Jason S King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7466402/publications.pdf

Version: 2024-02-01

236925 289244 9,701 41 25 40 citations h-index g-index papers 48 48 48 21589 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	The induction of autophagy by mechanical stress. Autophagy, 2011, 7, 1490-1499.	9.1	156
4	Chemotaxis: finding the way forward with Dictyostelium. Trends in Cell Biology, 2009, 19, 523-530.	7.9	140
5	Drinking problems: mechanisms of macropinosome formation and maturation. FEBS Journal, 2017, 284, 3778-3790.	4.7	117
6	The origins and evolution of macropinocytosis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180158.	4.0	108
7	The ESCRT and autophagy machineries cooperate to repair ESX-1-dependent damage at the Mycobacterium-containing vacuole but have opposite impact on containing the infection. PLoS Pathogens, 2018, 14, e1007501.	4.7	94
8	SCAR knockouts in <i>Dictyostelium</i> : WASP assumes SCAR's position and upstream regulators in pseudopods. Journal of Cell Biology, 2012, 198, 501-508.	5.2	93
9	WASH is required for lysosomal recycling and efficient autophagic and phagocytic digestion. Molecular Biology of the Cell, 2013, 24, 2714-2726.	2.1	82
10	WASH drives early recycling from macropinosomes and phagosomes to maintain surface phagocytic receptors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5906-E5915.	7.1	79
11	Mycobacterium marinum antagonistically induces an autophagic response while repressing the autophagic flux in a TORC1- and ESX-1-dependent manner. PLoS Pathogens, 2017, 13, e1006344.	4.7	77
12	Autophagy in <i>Dictyostelium</i> : Mechanisms, regulation and disease in a simple biomedical model. Autophagy, 2017, 13, 24-40.	9.1	74
13	The autophagic machinery ensures nonlytic transmission of mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E687-92.	7.1	67
14	Phospholipase C Regulation of Phosphatidylinositol 3,4,5-trisphosphate-mediated Chemotaxis. Molecular Biology of the Cell, 2007, 18, 4772-4779.	2.1	66
15	Autophagy across the eukaryotes. Autophagy, 2012, 8, 1159-1162.	9.1	59
16	Cyclical Action of the WASH Complex: FAM21 and Capping Protein Drive WASH Recycling, Not Initial Recruitment. Developmental Cell, 2013, 24, 169-181.	7.0	52
17	The mood stabiliser lithium suppresses PIP3 signalling in Dictyostelium and human cells. DMM Disease Models and Mechanisms, 2009, 2, 306-312.	2.4	51
18	SCAR/WAVE is activated at mitosis and drives myosin-independent cytokinesis. Journal of Cell Science, 2010, 123, 2246-2255.	2.0	49

#	Article	IF	CITATIONS
19	Vmp1 Regulates <scp>PtdIns3P</scp> Signaling During Autophagosome Formation in <i>Dictyostelium discoideum</i> . Traffic, 2014, 15, 1235-1246.	2.7	48
20	The breadth of macropinocytosis research. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180146.	4.0	48
21	Mechanical stress meets autophagy: potential implications for physiology and pathology. Trends in Molecular Medicine, 2012, 18, 583-588.	6.7	47
22	Dephosphorylation of 2,3-bisphosphoglycerate by MIPP expands the regulatory capacity of the Rapoport–Luebering glycolytic shunt. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5998-6003.	7.1	38
23	PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection. PLoS Pathogens, 2019, 15, e1007551.	4.7	35
24	Coordinated Ras and Rac Activity Shapes Macropinocytic Cups and Enables Phagocytosis of Geometrically Diverse Bacteria. Current Biology, 2020, 30, 2912-2926.e5.	3.9	33
25	The use of streptavidin conjugates as immunoblot loading controls and mitochondrial markers for use with <i>Dictyostelium discoideum</i> . BioTechniques, 2013, 55, 39-41.	1.8	30
26	Methods to Monitor and Quantify Autophagy in the Social Amoeba Dictyostelium discoideum. Cells, 2017, 6, 18.	4.1	28
27	Cryptococcus neoformans Escape From Dictyostelium Amoeba by Both WASH-Mediated Constitutive Exocytosis and Vomocytosis. Frontiers in Cellular and Infection Microbiology, 2018, 8, 108.	3.9	27
28	Nutritional Requirements and Their Importance for Virulence of Pathogenic Cryptococcus Species. Microorganisms, 2017, 5, 65.	3.6	24
29	Genetic Control of Lithium Sensitivity and Regulation of Inositol Biosynthetic Genes. PLoS ONE, 2010, 5, e11151.	2.5	23
30	Comparative genome and transcriptome analyses of the social amoeba Acytostelium subglobosum that accomplishes multicellular development without germ-soma differentiation. BMC Genomics, 2015, 16, 80.	2.8	23
31	The endocytic pathways of Dictyostelium discoideum. International Journal of Developmental Biology, 2019, 63, 461-471.	0.6	22
32	A bacterial endosymbiont of the fungus Rhizopus microsporus drives phagocyte evasion and opportunistic virulence. Current Biology, 2022, 32, 1115-1130.e6.	3.9	22
33	Gamma secretase orthologs are required for lysosomal activity and autophagic degradation in <i>Dictyostelium discoideum</i> , independent of PSEN (presenilin) proteolytic function. Autophagy, 2019, 15, 1407-1418.	9.1	16
34	PtdIns $(3,4,5)$ <i>P<i>P<i>3 and inositol depletion as a cellular target of mood stabilizers. Biochemical Society Transactions, 2009, 37, 1110-1114.</i>	3.4	13
35	Water loss regulates cell and vesicle volume. Science, 2020, 367, 246-247.	12.6	8
36	Mroh1, a lysosomal regulator localised by WASH-generated actin. Journal of Cell Science, 2017, 130, 1785-1795.	2.0	6

#	Article	IF	CITATIONS
37	Chemotaxis: TorC before You Akt…. Current Biology, 2008, 18, R864-R866.	3.9	3
38	The Amoebal Model for Macropinocytosis. Sub-Cellular Biochemistry, 2022, 98, 41-59.	2.4	3
39	Moving the Research Forward: The Best of British Biology Using the Tractable Model System Dictyostelium discoideum. Cells, 2021, 10, 3036.	4.1	2
40	Cellular microbiology interviewâ€"Dr. Jason King. Cellular Microbiology, 2019, 21, e13007.	2.1	0
41	Dynamic Rac1 inhibition by CYRI helps cells drink, but stops them from driving. Journal of Cell Biology, 2021, 220, .	5.2	0