
## Chun Jimmie Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/746583/publications.pdf Version: 2024-02-01



CHUN LIMMIE YE

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Assessing computational tools for the discovery of transcription factor binding sites. Nature<br>Biotechnology, 2005, 23, 137-144.                                                   | 17.5 | 1,121     |
| 2  | Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nature<br>Biotechnology, 2018, 36, 89-94.                                                            | 17.5 | 745       |
| 3  | EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing<br>data. Genome Biology, 2019, 20, 63.                                              | 8.8  | 608       |
| 4  | Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10437-10442. | 7.1  | 600       |
| 5  | CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Scientific Reports, 2017, 7, 737.                                      | 3.3  | 543       |
| 6  | Polarization of the Effects of Autoimmune and Neurodegenerative Risk Alleles in Leukocytes. Science, 2014, 344, 519-523.                                                             | 12.6 | 480       |
| 7  | Intratumoral CD4+ T Cells Mediate Anti-tumor Cytotoxicity in Human Bladder Cancer. Cell, 2020, 181,<br>1612-1625.e13.                                                                | 28.9 | 436       |
| 8  | Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell, 2019, 177, 556-571.e16.                                                                  | 28.9 | 405       |
| 9  | Common Genetic Variants Modulate Pathogen-Sensing Responses in Human Dendritic Cells. Science,<br>2014, 343, 1246980.                                                                | 12.6 | 391       |
| 10 | A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks. Cell, 2015, 162,<br>675-686.                                                                     | 28.9 | 383       |
| 11 | Single-Cell RNA Sequencing of Lymph Node Stromal Cells Reveals Niche-Associated Heterogeneity.<br>Immunity, 2018, 48, 1014-1028.e6.                                                  | 14.3 | 339       |
| 12 | Transethnic Genetic-Correlation Estimates from Summary Statistics. American Journal of Human<br>Genetics, 2016, 99, 76-88.                                                           | 6.2  | 265       |
| 13 | Evaluation of SARS-CoV-2 serology assays reveals a range of test performance. Nature Biotechnology, 2020, 38, 1174-1183.                                                             | 17.5 | 251       |
| 14 | Parsing the Interferon Transcriptional Network and Its Disease Associations. Cell, 2016, 164, 564-578.                                                                               | 28.9 | 250       |
| 15 | Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature, 2017, 549, 111-115.                                                                             | 27.8 | 247       |
| 16 | Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nature Genetics, 2013, 45, 299-303.                    | 21.4 | 237       |
| 17 | Intersection of population variation and autoimmunity genetics in human T cell activation. Science, 2014, 345, 1254665.                                                              | 12.6 | 218       |
| 18 | Global absence and targeting of protective immune states in severe COVID-19. Nature, 2021, 591, 124-130.                                                                             | 27.8 | 206       |

Chun Jimmie Ye

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A tissue checkpoint regulates type 2 immunity. Nature Immunology, 2016, 17, 1381-1387.                                                                                                                   | 14.5 | 184       |
| 20 | Single-cell eQTL mapping identifies cell type–specific genetic control of autoimmune disease. Science, 2022, 376, eabf3041.                                                                              | 12.6 | 171       |
| 21 | Functional interpretation of single cell similarity maps. Nature Communications, 2019, 10, 4376.                                                                                                         | 12.8 | 169       |
| 22 | Single-cell RNA-seq reveals cell type–specific molecular and genetic associations to lupus. Science, 2022, 376, eabf1970.                                                                                | 12.6 | 156       |
| 23 | Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. Science Translational Medicine, 2021, 13, eabh2624.                                          | 12.4 | 155       |
| 24 | Genetic determinants of co-accessible chromatin regions in activated T cells across humans. Nature<br>Genetics, 2018, 50, 1140-1150.                                                                     | 21.4 | 139       |
| 25 | Lineage dynamics of murine pancreatic development at single-cell resolution. Nature Communications, 2018, 9, 3922.                                                                                       | 12.8 | 137       |
| 26 | Accurate Discovery of Expression Quantitative Trait Loci Under Confounding From Spurious and Genuine Regulatory Hotspots. Genetics, 2008, 180, 1909-1925.                                                | 2.9  | 136       |
| 27 | Pooled Knockin Targeting for Genome Engineering of Cellular Immunotherapies. Cell, 2020, 181, 728-744.e21.                                                                                               | 28.9 | 131       |
| 28 | CRISPR activation and interference screens decode stimulation responses in primary human T cells.<br>Science, 2022, 375, eabj4008.                                                                       | 12.6 | 119       |
| 29 | Effectively Identifying eQTLs from Multiple Tissues by Combining Mixed Model and Meta-analytic Approaches. PLoS Genetics, 2013, 9, e1003491.                                                             | 3.5  | 109       |
| 30 | Ultrarare variants drive substantial cis heritability of human gene expression. Nature Genetics, 2019, 51, 1349-1355.                                                                                    | 21.4 | 98        |
| 31 | Single-cell transcriptional profiling of human thymic stroma uncovers novel cellular heterogeneity in the thymic medulla. Nature Communications, 2021, 12, 1096.                                         | 12.8 | 96        |
| 32 | Obesity alters pathology and treatment response in inflammatory disease. Nature, 2022, 604, 337-342.                                                                                                     | 27.8 | 93        |
| 33 | The effect of low-dose IL-2 and Treg adoptive cell therapy in patients with type 1 diabetes. JCI Insight, 2021, 6, .                                                                                     | 5.0  | 91        |
| 34 | Genetic analysis of isoform usage in the human anti-viral response reveals influenza-specific<br>regulation of <i>ERAP2</i> transcripts under balancing selection. Genome Research, 2018, 28, 1812-1825. | 5.5  | 66        |
| 35 | lentiMPRA and MPRAflow for high-throughput functional characterization of gene regulatory elements. Nature Protocols, 2020, 15, 2387-2412.                                                               | 12.0 | 65        |
| 36 | Enhancing droplet-based single-nucleus RNA-seq resolution using the semi-supervised machine learning classifier DIEM. Scientific Reports, 2020, 10, 11019.                                               | 3.3  | 64        |

Сним Јімміе Үе

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | XYZeq: Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment. Science Advances, 2021, 7, .                                                                       | 10.3 | 64        |
| 38 | Selection and explosive growth alter genetic architecture and hamper the detection of causal rare variants. Genome Research, 2016, 26, 863-873.                                                                         | 5.5  | 63        |
| 39 | The development and evolution of inhibitory neurons in primate cerebrum. Nature, 2022, 603, 871-877.                                                                                                                    | 27.8 | 58        |
| 40 | Functional CRISPR dissection of gene networks controlling human regulatory T cell identity. Nature<br>Immunology, 2020, 21, 1456-1466.                                                                                  | 14.5 | 57        |
| 41 | On the cross-population generalizability of gene expression prediction models. PLoS Genetics, 2020, 16, e1008927.                                                                                                       | 3.5  | 41        |
| 42 | Optimized design of single-cell RNA sequencing experiments for cell-type-specific eQTL analysis. Nature<br>Communications, 2020, 11, 5504.                                                                              | 12.8 | 39        |
| 43 | Single-cell RNA-sequencing of peripheral blood mononuclear cells reveals widespread,<br>context-specific gene expression regulation upon pathogenic exposure. Nature Communications, 2022,<br>13, .                     | 12.8 | 39        |
| 44 | Orthologous repeats and mammalian phylogenetic inference. Genome Research, 2005, 15, 998-1006.                                                                                                                          | 5.5  | 37        |
| 45 | Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs.<br>Science Immunology, 2023, 8, .                                                                                 | 11.9 | 35        |
| 46 | Effectively identifying regulatory hotspots while capturing expression heterogeneity in gene expression studies. Genome Biology, 2014, 15, r61.                                                                         | 9.6  | 32        |
| 47 | Using Network Component Analysis to Dissect Regulatory Networks Mediated by Transcription Factors in Yeast. PLoS Computational Biology, 2009, 5, e1000311.                                                              | 3.2  | 28        |
| 48 | SCITO-seq: single-cell combinatorial indexed cytometry sequencing. Nature Methods, 2021, 18, 903-911.                                                                                                                   | 19.0 | 28        |
| 49 | Covariate selection for association screening in multiphenotype genetic studies. Nature Genetics, 2017, 49, 1789-1795.                                                                                                  | 21.4 | 27        |
| 50 | Transcriptomic analysis of immune cells in a multi-ethnic cohort of systemic lupus erythematosus<br>patients identifies ethnicity- and disease-specific expression signatures. Communications Biology, 2021,<br>4, 488. | 4.4  | 25        |
| 51 | Single-Cell Mapping of Progressive Fetal-to-Adult Transition in Human Naive T Cells. Cell Reports, 2021, 34, 108573.                                                                                                    | 6.4  | 25        |
| 52 | Monoclonal antibody-mediated neutralization of SARS-CoV-2 in an IRF9-deficient child. Proceedings of the United States of America, 2021, 118, .                                                                         | 7.1  | 24        |
| 53 | Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. ELife, 2021, 10, .                                                                                                       | 6.0  | 23        |
| 54 | CCR2 deficiency alters activation of microglia subsets in traumatic brain injury. Cell Reports, 2021, 36, 109727.                                                                                                       | 6.4  | 23        |

Chun Jimmie Ye

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Mixed-model coexpression: calculating gene coexpression while accounting for expression heterogeneity. Bioinformatics, 2011, 27, i288-i294.                                                                                                    | 4.1  | 21        |
| 56 | An ancestryâ€based approach for detecting interactions. Genetic Epidemiology, 2018, 42, 49-63.                                                                                                                                                 | 1.3  | 17        |
| 57 | Reverse gene–environment interaction approach to identify variants influencing body-mass index in<br>humans. Nature Metabolism, 2019, 1, 630-642.                                                                                              | 11.9 | 14        |
| 58 | IL-27: An endogenous constitutive repressor of human monocytes. Clinical Immunology, 2020, 217, 108498.                                                                                                                                        | 3.2  | 13        |
| 59 | Discovering tightly regulated and differentially expressed gene sets in whole genome expression data.<br>Bioinformatics, 2007, 23, e84-e90.                                                                                                    | 4.1  | 11        |
| 60 | Combined Single Cell Transcriptome and Surface Epitope Profiling Identifies Potential Biomarkers of<br>Psoriatic Arthritis and Facilitates Diagnosis via Machine Learning. Frontiers in Immunology, 2022, 13,<br>835760.                       | 4.8  | 11        |
| 61 | No detectable alloreactive transcriptional responses under standard sample preparation conditions during donor-multiplexed single-cell RNA sequencing of peripheral blood mononuclear cells. BMC Biology, 2021, 19, 10.                        | 3.8  | 9         |
| 62 | Mass cytometry reveals a conserved immune trajectory of recovery in hospitalized COVID-19 patients.<br>Immunity, 2022, , .                                                                                                                     | 14.3 | 9         |
| 63 | Detecting the Presence and Absence of Causal Relationships between Expression of Yeast Genes with<br>Very Few Samples. Journal of Computational Biology, 2010, 17, 533-546.                                                                    | 1.6  | 8         |
| 64 | Inhibition of MET Signaling with Ficlatuzumab in Combination with Chemotherapy in Refractory AML:<br>Clinical Outcomes and High-Dimensional Analysis. Blood Cancer Discovery, 2021, 2, 434-449.                                                | 5.0  | 7         |
| 65 | Multiplexed droplet single-cell sequencing (Mux-Seq) of normal and transplant kidney. American<br>Journal of Transplantation, 2022, 22, 876-885.                                                                                               | 4.7  | 7         |
| 66 | Integrated Computational and Experimental Analysis of the Neuroendocrine Transcriptome in Genetic<br>Hypertension Identifies Novel Control Points for the Cardiometabolic Syndrome. Circulation:<br>Cardiovascular Genetics, 2012, 5, 430-440. | 5.1  | 6         |
| 67 | Multi-Modal Single-Cell Sequencing Identifies Cellular Immunophenotypes Associated With Juvenile<br>Dermatomyositis Disease Activity. Frontiers in Immunology, 0, 13, .                                                                        | 4.8  | 6         |
| 68 | Singleton Variants Dominate the Genetic Architecture of Human Gene Expression. SSRN Electronic<br>Journal, 2018, , .                                                                                                                           | 0.4  | 4         |
| 69 | CloudPred: Predicting Patient Phenotypes From Single-cell RNA-seq. , 2021, , .                                                                                                                                                                 |      | 3         |
| 70 | Detecting the Presence and Absence of Causal Relationships between Expression of Yeast Genes with<br>Very Few Samples. Lecture Notes in Computer Science, 2009, , 466-481.                                                                     | 1.3  | 2         |
| 71 | How mutations express themselves in blood-cell production. Nature, 2019, 571, 329-330.                                                                                                                                                         | 27.8 | 1         |
| 72 | Analysis of Multiplexed Single Cell RNA Sequencing Clinical Correlative Data in AML Reveals<br>Biomarkers of Resistance. Blood, 2020, 136, 40-40.                                                                                              | 1.4  | 1         |

Сним Јімміе Үе

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Reconstructing the Molecular Function of Genetic Variation in Regulatory Networks. Genetics, 2017, 207, 1699-1709.                                                                                                     | 2.9 | 0         |
| 74 | Principles of Systems Biology, No. 27. Cell Systems, 2018, 6, 260-262.                                                                                                                                                 | 6.2 | 0         |
| 75 | Single cell Dissection of Resistance to anti-BCMA CAR-T cell Therapy. Clinical Lymphoma, Myeloma and<br>Leukemia, 2019, 19, e25-e26.                                                                                   | 0.4 | 0         |
| 76 | PhAT-QTL: A Phase-Aware Test for QTL Detection. Lecture Notes in Computer Science, 2017, , 150-161.                                                                                                                    | 1.3 | 0         |
| 77 | Abstract 5512: Identification of circulating myeloid cells induced in advanced biliary cancer patients responding to anti-PD1 through combined single cell RNA sequencing and protein expression analysis. , 2020, , . |     | 0         |
| 78 | Single-Cell Mapping of Progressive Fetal-to-Adult Transition in Human NaÃ <sup>-</sup> ve T Cells. SSRN Electronic<br>Journal, 0, , .                                                                                  | 0.4 | 0         |
| 79 | On the cross-population generalizability of gene expression prediction models. , 2020, 16, e1008927.                                                                                                                   |     | 0         |
| 80 | On the cross-population generalizability of gene expression prediction models. , 2020, 16, e1008927.                                                                                                                   |     | 0         |
| 81 | On the cross-population generalizability of gene expression prediction models. , 2020, 16, e1008927.                                                                                                                   |     | 0         |
| 82 | On the cross-population generalizability of gene expression prediction models. , 2020, 16, e1008927.                                                                                                                   |     | 0         |
| 83 | On the cross-population generalizability of gene expression prediction models. , 2020, 16, e1008927.                                                                                                                   |     | 0         |
| 84 | On the cross-population generalizability of gene expression prediction models. , 2020, 16, e1008927.                                                                                                                   |     | 0         |