neurophotonics, 2020, 7, 1.	3.3	6
120	Spatio-Temporal Optical Coherence Imaging – a new tool for in vivo microscopy. Photonics Letters of Poland, 2019, 11, 44.	0.4	6
121	Complex spectral OCT in human eye imaging in vivo. , 2003, 5140, 28.		5
122	Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography. Journal of Biomedical Optics, 2012, 17, 101515.	2.6	5
123	System for psychophysical measurements of two-photon vision. Photonics Letters of Poland, 2019, 11, 1.	0.4	5
124	Phase-sensitive interferometry in optical coherence tomography. , 2001, , .		4
125	Tunable semiconductor laser at $1025\text{-}1095$ nm range for OCT applications with an extended imaging depth., 2015 ,,.		4
126	Classification of biological micro-objects using optical coherence tomography: in silico study. Biomedical Optics Express, 2017, 8, 3606.	2.9	4

#	Article	IF	CITATIONS
127	Real time 3D structural and Doppler OCT imaging on graphics processing units. Proceedings of SPIE, 2013, , .	0.8	3
128	Application of Fourier Domain OCT Imaging Technology to the Anterior Segment of the Human Eye. , 2015, , $1617-1648$.		3
129	Optical Coherence Tomography Identifies Lower Labial Salivary Gland Surface Density in Cystic Fibrosis. PLoS ONE, 2015, 10, e0117517.	2.5	3
130	Femtosecond Er-doped fiber laser source tunable from 872 to 1075â€nm for two-photon vision studies in humans. Biomedical Optics Express, 2022, 13, 1899.	2.9	3
131	<title>Depth-resolved spectroscopy by frequency-domain optical coherence tomography</title> ., 2000, 4160, 57.		2
132	<title>Autocorrelation free spectral OCT techniques in eye imaging </title> ., 2001,,.		2
133	Spectral shaping and least square iterative deconvolution in spectral OCT. , 2004, , .		2
134	True velocity mapping using joint spectral and time domain optical coherence tomography. , 2010, , .		2
135	Angiogram visualization and total velocity blood flow assessment based on intensity information analysis of OCT data. , 2012, , .		2
136	Swept source OCT with air puff chamber for corneal dynamics measurements. Proceedings of SPIE, 2012, , .	0.8	2
137	Imaging and Measurement in the Eye. Optometry and Vision Science, 2012, 89, 521-523.	1.2	2
138	Optical Coherence Tomography of the Labial Salivary Glands Reveals Ageâ€Related Differences in Women. Clinical and Translational Science, 2015, 8, 717-721.	3.1	2
139	Blue-light Fourier-domain optical-coherence microscopy with linear k-sampling using second-harmonic generation. Optics Letters, 2015, 40, 3540.	3.3	2
140	Longitudinal in-vivo OCM imaging of glioblastoma development in the mouse brain. Biomedical Optics Express, 2020, 11, 5003.	2.9	2
141	Spectroscopic analysis of substances by frequency domain optical coherence tomography., 2001, 4251, 123.		1
142	<title>Spectral OCT techniques in eye imaging</title> ., 2002, , .		1
143	Real-time and static in vivo ophthalmic imaging by spectral optical coherence tomography. , 2004, 5314, 126.		1
144	Numerical estimation of the total phase shift in complex spectral OCT in vivo imaging., 2004, 5316, 248.		1

#	Article	IF	Citations
145	Standard resolution spectral domain optical coherence tomography in clinical ophthalmic imaging. , 2005, , .		1
146	Swept source OCT imaging of human anterior segment at 200 kHz., 2009,,.		1
147	Observation of blood optical inhomogeneity using joint spectral and time domain OCT., 2010,,.		1
148	Wavelength to pixel calibration for FdOCT. Proceedings of SPIE, 2015, , .	0.8	1
149	Spectroscopy by joint spectral and time domain optical coherence tomography. , 2015, , .		1
150	Velocity resolution and minimum detectable velocity in joint Spectral and Time domain OCT. , 2010, , .		1
151	Application of single-pixel camera for imaging in turbid media. , 2019, , .		1
152	Non invasive optical cellular imaging in humans. Photonics Letters of Poland, 2018, 10, 60.	0.4	1
153	Broadband blue light for Optical Coherence Microscopy. Photonics Letters of Poland, 2011, 3, .	0.4	1
154	Enhancing microvasculature maps for Optical Coherence Tomography Angiography (OCT-A). Photonics Letters of Poland, 2018, 10, 61.	0.4	1
155	<title>Ultrahigh-sensitivity imaging of the eye by spectral optical coherence tomography</title> ., 2004,,.		O
156	Static and dynamic spectral OCT imaging of human corneo-scleral junction in-vivo. , 2004, , .		0
157	Real-time measurement of in-vitro and in-vivo blood flow with Fourier domain optical coherence tomography. , 2004, , .		O
158	The applicability of standard resolution spectral optical coherence tomography for examination of the eye pathologies. , 2005 , , .		0
159	Three-dimensional retinal imaging with ultrahigh resolution Fourier/spectral domain optical coherence tomography., 2005, 5688, 90.		O
160	Clinical studies using ultrahigh resolution and high-speed optical coherence tomography., 2005,,.		0
161	Spectral optical coherence tomography for ophthalmologic applications. , 2006, , .		0
162	Simultaneous analysis of extinction and flow velocity with joint spectral and time domain OCT. , 2008, , .		0

#	Article	IF	Citations
163	Flow velocity analysis with joint spectral and time domain OCT., 2008,,.		O
164	Retinal blood flow analysis using joint spectral and time domain optical coherence tomography. Proceedings of SPIE, 2008, , .	0.8	0
165	Segmentation of flowing particles using joint spectral and time domain optical coherence tomography., 2009,,.		0
166	Three-dimensional retinal blood flow analysis using joint spectral and time domain optical coherence tomography. Proceedings of SPIE, 2009, , .	0.8	0
167	Simultaneous complex ambiguity removal and quantitative flow velocity estimation with joint spectral and time domain OCT. Proceedings of SPIE, 2009, , .	0.8	0
168	High-speed optical coherence imaging: towards the structure and the physiology of living tissue. , 2010, , .		0
169	Real-time bulk motion insensitive flow segmentation algorithm for Doppler spectral optical coherence tomography. , 2010, , .		0
170	Segmented scanning protocols for speckle contrast reduction in Spectral OCT images. , 2011, , .		0
171	Cortical blood flow imaging of mouse stroke model by high-speed Spectral OCT. Proceedings of SPIE, 2011, , .	0.8	0
172	Volumetric Doppler imaging of small animal brain using spectral and time domain optical coherence tomography. Proceedings of SPIE, $2011, \ldots$	0.8	0
173	Microfluidics analysis of blood using joint spectral and time domain optical coherence tomography. Proceedings of SPIE, 2012, , .	0.8	0
174	Spectral and time domain OCT: a tool for optimal imaging of biological samples. Proceedings of SPIE, 2012, , .	0.8	0
175	OCT detection of neural activity in American cockroach nervous system. Proceedings of SPIE, 2013, , .	0.8	0
176	High sensitive fundus autofluorescence imaging combined with speckle-free optical coherence tomography. Proceedings of SPIE, 2013, , .	0.8	0
177	Restoration of photoreceptor structure and function in nonischaemic central retinal vein occlusion. Acta Ophthalmologica, 2013, 91, e163-5.	1.1	0
178	Spatiotemporal optical coherence (STOC) manipulation and its possible applications., 2014,,.		0
179	Detection of small biological objects by phase-sensitive optical coherence tomography., 2015,,.		0
180	Single-shot real-time electric-field reconstruction of a swept source laser. , 2015, , .		0

#	Article	IF	CITATIONS
181	Fast method of cross-talk effect reduction in biomedical imaging (Conference Presentation)., 2016,,.		O
182	Non-contact investigation of the corneal biomechanics with air-puff swept source optical coherence tomography. , $2016, , .$		0
183	Imaging of the stroke-related changes in the vascular system of the mouse brain with the use of extended focus optical coherence microscopy. Proceedings of SPIE, 2016, , .	0.8	0
184	Coherence properties of fast frequency swept lasers revealed via full electric field reconstruction. Proceedings of SPIE, 2016 , , .	0.8	0
185	Bessel beam OCM for analysis of global ischemia in mouse brain. , 2017, , .		0
186	Label-Free Optical Readout of Bacteria Density in Nanoliter Droplets. , 2019, , .		0
187	Pupil detection supported by Haar feature based cascade classifier for two-photon vision examinations. , $2019, \ldots$		0
188	Spatiotemporal Optical Coherence (STOC) Manipulation Improves Imaging with Full-Field Swept-Source OCT., 2019, , .		0
189	Spectral Optical Coherence Tomography using scanning optical frequency comb generator., 2008,,.		0
190	High speed optical coherence imaging - towards the structure and the function of the human eye. , 2009, , .		0
191	Comparison of sensitivity for high speed Fourier domain OCT systems. , 2010, , .		0
192	High speed optical imaging for biomedical applications. , 2011, , .		0
193	Analysis of ocular hemodynamic using combined STdOCT and ultrasonic methods. Photonics Letters of Poland, 2011, 3, .	0.4	0
194	Fourier domain OCT imaging of American cockroach nervous system. Proceedings of SPIE, 2012, , .	0.8	0
195	Estimation of vibration amplitude in Fourier domain optical coherence tomography interferometric signals from Doppler spectrum. , 2013, , .		0
196	Blue light Spectral Optical Coherence Tomography. , 2013, , .		0
197	Swept Source OCT of oral mucosa and labial salivary glands in cystic fibrosis. , 2014, , .		0
198	Doppler Fourier Domain Optical Coherence Tomography for Label-Free Tissue Angiography. , 2015, , 1321-1352.		0

#	Article	IF	Citations
199	Differentiation of morphotic elements in the human blood using optical coherence tomography and microfluidic chip. , 2015, , .		0
200	SS-OCT based evaluation of possible impact on vision quality caused by long-term wear of soft contact lenses. , $2015, , .$		0
201	Dual Optical Lock-In for Ultrasensitive Photothermal Effect Detection. , 2016, , .		0
202	Air-puff Swept-Source Optical Coherence Tomography. , 2016, , .		0
203	Imaging through turbid media with wavefront modulated illumination full-field optical coherence microscopy. , 2018, , .		0
204	Impact of diurnal IOP variations on the dynamic corneal hysteresis measured with air-puff swept-source OCT. Photonics Letters of Poland, 2018, 10, 64.	0.4	0
205	Fast method of speckle suppression for reflection phase microscopy. Photonics Letters of Poland, 2018, 10, 118.	0.4	0
206	Optofluidic Platform for Bacteria Screening in Nanoliter Droplets. , 2019, , .		0
207	Shedding Light onto Two Spatiotemporal Optical Coherence Manipulation (STOC) Implementations., 2019,,.		0
208	Speckle-free and cross-talk-free imaging in Fourier domain full-field optical coherence tomography. , 2019, , .		0
209	Solid state versus fiber picosecond infrared lasers applied to two-photon vision tests. , 2019, , .		0
210	Spatiotemporal optical coherence (STOC) manipulation suppresses coherent cross-talk and low-order geometrical aberrations in full-field swept-source optical coherence tomography., 2019,,.		0
211	In vivo human retina and cornea imaging with spatiotemporal optical coherence (STOC) manipulation and digital aberration correction. , 2020, , .		0
212	Digital aberration correction in spatiotemporal optical coherence (STOC) imaging with coherent averaging. , 2020, , .		0
213	Spatiotemporal optical coherence (STOC) manipulation for blood flow imaging of the human retina in vivo. , 2021, , .		0
214	Two-photon visual sensitivity of cataract patients. , 2021, , .		0
215	Crosstalk-free in vivo imaging of a human retina with Fourier-domain full-field optical coherence tomography. , 2020, , .		0
216	In vivo imaging of human retina and cornea with spatially incoherent Fourier-domain full-field optical coherence tomography. , 2020, , .		0

#	Article	IF	Citations
217	In vivo imaging of human cornea with Fourier-domain full-field optical coherence tomography equipped with a fast preview mode and a multimode fiber for spatial coherence reduction., 2021,,.		O
218	Corrections of motion artifacts in dynamic low-cost, swept-source optical coherence tomography. , 2021, , .		0
219	Spectral laser doppler holography (SLDH) for human retinal blood flow visualization and quantification in vivo. , 2021, , .		0
220	Optoretinography with use of spatio-temporal optical coherence tomography STOC-T., 2021,,.		0
221	Spatiotemporal optical coherence (STOC) manipulation for blood flow imaging of the human retina in vivo. , 2021, , .		0
222	Spatial coherence control facilitates high quality in-vivo imaging of retinal and choroidal microstructure with spatio-temporal optical coherence tomography (STOC-T)., 2021,,.		0
223	Spatio-temporal optical coherence tomography STOC-T for in-vivo retinal imaging. , 2021, , .		0
224	Optical coherence tomography reveals heterogeneity of the brain tissue and vasculature in the ischemic region after photothrombotic stroke in mice Acta Neurobiologiae Experimentalis, 2022, 82, 106-119.	0.7	0
225	Simultaneous multi-spot OCT measurements of air induced corneal deformations. , 2022, , .		0
226	Spatio-temporal optical coherence tomography (STOC-T) for high-resolution, wide-field structural and blood flow imaging of the human retina in vivo. , 2022, , .		0
227	In-vivo imaging of choroid and choriocapillaris by Spatio-Temporal Optical Coherence Tomography. , 2022, , .		0
228	Two-photon excited fluorescence scanning laser ophthalmoscope for in vivo imaging of the human eye., 2022,,.		0
229	Role of multimode fibers in structural imaging of the choroidal and retinal tissue with Spatio-Temporal Optical Coherence Tomography (STOC-T). , 2022, , .		O