Ute Hentschel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7466557/publications.pdf

Version: 2024-02-01

201 papers 19,159 citations

68 h-index 130 g-index

231 all docs

231 docs citations

231 times ranked

14855 citing authors

#	Article	IF	CITATIONS
1	Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3229-3236.	7.1	2,181
2	Genomic islands in pathogenic and environmental microorganisms. Nature Reviews Microbiology, 2004, 2, 414-424.	28.6	1,062
3	Molecular Evidence for a Uniform Microbial Community in Sponges from Different Oceans. Applied and Environmental Microbiology, 2002, 68, 4431-4440.	3.1	621
4	Diversity, structure and convergent evolution of the global sponge microbiome. Nature Communications, 2016, 7, 11870.	12.8	594
5	Genomic insights into the marine sponge microbiome. Nature Reviews Microbiology, 2012, 10, 641-654.	28.6	530
6	An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature, 2014, 506, 58-62.	27.8	530
7	Marine sponges as microbial fermenters. FEMS Microbiology Ecology, 2006, 55, 167-177.	2.7	521
8	Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME Journal, 2012, 6, 564-576.	9.8	508
9	The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome, 2018, 6, 46.	11.1	426
10	Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiology Ecology, 2001, 35, 305-312.	2.7	321
11	Single-cell genomics reveals the lifestyle of <i>Poribacteria</i> , a candidate phylum symbiotically associated with marine sponges. ISME Journal, 2011, 5, 61-70.	9.8	284
12	Discovery of the Novel Candidate Phylum "Poribacteria―in Marine Sponges. Applied and Environmental Microbiology, 2004, 70, 3724-3732.	3.1	275
13	Bacterial infection as assessed by in vivo gene expression. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 934-939.	7.1	246
14	Diversity, abundance and natural products of marine sponge-associated actinomycetes. Natural Product Reports, 2014, 31, 381-399.	10.3	228
15	Microbial Diversity of Marine Sponges. Progress in Molecular and Subcellular Biology, 2003, 37, 59-88.	1.6	222
16	Legionella pneumophila: an aquatic microbe goes astray. FEMS Microbiology Reviews, 2002, 26, 149-162.	8.6	216
17	Temporal variation of the microbial community associated with the mediterranean sponge Aplysina aerophoba. FEMS Microbiology Ecology, 2001, 38, 105-115.	2.7	213
18	Common molecular mechanisms of symbiosis and pathogenesis. Trends in Microbiology, 2000, 8, 226-231.	7.7	204

#	Article	IF	Citations
19	Elicitation of secondary metabolism in actinomycetes. Biotechnology Advances, 2015, 33, 798-811.	11.7	199
20	Metaorganisms in extreme environments: do microbes play a role in organismal adaptation?. Zoology, 2018, 127, 1-19.	1.2	194
21	The sponge microbiome project. GigaScience, 2017, 6, 1-7.	6.4	193
22	The HMA-LMA Dichotomy Revisited: an Electron Microscopical Survey of 56 Sponge Species. Biological Bulletin, 2014, 227, 78-88.	1.8	188
23	Predicting the HMA-LMA Status in Marine Sponges by Machine Learning. Frontiers in Microbiology, 2017, 8, 752.	3.5	175
24	Physiology, phylogeny and <i>in situ</i> evidence for bacterial and archaeal nitrifiers in the marine sponge <i>Aplysina aerophoba</i> Environmental Microbiology, 2008, 10, 2942-2955.	3.8	167
25	Molecular Microbial Diversity Survey of Sponge Reproductive Stages and Mechanistic Insights into Vertical Transmission of Microbial Symbionts. Applied and Environmental Microbiology, 2008, 74, 7694-7708.	3.1	162
26	Anti-Parasitic Compounds from Streptomyces sp. Strains Isolated from Mediterranean Sponges. Marine Drugs, 2010, 8, 373-380.	4.6	161
27	Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Marine Biology, 1999, 134, 461-470.	1.5	150
28	Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry, 2008, 69, 1716-1725.	2.9	150
29	Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME Journal, 2017, 11, 2465-2478.	9.8	150
30	Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms. Microbiome, 2019, 7, 133.	11.1	141
31	Specificity and transcriptional activity of microbiota associated with low and high microbial abundance sponges from the Red Sea. Molecular Ecology, 2014, 23, 1348-1363.	3.9	139
32	Linking abundance and diversity of sponge-associated microbial communities to metabolic differences in host sponges. Marine Biology, 2007, 152, 475-483.	1.5	136
33	From anti-fouling to biofilm inhibition: New cytotoxic secondary metabolites from two Indonesian Agelas sponges. Bioorganic and Medicinal Chemistry, 2010, 18, 1297-1311.	3.0	136
34	Dereplication Strategies for Targeted Isolation of New Antitrypanosomal Actinosporins A and B from a Marine Sponge Associated-Actinokineospora sp. EG49. Marine Drugs, 2014, 12, 1220-1244.	4.6	136
35	Diversity and mode of transmission of ammoniaâ€oxidizing archaea in marine sponges. Environmental Microbiology, 2008, 10, 1087-1094.	3.8	127
36	Bacterial community profiles in low microbial abundance sponges. FEMS Microbiology Ecology, 2013, 83, 232-241.	2.7	127

#	Article	IF	Citations
37	Isolation, Phylogenetic Analysis and Anti-infective Activity Screening of Marine Sponge-Associated Actinomycetes. Marine Drugs, 2010, 8, 399-412.	4.6	123
38	Vertical Transmission of a Phylogenetically Complex Microbial Consortium in the Viviparous Sponge Ircinia felix. Applied and Environmental Microbiology, 2007, 73, 2067-2078.	3.1	118
39	An Enrichment of CRISPR and Other Defense-Related Features in Marine Sponge-Associated Microbial Metagenomes. Frontiers in Microbiology, 2016, 7, 1751.	3 . 5	117
40	Roadmap for naming uncultivated Archaea and Bacteria. Nature Microbiology, 2020, 5, 987-994.	13.3	115
41	Coordinate Intracellular Expression of <i>Salmonella</i> Bacteriology, 1999, 181, 799-807.	2.2	115
42	Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME Journal, 2013, 7, 2287-2300.	9.8	113
43	Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. Lancet Infectious Diseases, The, 2017, 17, e30-e41.	9.1	113
44	Production of Induced Secondary Metabolites by a Co-Culture of Sponge-Associated Actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Marine Drugs, 2014, 12, 3046-3059.	4.6	112
45	Reductive Dehalogenation of Brominated Phenolic Compounds by Microorganisms Associated with the Marine Sponge Aplysina aerophoba. Applied and Environmental Microbiology, 2003, 69, 4159-4166.	3.1	111
46	Metabolomic Tools for Secondary Metabolite Discovery from Marine Microbial Symbionts. Marine Drugs, 2014, 12, 3416-3448.	4.6	109
47	Prokaryotic Chromosomes and Disease. Science, 2003, 301, 790-793.	12.6	107
48	Monitoring microbial diversity and natural product profiles of the sponge Aplysina cavernicola following transplantation. Marine Biology, 2003, 142, 685-692.	1.5	105
49	Lifestyle Evolution in Cyanobacterial Symbionts of Sponges. MBio, 2015, 6, e00391-15.	4.1	103
50	Tackling the Sulfide Gradient: A Novel Strategy Involving Marine Nematodes and Chemoautotrophic Ectosymbionts. Marine Ecology, 1991, 12, 261-279.	1.1	102
51	Pathogenicity islands: the tip of the iceberg. Microbes and Infection, 2001, 3, 545-548.	1.9	101
52	Bacterial Uptake by the Marine Sponge Aplysina aerophoba. Microbial Ecology, 2007, 53, 355-365.	2.8	99
53	A Phage Protein Aids Bacterial Symbionts in Eukaryote Immune Evasion. Cell Host and Microbe, 2019, 26, 542-550.e5.	11.0	94
54	Symbiosis and Pathogenesis: Evolution of the Microbe-Host Interaction. Die Naturwissenschaften, 2000, 87, 1-11.	1.6	93

#	Article	IF	CITATIONS
55	Oxygen dynamics and transport in the Mediterranean sponge Aplysina aerophoba. Marine Biology, 2008, 153, 1257-1264.	1.5	87
56	Soaking it up: the complex lives of marine sponges and their microbial associates. ISME Journal, 2007, 1 , 187-190.	9.8	86
57	Widespread Occurrence and Genomic Context of Unusually Small Polyketide Synthase Genes in Microbial Consortia Associated with Marine Sponges. Applied and Environmental Microbiology, 2007, 73, 2144-2155.	3.1	84
58	Antibacterial activity of the sponge Suberites domuncula and its primmorphs: potential basis for epibacterial chemical defense. Aquatic Microbial Ecology, 2003, 31, 77-83.	1.8	84
59	Antimicrobial Activities and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Bacillus Isolates from the Marine Sponge Aplysina aerophoba. Marine Biotechnology, 2003, 5, 424-434.	2.4	83
60	Marine Sponges as <i>Chloroflexi</i> Hot Spots: Genomic Insights and High-Resolution Visualization of an Abundant and Diverse Symbiotic Clade. MSystems, 2018, 3, .	3.8	83
61	Distinct Phyllosphere Bacterial Communities on Arabidopsis Wax Mutant Leaves. PLoS ONE, 2013, 8, e78613.	2.5	81
62	Rubritalea marina gen. nov., sp. nov., a marine representative of the phylum †Verrucomicrobia', isolated from a sponge (Porifera). International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2119-2124.	1.7	79
63	The Candidate Phylum Poribacteria by Single-Cell Genomics: New Insights into Phylogeny, Cell-Compartmentation, Eukaryote-Like Repeat Proteins, and Other Genomic Features. PLoS ONE, 2014, 9, e87353.	2.5	79
64	PKS and NRPS gene clusters from microbial symbiont cells of marine sponges by whole genome amplification. Environmental Microbiology Reports, 2010, 2, 507-513.	2.4	78
65	Quantification of bacterial and archaeal symbionts in high and low microbial abundance sponges using real-time PCR. FEMS Microbiology Ecology, 2014, 89, 679-690.	2.7	77
66	Nitrate respiration in the hydrothermal vent tubeworm Riftia pachyptila. Nature, 1993, 366, 338-340.	27.8	75
67	Molecular response of the sponge Suberites domuncula to bacterial infection. Marine Biology, 2001, 139, 1037-1045.	1.5	75
68	Endophytes Are Hidden Producers of Maytansine in <i>Putterlickia</i> Roots. Journal of Natural Products, 2014, 77, 2577-2584.	3.0	73
69	Antibiotics-induced monodominance of a novel gut bacterial order. Gut, 2019, 68, 1781-1790.	12.1	73
70	Towards enhancing coral heat tolerance: a "microbiome transplantation―treatment using inoculations of homogenized coral tissues. Microbiome, 2021, 9, 102.	11.1	73
71	Actinomycetes from Red Sea Sponges: Sources for Chemical and Phylogenetic Diversity. Marine Drugs, 2014, 12, 2771-2789.	4.6	72
72	Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. ISME Journal, 2020, 14, 2554-2567.	9.8	72

#	Article	IF	Citations
73	Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria. Scientific Reports, 2019, 9, 18618.	3.3	71
74	Genomic Mining for Novel FADH2-Dependent Halogenases in Marine Sponge-Associated Microbial Consortia. Marine Biotechnology, 2013, 15, 63-72.	2.4	70
75	Antifungal potential of marine natural products. European Journal of Medicinal Chemistry, 2017, 126, 631-651.	5.5	69
76	Analysis of the first genome fragment from the marine sponge-associated, novel candidate phylum Poribacteria by environmental genomics. Environmental Microbiology, 2006, 8, 612-624.	3.8	68
77	Deep sequencing reveals diversity and community structure of complex microbiota in five Mediterranean sponges. Hydrobiologia, 2012, 687, 341-351.	2.0	68
78	Fueled by methane: deep-sea sponges from asphalt seeps gain their nutrition from methane-oxidizing symbionts. ISME Journal, 2019, 13, 1209-1225.	9.8	68
79	Sustainable Production of Bioactive Compounds by Sponges?Cell Culture and Gene Cluster Approach: A Review. Marine Biotechnology, 2004, 6, 105-17.	2.4	66
80	Antioxidant and Anti-Protease Activities of Diazepinomicin from the Sponge-Associated Micromonospora Strain RV115. Marine Drugs, 2012, 10, 2208-2221.	4.6	66
81	Revealing microbial functional activities in the <scp>R</scp> ed <scp>S</scp> ea sponge <scp><i>S</i></scp> <i>tylissa carteri</i> by metatranscriptomics. Environmental Microbiology, 2014, 16, 3683-3698.	3.8	64
82	Isolation of planctomycetes from Aplysina sponges. Aquatic Microbial Ecology, 2003, 33, 239-245.	1.8	64
83	Grapevine (Vitis vinifera) Crown Galls Host Distinct Microbiota. Applied and Environmental Microbiology, 2016, 82, 5542-5552.	3.1	62
84	The pathology of sponge orange band disease affecting the Caribbean barrel sponge Xestospongia muta. FEMS Microbiology Ecology, 2011, 75, 218-230.	2.7	61
85	Metagenomic binning reveals versatile nutrient cycling and distinct adaptive features in alphaproteobacterial symbionts of marine sponges. FEMS Microbiology Ecology, 2018, 94, .	2.7	61
86	Neutrality in the Metaorganism. PLoS Biology, 2019, 17, e3000298.	5.6	61
87	Widespread Distribution of Poribacteria in Demospongiae. Applied and Environmental Microbiology, 2009, 75, 5695-5699.	3.1	60
88	Hologenome analysis of two marine sponges with different microbiomes. BMC Genomics, 2016, 17, 158.	2.8	60
89	Linking Chemical and Microbial Diversity in Marine Sponges: Possible Role for Poribacteria as Producers of Methylâ€Branched Fatty Acids. ChemBioChem, 2010, 11, 2572-2578.	2.6	59
90	Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges. PLoS ONE, 2015, 10, e0138528.	2.5	58

#	Article	IF	CITATIONS
91	GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high) Tj ETQq1 1 0.7843 832-843.	14 rgBT /O 2.7	Overlock 10 55
92	An environmental genomics perspective on the diversity and function of marine sponge-associated microbiota. Current Opinion in Microbiology, 2007, 10, 215-220.	5.1	52
93	Can we forget the Mini-Mental State Examination? A systematic review of the validity of cognitive screening instruments within one month after stroke. Clinical Rehabilitation, 2015, 29, 694-704.	2.2	52
94	Genomic blueprints of sponge-prokaryote symbiosis are shared by low abundant and cultivatable Alphaproteobacteria. Scientific Reports, 2019, 9, 1999.	3.3	52
95	Microbial Diversity of the Freshwater Sponge Spongilla lacustris. Microbial Ecology, 2005, 50, 206-212.	2.8	51
96	Exocellular Cyclic Dipeptides from a Ruegeria Strain Associated with Cell Cultures of Suberites domuncula. Marine Biotechnology, 2004, 6, 95-103.	2.4	50
97	Marine Sponge-Derived Streptomyces sp. SBT343 Extract Inhibits Staphylococcal Biofilm Formation. Frontiers in Microbiology, 2017, 8, 236.	3.5	50
98	16S rRNA Gene-Based Identification of <1>Elizabethkingia meningoseptica 1 (Flavobacteriales: Flavobacteriaceae) as a Dominant Midgut Bacterium of the Asian Malaria Vector <1>Anopheles stephensi 1 (Dipteria: Culicidae) With Antimicrobial Activities. Journal of Medical Entomology, 2013, 50, 404-414.	1.8	49
99	New antibacterial xanthone from the marine sponge-derived Micrococcus sp. EG45. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4939-4942.	2.2	49
100	Phyllosphere bacterial communities of trichome-bearing and trichomeless Arabidopsis thaliana leaves. Antonie Van Leeuwenhoek, 2012, 101, 551-560.	1.7	48
101	Evolutionary Insights from Sponges. Science, 2007, 316, 1854-1855.	12.6	47
102	Emerging Sponge Models of Animal-Microbe Symbioses. Frontiers in Microbiology, 2016, 7, 2102.	3.5	47
103	Cebulactams A1 and A2, new macrolactams isolated from Saccharopolyspora cebuensis, the first obligate marine strain of the genus Saccharopolyspora. Tetrahedron Letters, 2008, 49, 6889-6892.	1.4	46
104	Enhancing Microbial Pollutant Degradation by Integrating Eco-Evolutionary Principles with Environmental Biotechnology. Trends in Microbiology, 2021, 29, 908-918.	7.7	46
105	Metabolism of nitrogen and sulfur in ectosymbiotic bacteria of marine nematodes (Nematoda,) Tj ETQq1 1 0.7843	314 rgBT /0	Oyerlock 10
106	Isolation of Petrocidin A, a New Cytotoxic Cyclic Dipeptide from the Marine Sponge-Derived Bacterium Streptomyces sp. SBT348. Marine Drugs, 2017, 15, 383.	4.6	44
107	Fluorometric Analysis of DNA Unwinding (FADU) as a Method for Detecting Repair-induced DNA Strand Breaks in UV-irradiated Mammalian Cells¶. Photochemistry and Photobiology, 2000, 72, 477.	2.5	44
108	Differential expression of immune receptors in two marine sponges upon exposure to microbial-associated molecular patterns. Scientific Reports, 2018, 8, 16081.	3.3	42

#	Article	IF	Citations
109	Compositional and Quantitative Insights Into Bacterial and Archaeal Communities of South Pacific Deep-Sea Sponges (Demospongiae and Hexactinellida). Frontiers in Microbiology, 2020, 11, 716.	3.5	41
110	Saccharopolyspora cebuensis sp. nov., a novel actinomycete isolated from a Philippine sponge (Porifera). International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 628-632.	1.7	40
111	Unique and species-specific microbial communities in Oscarella lobularis and other Mediterranean Oscarella species (Porifera: Homoscleromorpha). Marine Biology, 2013, 160, 781-791.	1.5	40
112	Inhibitory activities of the marine streptomycete-derived compound SF2446A2 against Chlamydia trachomatis and Schistosoma mansoni. Journal of Antibiotics, 2015, 68, 674-679.	2.0	40
113	Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Letters, 2016, 57, 2786-2789.	1.4	40
114	Operationalizing Ocean Health: Toward Integrated Research on Ocean Health and Recovery to Achieve Ocean Sustainability. One Earth, 2020, 2, 557-565.	6.8	40
115	Sorbicillactone A: a Structurally Unprecedented Bioactive Novel-Type Alkaloid from a Sponge-Derived Fungus. Progress in Molecular and Subcellular Biology, 2003, 37, 231-253.	1.6	40
116	Nitrate respiration in chemoautotrophic symbionts of the bivalve Lucinoma aequizonata. Marine Ecology - Progress Series, 1993, 94, 35-41.	1.9	40
117	Cellular localisation of secondary metabolites isolated from the Caribbean sponge Plakortis simplex. Marine Biology, 2007, 151, 1365-1373.	1.5	37
118	Detection of hemolytic bacteria from Palythoa caribaeorum (Cnidaria, Zoantharia) using a novel palytoxin-screening assay. Antonie Van Leeuwenhoek, 2009, 96, 405-411.	1.7	37
119	Two new antioxidant actinosporin analogues from the calcium alginate beads culture of sponge-associated Actinokineospora sp. strain EG49. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5089-5092.	2.2	37
120	ITS-2 and 18S rRNA Gene Phylogeny of Aplysinidae (Verongida, Demospongiae). Journal of Molecular Evolution, 2005, 60, 327-336.	1.8	36
121	Predicted Bacterial Interactions Affect in Vivo Microbial Colonization Dynamics in Nematostella. Frontiers in Microbiology, 2018, 9, 728.	3.5	36
122	Bdellovibrio and Like Organisms Are Predictors of Microbiome Diversity in Distinct Host Groups. Microbial Ecology, 2020, 79, 252-257.	2.8	35
123	Anti-protease and Immunomodulatory Activities of Bacteria Associated with Caribbean Sponges. Marine Biotechnology, 2011, 13, 883-892.	2.4	34
124	Ectyoplasia ferox, an Experimentally Tractable Model for Vertical Microbial Transmission in Marine Sponges. Microbial Ecology, 2013, 65, 462-474.	2.8	32
125	Actinomycete Metabolome Induction/Suppression with <i>N</i> -Acetylglucosamine. Journal of Natural Products, 2017, 80, 828-836.	3.0	32
126	Phylogeny and genomics of SAUL, an enigmatic bacterial lineage frequently associated with marine sponges. Environmental Microbiology, 2018, 20, 561-576.	3.8	32

#	Article	IF	Citations
127	Streptomyces axinellae sp. nov., isolated from the Mediterranean sponge Axinella polypoides (Porifera). International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 1433-1437.	1.7	31
128	Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling. Scientific Reports, 2016, 6, 35860.	3.3	31
129	Sponge white patch disease affecting the Caribbean sponge Amphimedon compressa. Diseases of Aquatic Organisms, 2012, 99, 95-102.	1.0	31
130	Rubrobacter aplysinae sp. nov., isolated from the marine sponge Aplysina aerophoba. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 705-709.	1.7	30
131	Actinokineospora spheciospongiae sp. nov., isolated from the marine sponge Spheciospongia vagabunda. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 879-884.	1.7	29
132	Sponges from Zanzibar host diverse prokaryotic communities with potential for natural product synthesis. FEMS Microbiology Ecology, 2019, 95, .	2.7	29
133	Genome plasticity in pathogenic and nonpathogenic enterobacteria. Current Topics in Microbiology and Immunology, 2002, 264, 157-75.	1.1	29
134	Antichlamydial Sterol from the Red Sea Sponge Callyspongia aff. implexa. Planta Medica, 2015, 81, 382-387.	1.3	27
135	New Tetromycin Derivatives with Anti-Trypanosomal and Protease Inhibitory Activities. Marine Drugs, 2011, 9, 1682-1697.	4.6	24
136	Microbial Strategies for Survival in the Glass Sponge <i>Vazella pourtalesii</i> i>. MSystems, 2020, 5, .	3.8	23
137	Cyclodysidins A–D, cyclic lipopeptides from the marine sponge-derived Streptomyces strain RV15. Tetrahedron Letters, 2012, 53, 23-29.	1.4	22
138	On the way to specificity ―Microbiome reflects sponge genetic cluster primarily in highly structured populations. Molecular Ecology, 2020, 29, 4412-4427.	3.9	22
139	Giant sponge grounds of Central Arctic seamounts are associated with extinct seep life. Nature Communications, 2022, 13, 638.	12.8	22
140	Symbiont transmission in marine sponges: reproduction, development, and metamorphosis. BMC Biology, 2022, 20, 100.	3.8	22
141	A New Bioactive Compound From the Marine Sponge-Derived Streptomyces sp. SBT348 Inhibits Staphylococcal Growth and Biofilm Formation. Frontiers in Microbiology, 2018, 9, 1473.	3.5	21
142	<scp>DNA</scp> â€stable isotope probing (DNAâ€SIP) identifies marine spongeâ€ssociated bacteria actively utilizing dissolved organic matter (DOM). Environmental Microbiology, 2021, 23, 4489-4504.	3.8	21
143	Lower Vibrio spp. abundances in Zostera marina leaf canopies suggest a novel ecosystem function for temperate seagrass beds. Marine Biology, 2021, 168, 1.	1.5	21
144	The Contribution of Nitrate Respiration to the Energy Budget of the Symbiont-Containing Clam <i>Lucinoma Aequizonata </i> :A Calorimetric Study. Journal of Experimental Biology, 1996, 199, 427-433.	1.7	21

#	Article	IF	Citations
145	Sequestration of Dietary Alkaloids by the Spongivorous Marine Mollusc Tylodina perversa. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2003, 58, 426-432.	1.4	20
146	Diversity of Nonribosomal Peptide Synthetase Genes in the Microbial Metagenomes of Marine Sponges. Marine Drugs, 2012, 10, 1192-1202.	4.6	20
147	On giant shoulders: how a seamount affects the microbial community composition of seawater and sponges. Biogeosciences, 2020, 17, 3471-3486.	3.3	20
148	Lifestyle of sponge symbiont phages by host prediction and correlative microscopy. ISME Journal, 2021, 15, 2001-2011.	9.8	19
149	Strepoxazine A, a new cytotoxic phenoxazin from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Letters, 2016, 57, 4196-4199.	1.4	18
150	Temporal variation of the microbial community associated with the mediterranean sponge Aplysina aerophoba. FEMS Microbiology Ecology, 2001, 38, 105-113.	2.7	18
151	Meeting Report: 1st International Symposium on Sponge Microbiology. Marine Biotechnology, 2011, 13, 1057-1061.	2.4	17
152	Exploring Symbioses by Single-Cell Genomics. Biological Bulletin, 2012, 223, 30-43.	1.8	17
153	Bacicyclin, a new antibacterial cyclic hexapeptide from Bacillus sp. strain BC028 isolated from Mytilus edulis. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 558-561.	2.2	17
154	Comparative Microbiome and Metabolome Analyses of the Marine Tunicate Ciona intestinalis from Native and Invaded Habitats. Microorganisms, 2020, 8, 2022.	3.6	17
155	Nitrate Respiration in Chemoautotrophic Symbionts of the Bivalve Lucinoma aequizonata Is Not Regulated by Oxygen. Applied and Environmental Microbiology, 1995, 61, 1630-1633.	3.1	17
156	Commensal bacteria make a difference. Trends in Microbiology, 2003, 11, 148-150.	7.7	16
157	Identification of Plakortide E from the Caribbean Sponge Plakortis halichondroides as a Trypanocidal Protease Inhibitor using Bioactivity-Guided Fractionation. Marine Drugs, 2014, 12, 2614-2622.	4.6	16
158	Genome Plasticity in Pathogenic and Nonpathogenic Enterobacteria. Current Topics in Microbiology and Immunology, 2002, , 157-175.	1.1	16
159	Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium <i>Actinokineospora</i> sp. Strain EG49. Genome Announcements, 2014, 2, .	0.8	15
160	Chloroflexi Dominate the Deep-Sea Golf Ball Sponges Craniella zetlandica and Craniella infrequens Throughout Different Life Stages. Frontiers in Marine Science, 2020, 7, .	2.5	15
161	A Microbial Nitrogen Engine Modulated by Bacteriosyncytia in Hexactinellid Sponges: Ecological Implications for Deep-Sea Communities. Frontiers in Marine Science, 2021, 8, .	2.5	15
162	Biogeography rather than substrate type determines bacterial colonization dynamics of marine plastics. PeerJ, 2021, 9, e12135.	2.0	15

#	Article	IF	CITATIONS
163	Marine Sponge Holobionts in Health and Disease. , 2019, , 81-104.		14
164	Determination of nitrate in the blood of the hydrothermal vent tubeworm Riftia pachyptila using a bacterial nitrate reduction assay. Deep-Sea Research Part I: Oceanographic Research Papers, 1998, 45, 2189-2200.	1.4	12
165	Population connectivity of fan-shaped sponge holobionts in the deep Cantabrian Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 167, 103427.	1.4	12
166	Inhibitory potential of strepthonium A against Shiga toxin production in enterohemorrhagic <i>Escherichia coli</i> (EHEC) strain EDL933. Natural Product Research, 2017, 31, 2818-2823.	1.8	11
167	Microbial diversity of the glass sponge Vazella pourtalesii in response to anthropogenic activities. Conservation Genetics, 2020, 21, 1001-1010.	1.5	11
168	Draft genome of the Arabidopsis thaliana phyllosphere bacterium, Williamsia sp. ARP1. Standards in Genomic Sciences, 2016, $11, 8$.	1.5	10
169	Deciphering a Marine Bone-Degrading Microbiome Reveals a Complex Community Effort. MSystems, 2021, 6, .	3.8	10
170	Bacteria with antimicrobial properties isolated from the Mediterranean sponges Chondrilla nucula and Petrosia ficiformis. Aquatic Microbial Ecology, 2007, 49, 157-163.	1.8	10
171	Phenotypic variations in the gills of the symbiont-containing bivalve Lucinoma aequizonata. Marine Biology, 2000, 136, 633-643.	1.5	9
172	Experimental application of vascular and coelomic catheterization to identify vascular transport mechanisms for inorganic carbon in the vent tubeworm, Riftia pachyptila. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51, 401-411.	1.4	9
173	Ethyl-Branched Aldehydes, Ketones, and Diketones from Caimans (CaimanandPaleosuchus; Crocodylia,) Tj ETQq1	1 _{3.0} 78431	.4 rgBT /Ove
174	Identification of the protease inhibitor miraziridine A in the Red sea sponge Theonella swinhoei. Pharmacognosy Research (discontinued), 2012, 4, 63.	0.6	9
175	Genome analysis of the marine bacterium Kiloniella laminariae and first insights into comparative genomics with related Kiloniella species. Archives of Microbiology, 2020, 202, 815-824.	2.2	9
176	Marine sponges maintain stable bacterial communities between reef sites with different coral to algae cover ratios. FEMS Microbiology Ecology, 2021, 97, .	2.7	9
177	Symbiosis and pathogenesis: common themes, different outcomes. Trends in Microbiology, 2001, 9, 585.	7.7	8
178	Mining Genomes of Three Marine Sponge-Associated Actinobacterial Isolates for Secondary Metabolism. Genome Announcements, 2015, 3, .	0.8	8
179	Draft Genome Sequences of " Candidatus Synechococcus spongiarum,―Cyanobacterial Symbionts of the Mediterranean Sponge Aplysina aerophoba. Genome Announcements, 2017, 5, .	0.8	8
180	On the Problem of Establishing the Subcellular Localization of Dictyostelium Retrotransposon TRE5-A Proteins by Biochemical Analysis of Nuclear Extracts. Analytical Biochemistry, 2001, 296, 83-91.	2.4	7

#	Article	IF	CITATIONS
181	Rapid tissue reduction and recovery in the sponge Aplysinella sp Marine Biology, 2008, 156, 141-153.	1.5	7
182	Draft genome sequences of three chemically rich actinomycetes isolated from Mediterranean sponges. Marine Genomics, 2015, 24, 285-287.	1.1	7
183	Williamsia herbipolensis sp. nov., isolated from the phyllosphere of Arabidopsis thaliana. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4609-4613.	1.7	7
184	Polaribacter septentrionalilitoris sp. nov., isolated from the biofilm of a stone from the North Sea. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 4305-4314.	1.7	7
185	Synthesis of distinctly different sets of antimicrobial activities by elicited plant cell suspension cultures. Plant Cell, Tissue and Organ Culture, 2011, 106, 105-113.	2.3	6
186	Legionella pneumophila: an aquatic microbe goes astray. FEMS Microbiology Reviews, 2002, 26, 149-162.	8.6	6
187	Genome Plasticity in Pathogenic and Nonpathogenic Enterobacteria. Current Topics in Microbiology and Immunology, 2002, , 157-175.	1.1	6
188	Streptomyces dysideae sp. nov., isolated from a marine Mediterranean sponge Dysidea tupha. International Journal of Systematic and Evolutionary Microbiology, 2019, 71, .	1.7	6
189	Genetic diversity, gene flow and hybridization in fan-shaped sponges (Phakellia spp.) in the North-East Atlantic deep sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 181, 103685.	1.4	6
190	Opisthobranch grazing results in mobilisation of spherulous cells and re-allocation of secondary metabolites in the sponge Aplysina aerophoba. Scientific Reports, 2020, 10, 21934.	3.3	5
191	SeaBioTech: From Seabed to Test-Bed: Harvesting the Potential of Marine Biodiversity for Industrial Biotechnology. Grand Challenges in Biology and Biotechnology, 2018, , 451-504.	2.4	4
192	Systematic Affiliation and Genome Analysis of Subtercola vilae DB165T with Particular Emphasis on Cold Adaptation of an Isolate from a High-Altitude Cold Volcano Lake. Microorganisms, 2019, 7, 107.	3.6	4
193	Editorial: special issue on sponge microbiome. FEMS Microbiology Ecology, 2020, 96, .	2.7	4
194	Harnessing the power of host–microbe symbioses to address grand challenges. Nature Reviews Microbiology, 2021, 19, 615-616.	28.6	4
195	<i>Desulfoluna</i> spp. form a cosmopolitan group of anaerobic dehalogenating bacteria widely distributed in marine sponges. FEMS Microbiology Ecology, 2022, 98, .	2.7	4
196	The bone-degrading enzyme machinery: From multi-component understanding to the treatment of residues from the meat industry. Computational and Structural Biotechnology Journal, 2021, 19, 6328-6342.	4.1	2
197	<i>Biological Bulletin</i> Virtual Symposium: Discoveries in Animal Symbiosis in the "Omics―Age. Biological Bulletin, 2012, 223, 5-6.	1.8	1
198	Rubritalea marina gen. nov., sp. nov., a marine representative of the phylum †Verrucomicrobia', isolated from a sponge (Porifera). International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2723-2723.	1.7	1

#	Article	IF	CITATIONS
199	Interaction of Legionella pneumophila with Dictyostelium discoideum., 0,, 161-164.		1
200	Chemical surprises from an uncultivated sponge symbiont. Planta Medica, 2012, 78, .	1.3	0
201	Metabolomic strategies in dereplication for targeted cultivation and isolation of new bioactive secondary metabolites from fungal endophytes and marine microbial symbionts. Planta Medica, 2013, 79, .	1.3	0