
Stéphane Henri Richard Oliet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7466129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-term potentiation depends on release of d-serine from astrocytes. Nature, 2010, 463, 232-236.	27.8	1,140
2	Gliotransmitters Travel in Time and Space. Neuron, 2014, 81, 728-739.	8.1	1,010
3	Glia-Derived d-Serine Controls NMDA Receptor Activity and Synaptic Memory. Cell, 2006, 125, 775-784.	28.9	789
4	Synaptic and Extrasynaptic NMDA Receptors Are Gated by Different Endogenous Coagonists. Cell, 2012, 150, 633-646.	28.9	597
5	Glial cells in (patho)physiology. Journal of Neurochemistry, 2012, 121, 4-27.	3.9	460
6	Activity-Dependent Structural and Functional Plasticity of Astrocyte-Neuron Interactions. Physiological Reviews, 2008, 88, 983-1008.	28.8	443
7	Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nature Reviews Drug Discovery, 2020, 19, 609-633.	46.4	441
8	Spatial Learning Depends on Both the Addition and Removal of New Hippocampal Neurons. PLoS Biology, 2007, 5, e214.	5.6	337
9	Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature, 1993, 364, 341-343.	27.8	297
10	Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2151-2155.	7.1	235
11	OSMORECEPTORS IN THE CENTRAL NERVOUS SYSTEM. Annual Review of Physiology, 1997, 59, 601-619.	13.1	231
12	Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission. Nature Neuroscience, 2015, 18, 219-226.	14.8	223
13	Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7963-7968.	7.1	184
14	Astroglial CB1 Receptors Determine Synaptic D-Serine Availability to Enable Recognition Memory. Neuron, 2018, 98, 935-944.e5.	8.1	170
15	Impairment of Glycolysis-Derived I-Serine Production in Astrocytes Contributes to Cognitive Deficits in Alzheimer's Disease. Cell Metabolism, 2020, 31, 503-517.e8.	16.2	160
16	LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia. Neuron, 2020, 108, 919-936.e11.	8.1	159
17	Glial D-Serine Gates NMDA Receptors at Excitatory Synapses in Prefrontal Cortex. Cerebral Cortex, 2012, 22, 595-606.	2.9	154
18	Organization, control and function of extrasynaptic NMDA receptors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130601.	4.0	135

#	Article	IF	CITATIONS
19	Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer's disease. Acta Neuropathologica Communications, 2018, 6, 104.	5.2	134
20	Structural basis of astrocytic Ca2+ signals at tripartite synapses. Nature Communications, 2020, 11, 1906.	12.8	133
21	Astroglial glutamate transporters in the brain: Regulating neurotransmitter homeostasis and synaptic transmission. Journal of Neuroscience Research, 2017, 95, 2140-2151.	2.9	129
22	Glia: they make your memories stick!. Trends in Neurosciences, 2007, 30, 417-424.	8.6	121
23	Evidence for a Hypothalamic Oxytocin-Sensitive Pattern-Generating Network Governing Oxytocin Neurons <i>In Vitro</i> . Journal of Neuroscience, 1998, 18, 6641-6649.	3.6	110
24	Astrocytic IP ₃ Rs: Contribution to Ca ²⁺ signalling and hippocampal LTP. Glia, 2017, 65, 502-513.	4.9	105
25	Adenosine-induced presynaptic inhibition of IPSCs and EPSCs in rat hypothalamic supraoptic nucleus neurones. Journal of Physiology, 1999, 520, 815-825.	2.9	103
26	Retrograde Regulation of GABA Transmission by the Tonic Release of Oxytocin and Endocannabinoids Governs Postsynaptic Firing. Journal of Neuroscience, 2007, 27, 1325-1333.	3.6	102
27	Neuronal, glial and synaptic remodeling in the adult hypothalamus: functional consequences and role of cell surface and extracellular matrix adhesion molecules. Neurochemistry International, 2004, 45, 491-501.	3.8	97
28	Alterations in the Hippocampal Endocannabinoid System in Diet-Induced Obese Mice. Journal of Neuroscience, 2010, 30, 6273-6281.	3.6	93
29	Glial modulation of synaptic transmission: Insights from the supraoptic nucleus of the hypothalamus. Glia, 2004, 47, 258-267.	4.9	89
30	Astroglial versus Neuronal D-Serine: Fact Checking. Trends in Neurosciences, 2017, 40, 517-520.	8.6	83
31	Conditional reduction of adult neurogenesis impairs bidirectional hippocampal synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6644-6649.	7.1	80
32	Co-agonists differentially tune GluN2B-NMDA receptor trafficking at hippocampal synapses. ELife, 2017, 6, .	6.0	76
33	Molecular determinants ofD-serine-mediated gliotransmission: From release to function. Glia, 2006, 54, 726-737.	4.9	62
34	The Planar Polarity Protein Scribble1 Is Essential for Neuronal Plasticity and Brain Function. Journal of Neuroscience, 2010, 30, 9738-9752.	3.6	62
35	Oxytocin and estrogen promote rapid formation of functional GABA synapses in the adult supraoptic nucleus. Molecular and Cellular Neurosciences, 2006, 31, 785-794.	2.2	55
36	Astrocytosis in parkinsonism: considering tripartite striatal synapses in physiopathology?. Frontiers in Aging Neuroscience, 2014, 6, 258.	3.4	46

STéPHANE HENRI RICHARD

#	Article	IF	CITATIONS
37	Cancer pain is not necessarily correlated with spinal overexpression of reactive glia markers. Pain, 2014, 155, 275-291.	4.2	43
38	Aquaporin-4 Surface Trafficking Regulates Astrocytic Process Motility and Synaptic Activity in Health and Autoimmune Disease. Cell Reports, 2019, 27, 3860-3872.e4.	6.4	43
39	Oxytocin-Induced Postinhibitory Rebound Firing Facilitates Bursting Activity in Oxytocin Neurons. Journal of Neuroscience, 2008, 28, 385-394.	3.6	42
40	Morphological plasticity of the rat supraoptic nucleus – cellular consequences. European Journal of Neuroscience, 2010, 32, 1989-1994.	2.6	42
41	Dopamine D4 Receptor-Mediated Presynaptic Inhibition of GABAergic Transmission in the Rat Supraoptic Nucleus. Journal of Neurophysiology, 2003, 90, 559-565.	1.8	41
42	Neuron–glia interactions in the rat supraoptic nucleus. Progress in Brain Research, 2008, 170, 109-117.	1.4	41
43	Deciphering the microstructure of hippocampal subfields with in vivo DTI and NODDI: Applications to experimental multiple sclerosis. NeuroImage, 2018, 172, 357-368.	4.2	40
44	Activity-dependent synaptic plasticity in the supraoptic nucleus of the rat hypothalamus. Journal of Physiology, 2006, 573, 711-721.	2.9	39
45	Modulation of GABAergic transmission by endogenous glutamate in the rat supraoptic nucleus. European Journal of Neuroscience, 2003, 17, 1777-1785.	2.6	38
46	Regulation of transmitter release by high-affinity group III mGluRs in the supraoptic nucleus of the rat hypothalamus. Neuropharmacology, 2004, 47, 333-341.	4.1	37
47	Proteomic Analysis of Gliosomes from Mouse Brain: Identification and Investigation of Glial Membrane Proteins. Journal of Proteome Research, 2014, 13, 5918-5927.	3.7	35
48	Glia-Dependent Switch of Kainate Receptor Presynaptic Action. Journal of Neuroscience, 2010, 30, 985-995.	3.6	33
49	Glutamatergic Inputs Contribute to Phasic Activity in Vasopressin Neurons. Journal of Neuroscience, 2010, 30, 1221-1232.	3.6	31
50	Structural, Kinetic, and Pharmacodynamic Mechanisms of <scp>d</scp> -Amino Acid Oxidase Inhibition by Small Molecules. Journal of Medicinal Chemistry, 2013, 56, 3710-3724.	6.4	31
51	Neuropathic pain depends upon d-serine co-activation of spinal NMDA receptors in rats. Neuroscience Letters, 2015, 603, 42-47.	2.1	31
52	Sequential alteration of microglia and astrocytes in the rat thalamus following spinal nerve ligation. Journal of Neuroinflammation, 2018, 15, 349.	7.2	29
53	Contribution of astrocytes to synaptic transmission in the rat supraoptic nucleus. Neurochemistry International, 2004, 45, 251-257.	3.8	25
54	Neuron–glia interactions in the hypothalamus. Neuron Clia Biology, 2006, 2, 51-58.	1.6	22

STéPHANE HENRI RICHARD

#	Article	IF	CITATIONS
55	Novel cell separation method for molecular analysis of neuron-astrocyte co-cultures. Frontiers in Cellular Neuroscience, 2014, 8, 12.	3.7	20
56	Modulation of synaptic transmission by astrocytes in the rat supraoptic nucleus. Journal of Physiology (Paris), 2002, 96, 231-236.	2.1	19
57	Activity-Dependent Neuroplasticity Induced by an Enriched Environment Reverses Cognitive Deficits in Scribble Deficient Mouse. Cerebral Cortex, 2017, 27, 5635-5651.	2.9	15
58	Effects of Activin-A on Neurons Acutely Isolated from the Rat Supraoptic Nucleus. Journal of Neuroendocrinology, 1995, 7, 661-663.	2.6	13
59	Extracellular signalâ€regulated kinase phosphorylation in forebrain neurones contributes to osmoregulatory mechanisms. Journal of Physiology, 2014, 592, 1637-1654.	2.9	12
60	Dynamics of surface neurotransmitter receptors and transporters in glial cells: Single molecule insights. Cell Calcium, 2017, 67, 46-52.	2.4	11
61	NMDARs, Coincidence Detectors of Astrocytic and Neuronal Activities. International Journal of Molecular Sciences, 2021, 22, 7258.	4.1	11
62	Voltage-gated Ca2+channel subtypes mediating GABAergic transmission in the rat supraoptic nucleus. European Journal of Neuroscience, 2005, 21, 2459-2466.	2.6	8
63	Functional Neuronal-Clial Anatomical Remodelling in the Hypothalamus. Novartis Foundation Symposium, 0, , 238-252.	1.1	8
64	Kainate Receptor-Induced Retrograde Inhibition of Glutamatergic Transmission in Vasopressin Neurons. Journal of Neuroscience, 2012, 32, 1301-1310.	3.6	4
65	Synaptic and Extra-Synaptic NMDA Receptors in the CNS. , 2017, , 19-49.		3
66	Effects of glia metabolism inhibition on nociceptive behavioral testing in rats. Data in Brief, 2016, 7, 372-375.	1.0	0