Jeffrey F Harper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7466589/publications.pdf

Version: 2024-02-01

53794 102487 9,980 66 45 66 citations h-index g-index papers 69 69 69 8124 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reproductive resilience: putting pollen grains in two baskets. Trends in Plant Science, 2022, 27, 237-246.	8.8	3
2	OUP accepted manuscript. Plant Physiology, 2021, , .	4.8	9
3	Arabidopsis Ca2+-ATPases 1, 2, and 7 in the endoplasmic reticulum contribute to growth and pollen fitness. Plant Physiology, 2021, 185, 1966-1985.	4.8	24
4	A short critique on biomining technology for critical materials. World Journal of Microbiology and Biotechnology, 2021, 37, 87.	3 . 6	2
5	Enhanced Reproductive Thermotolerance of the Tomato high pigment 2 Mutant Is Associated With Increased Accumulation of Flavonols in Pollen. Frontiers in Plant Science, 2021, 12, 672368.	3.6	18
6	Guard cell endomembrane Ca2+-ATPases underpin a  carbon memory' of photosynthetic assimilation that impacts on water-use efficiency. Nature Plants, 2021, 7, 1301-1313.	9.3	28
7	Dynamic membranes: the multiple roles of P4 and P5 ATPases. Plant Physiology, 2021, 185, 619-631.	4.8	13
8	A Ratiometric Calcium Reporter CGf Reveals Calcium Dynamics Both in the Single Cell and Whole Plant Levels Under Heat Stress. Frontiers in Plant Science, 2021, 12, 777975.	3.6	10
9	A potential pathway for flippase-facilitated glucosylceramide catabolism in plants. Plant Signaling and Behavior, 2020, 15, 1783486.	2.4	4
10	The Lipid Flippases ALA4 and ALA5 Play Critical Roles in Cell Expansion and Plant Growth. Plant Physiology, 2020, 182, 2111-2125.	4.8	11
11	Decapitation Crosses to Test Pollen Fertility Mutations for Defects in Stigma-Style Penetration. Methods in Molecular Biology, 2020, 2160, 29-40.	0.9	2
12	A Fruitful Journey: Pollen Tube Navigation from Germination to Fertilization. Annual Review of Plant Biology, 2019, 70, 809-837.	18.7	176
13	A Putative Protein <i>O</i> -Fucosyltransferase Facilitates Pollen Tube Penetration through the Stigma <i>–</i> Style Interface. Plant Physiology, 2018, 176, 2804-2818.	4.8	25
14	A comparison of heat-stress transcriptome changes between wild-type Arabidopsis pollen and a heat-sensitive mutant harboring a knockout of cyclic nucleotide-gated cation channel 16 (cngc16). BMC Genomics, 2018, 19, 549.	2.8	37
15	Orchestrating rapid longâ€distance signaling in plants with Ca ²⁺ , <scp>ROS</scp> and electrical signals. Plant Journal, 2017, 90, 698-707.	5 . 7	250
16	Loss of the Arabidopsis thaliana P4-ATPases ALA6 and ALA7 impairs pollen fitness and alters the pollen tube plasma membrane. Frontiers in Plant Science, 2015, 6, 197.	3.6	33
17	A phospholipid uptake system in the model plant Arabidopsis thaliana. Nature Communications, 2015, 6, 7649.	12.8	71
18	Transgressive, reiterative selection by continuous buoyant density gradient centrifugation of Dunaliella salina results in enhanced lipid and starch content. Algal Research, 2015, 9, 194-203.	4.6	10

#	Article	IF	CITATIONS
19	ACA12 is a deregulated isoform of plasma membrane Ca2+-ATPase of Arabidopsis thaliana. Plant Molecular Biology, 2014, 84, 387-397.	3.9	30
20	Regulation of Na,K-ATPase \hat{l}^21 -subunit in TGF- \hat{l}^22 -mediated epithelial-to-mesenchymal transition in human retinal pigmented epithelial cells. Experimental Eye Research, 2013, 115, 113-122.	2.6	25
21	A Cyclic Nucleotide-Gated Channel (CNGC16) in Pollen Is Critical for Stress Tolerance in Pollen Reproductive Development Â. Plant Physiology, 2013, 161, 1010-1020.	4.8	143
22	Cyclic Nucleotide Gated Channels 7 and 8 Are Essential for Male Reproductive Fertility. PLoS ONE, 2013, 8, e55277.	2.5	76
23	Loss of the Arabidopsis thaliana P4-ATPase ALA3 Reduces Adaptability to Temperature Stresses and Impairs Vegetative, Pollen, and Ovule Development. PLoS ONE, 2013, 8, e62577.	2.5	37
24	Evolution of Plant P-Type ATPases. Frontiers in Plant Science, 2012, 3, 31.	3.6	132
25	Calcium-Dependent Protein Kinases from Arabidopsis Show Substrate Specificity Differences in an Analysis of 103 Substrates. Frontiers in Plant Science, 2011, 2, 36.	3.6	80
26	The ins and outs of cellular Ca2+ transport. Current Opinion in Plant Biology, 2011, 14, 715-720.	7.1	84
27	Na,K-ATPase Subunits as Markers for Epithelial-Mesenchymal Transition in Cancer and Fibrosis. Molecular Cancer Therapeutics, 2010, 9, 1515-1524.	4.1	68
28	Disruption of the Vacuolar Calcium-ATPases in Arabidopsis Results in the Activation of a Salicylic Acid-Dependent Programmed Cell Death Pathway. Plant Physiology, 2010, 154, 1158-1171.	4.8	111
29	Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany, 2010, 61, 1959-1968.	4.8	646
30	Proteomic profiling of tandem affinity purified 14â€3â€3 protein complexes in <i>Arabidopsis thaliana</i> Proteomics, 2009, 9, 2967-2985.	2.2	193
31	Calciumâ€dependent protein kinases regulate polarized tip growth in pollen tubes. Plant Journal, 2009, 59, 528-539.	5.7	179
32	Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. Nature Chemical Biology, 2008, 4, 347-356.	8.0	203
33	The ACA10 Ca2+-ATPase Regulates Adult Vegetative Development and Inflorescence Architecture in Arabidopsis. Plant Physiology, 2008, 146, 323-324.	4.8	66
34	The <i>Arabidopsis</i> P4-ATPase ALA3 Localizes to the Golgi and Requires a $\hat{1}^2$ -Subunit to Function in Lipid Translocation and Secretory Vesicle Formation. Plant Cell, 2008, 20, 658-676.	6.6	129
35	Use of directed peptide libraries for discovery of substrates of Arabidopsis CDPKs. FASEB Journal, 2008, 22, 1050.9.	0.5	1
36	A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14531-14536.	7.1	248

#	Article	IF	CITATIONS
37	The origin and function of calmodulin regulated Ca2+ pumps in plants. Journal of Bioenergetics and Biomembranes, 2007, 39, 409-414.	2.3	58
38	Structure of the Regulatory Apparatus of a Calcium-dependent Protein Kinase (CDPK): A Novel Mode of Calmodulin-target Recognition. Journal of Molecular Biology, 2006, 357, 400-410.	4.2	64
39	Plants, symbiosis and parasites: a calcium signalling connection. Nature Reviews Molecular Cell Biology, 2005, 6, 555-566.	37.0	340
40	Evidence for Differing Roles for Each Lobe of the Calmodulin-like Domain in a Calcium-dependent Protein Kinase. Journal of Biological Chemistry, 2004, 279, 29092-29100.	3.4	62
41	A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9502-9507.	7.1	293
42	DECODING Ca2+SIGNALS THROUGH PLANT PROTEIN KINASES. Annual Review of Plant Biology, 2004, 55, 263-288.	18.7	436
43	The Arabidopsis CDPK-SnRK Superfamily of Protein Kinases. Plant Physiology, 2003, 132, 666-680.	4.8	898
44	Systematic Trans-Genomic Comparison of Protein Kinases between Arabidopsis and Saccharomyces cerevisiae Â. Plant Physiology, 2003, 132, 2152-2165.	4.8	75
45	Subcellular Targeting of Nine Calcium-Dependent Protein Kinase Isoforms from Arabidopsis. Plant Physiology, 2003, 132, 1840-1848.	4.8	235
46	Genomic Comparison of P-Type ATPase Ion Pumps in Arabidopsis and Rice. Plant Physiology, 2003, 132, 618-628.	4.8	320
47	Calcium at the Crossroads of Signaling. Plant Cell, 2002, 14, S401-S417.	6.6	1,076
48	The CDPK superfamily of protein kinases. New Phytologist, 2001, 151, 175-183.	7. 3	188
49	Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant Journal, 2001, 27, 191-201.	5.7	127
50	Na,K-ATPase \hat{I}^2 -Subunit Is Required for Epithelial Polarization, Suppression of Invasion, and Cell Motility. Molecular Biology of the Cell, 2001, 12, 279-295.	2.1	180
51	Na,K-ATPase Activity Is Required for Formation of Tight Junctions, Desmosomes, and Induction of Polarity in Epithelial Cells. Molecular Biology of the Cell, 2001, 12, 3717-3732.	2.1	161
52	Autoinhibition of a Calmodulin-dependent Calcium Pump Involves a Structure in the Stalk That Connects the Transmembrane Domain to the ATPase Catalytic Domain. Journal of Biological Chemistry, 2000, 275, 30301-30308.	3.4	45
53	Calmodulin Activation of an Endoplasmic Reticulum-Located Calcium Pump Involves an Interaction with the N-Terminal Autoinhibitory Domain. Plant Physiology, 2000, 122, 157-168.	4.8	71
54	Identification of a Calmodulin-Regulated Soybean Ca2+-ATPase (SCA1) That Is Located in the Plasma Membrane. Plant Cell, 2000, 12, 1393-1407.	6.6	102

#	Article	IF	CITATIONS
55	CDPKs – a kinase for every Ca2+ signal?. Trends in Plant Science, 2000, 5, 154-159.	8.8	476
56	DIVERSITY ANDREGULATION OFPLANTCa2+PUMPS: Insights from Expression in Yeast. Annual Review of Plant Biology, 2000, 51, 433-462.	14.3	266
57	Intramolecular Activation of a Ca2+-Dependent Protein Kinase Is Disrupted by Insertions in the Tether That Connects the Calmodulin-like Domain to the Kinase. Biochemistry, 2000, 39, 4004-4011.	2.5	34
58	Identification of a Calmodulin-Regulated Ca2+-ATPase in the Endoplasmic Reticulum1. Plant Physiology, 1999, 119, 1165-1176.	4.8	130
59	Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant Journal, 1999, 19, 735-747.	5.7	332
60	Plasma membrane H+ -ATPase in the root apex: Evidence for strong expression in xylem parenchyma and asymmetric localization within cortical and epidermal cells. Physiologia Plantarum, 1998, 104, 311-316.	5.2	62
61	14-3-3 proteins activate a plant calcium-dependent protein kinase (CDPK). FEBS Letters, 1998, 430, 381-384.	2.8	122
62	A Novel Calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal Autoinhibitory Domain. Journal of Biological Chemistry, 1998, 273, 1099-1106.	3.4	143
63	Activation of a Ca2+-Dependent Protein Kinase Involves Intramolecular Binding of a Calmodulin-like Regulatory Domainâ€. Biochemistry, 1996, 35, 13222-13230.	2.5	84
64	The plasma membrane H+-ATPase gene family in Arabidopsis: genomic sequence of AHA10 which is expressed primarily in developing seeds. Molecular Genetics and Genomics, 1994, 244, 572-587.	2.4	93
65	Genetic Identification of an Autoinhibitor in CDPK, a Protein Kinase with a Calmodulin-like Domain. Biochemistry, 1994, 33, 7267-7277.	2.5	195
66	Calcium and lipid regulation of an Arabidopsis protein kinase expressed in Escherichia coli. Biochemistry, 1993, 32, 3282-3290.	2.5	132