Kathryn S Lilley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7465527/publications.pdf

Version: 2024-02-01

264 papers 24,828 citations

7568 77 h-index 9589 142 g-index

301 all docs

301 docs citations

times ranked

301

32918 citing authors

#	Article	IF	CITATIONS
1	A subcellular map of the human proteome. Science, 2017, 356, .	12.6	2,079
2	DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nature Methods, 2020, 17, 41-44.	19.0	882
3	Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Molecular Psychiatry, 2004, 9, 684-697.	7.9	810
4	The minimum information about a proteomics experiment (MIAPE). Nature Biotechnology, 2007, 25, 887-893.	17. 5	694
5	Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nature Medicine, 2013, 19, 753-759.	30.7	521
6	Mapping the Arabidopsis organelle proteome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6518-6523.	7.1	518
7	Circadian Orchestration of the Hepatic Proteome. Current Biology, 2006, 16, 1107-1115.	3.9	506
8	Addressing Accuracy and Precision Issues in iTRAQ Quantitation. Molecular and Cellular Proteomics, 2010, 9, 1885-1897.	3.8	471
9	Analysis of Detergent-Resistant Membranes in Arabidopsis. Evidence for Plasma Membrane Lipid Rafts. Plant Physiology, 2005, 137, 104-116.	4.8	445
10	The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 894-899.	7.1	445
11	Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection. Cell Systems, 2020, 11, 11-24.e4.	6.2	439
12	Identification of Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis. A Proteomic and Genomic Analysis. Plant Physiology, 2003, 132, 568-577.	4.8	364
13	FlyMine: an integrated database for Drosophila and Anopheles genomics. Genome Biology, 2007, 8, R129.	9.6	345
14	Ubiquitination of \hat{l}_{\pm} -Synuclein in Lewy Bodies Is a Pathological Event Not Associated with Impairment of Proteasome Function. Journal of Biological Chemistry, 2003, 278, 44405-44411.	3.4	325
15	Localization of Organelle Proteins by Isotope Tagging (LOPIT). Molecular and Cellular Proteomics, 2004, 3, 1128-1134.	3.8	305
16	MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics, 2012, 28, 288-289.	4.1	288
17	i-Tracker: For quantitative proteomics using iTRAQâ,,¢. BMC Genomics, 2005, 6, 145.	2.8	275
18	All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Review of Proteomics, 2004, 1, 401-409.	3.0	260

#	Article	IF	CITATIONS
19	The Tip-Link Antigen, a Protein Associated with the Transduction Complex of Sensory Hair Cells, Is Protocadherin-15. Journal of Neuroscience, 2006, 26, 7022-7034.	3.6	258
20	Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Current Opinion in Chemical Biology, 2002, 6, 46-50.	6.1	248
21	Comprehensive identification of RNA–protein interactions in any organism using orthogonal organic phase separation (OOPS). Nature Biotechnology, 2019, 37, 169-178.	17.5	247
22	A systematic approach to modeling, capturing, and disseminating proteomics experimental data. Nature Biotechnology, 2003, 21, 247-254.	17.5	246
23	Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology, 2007, 45, 1478-1488.	7.3	234
24	Growth control of the eukaryote cell: a systems biology study in yeast. Journal of Biology, 2007, 6, 4.	2.7	234
25	Tracking the embryonic stem cell transition from ground state pluripotency. Development (Cambridge), 2017, 144, 1221-1234.	2.5	226
26	Toward a Comprehensive Map of the Effectors of Rab GTPases. Developmental Cell, 2014, 31, 358-373.	7.0	224
27	Subunit assembly and active site location in the structure of glutamate dehydrogenase. Proteins: Structure, Function and Bioinformatics, 1992, 12, 75-86.	2.6	221
28	Drosophila lonotropic Receptor 25a mediates circadian clock resetting by temperature. Nature, 2015, 527, 516-520.	27.8	216
29	A Comprehensive Subcellular Atlas of the Toxoplasma Proteome via hyperLOPIT Provides Spatial Context for Protein Functions. Cell Host and Microbe, 2020, 28, 752-766.e9.	11.0	201
30	A draft map of the mouse pluripotent stem cell spatial proteome. Nature Communications, 2016, 7, 8992.	12.8	197
31	Functional Specialization amongst the Arabidopsis Toc159 Family of Chloroplast Protein Import Receptors[W]. Plant Cell, 2004, 16, 2059-2077.	6.6	184
32	Maximising sensitivity for detecting changes in protein expression: Experimental design using minimal CyDyes. Proteomics, 2005, 5, 3105-3115.	2.2	183
33	SETH1 and SETH2, Two Components of the Glycosylphosphatidylinositol Anchor Biosynthetic Pathway, Are Required for Pollen Germination and Tube Growth in Arabidopsis Â[W]. Plant Cell, 2004, 16, 229-240.	6.6	178
34	Ultra-fast proteomics with Scanning SWATH. Nature Biotechnology, 2021, 39, 846-854.	17.5	173
35	Determining a significant change in protein expression with DeCyderâ,,¢ during a pair-wise comparison using two-dimensional difference gel electrophoresis. Proteomics, 2004, 4, 1421-1432.	2.2	163
36	Proteome labeling and protein identification in specific tissues and at specific developmental stages in an animal. Nature Biotechnology, 2014, 32, 465-472.	17.5	161

#	Article	IF	CITATIONS
37	Analysis of the expression patterns, subcellular localisations and interaction partners of <i>Drosophila</i> proteins using a <i>pigP</i> protein trap library. Development (Cambridge), 2014, 141, 3994-4005.	2.5	160
38	Subcellular proteomics. Nature Reviews Methods Primers, 2021, 1, .	21.2	159
39	The Arabidopsis ppi1 Mutant Is Specifically Defective in the Expression, Chloroplast Import, and Accumulation of Photosynthetic Proteins[W]. Plant Cell, 2003, 15, 1859-1871.	6.6	153
40	Experimental and Statistical Considerations to Avoid False Conclusions in Proteomics Studies Using Differential In-gel Electrophoresis. Molecular and Cellular Proteomics, 2007, 6, 1354-1364.	3.8	152
41	Putative Glycosyltransferases and Other Plant Golgi Apparatus Proteins Are Revealed by LOPIT Proteomics Â. Plant Physiology, 2012, 160, 1037-1051.	4.8	149
42	Impact of Replicate Types on Proteomic Expression Analysis. Journal of Proteome Research, 2005, 4, 1867-1871.	3.7	147
43	Design and Analysis Issues in Quantitative Proteomics Studies. Proteomics, 2007, 7, 42-50.	2.2	147
44	Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics. Nature Communications, 2019, 10, 331.	12.8	146
45	Comparative proteomics of clathrin-coated vesicles. Journal of Cell Biology, 2006, 175, 571-578.	5.2	145
46	Identification of Putative Stage-Specific Grapevine Berry Biomarkers and Omics Data Integration into Networks \hat{A} \hat{A} \hat{A} . Plant Physiology, 2010, 154, 1439-1459.	4.8	145
47	The RNA-binding protein repertoire of Arabidopsis thaliana. Scientific Reports, 2016, 6, 29766.	3.3	139
48	The Drosophila melanogaster sperm proteome-II (DmSP-II). Journal of Proteomics, 2010, 73, 2171-2185.	2.4	138
49	\hat{l}_{\pm} -Klotho Expression in Human Tissues. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1308-E1318.	3.6	137
50	Application of partial least squares discriminant analysis to two-dimensional difference gel studies in expression proteomics. Proteomics, 2005, 5, 81-90.	2.2	136
51	A proteomic approach identifies many novel palmitoylated proteins in <scp>A</scp> rabidopsis. New Phytologist, 2013, 197, 805-814.	7.3	135
52	Detection of Reactive Oxygen Species-sensitive Thiol Proteins by Redox Difference Gel Electrophoresis. Journal of Biological Chemistry, 2007, 282, 22040-22051.	3.4	133
53	Identification of S-nitrosated mitochondrial proteins by <i>S</i> -nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation. Biochemical Journal, 2010, 430, 49-59.	3.7	130
54	Investigating sample pooling strategies for DIGE experiments to address biological variability. Proteomics, 2009, 9, 388-397.	2.2	127

#	Article	IF	CITATIONS
55	Human Urinary Exosomes as Innate Immune Effectors. Journal of the American Society of Nephrology: JASN, 2014, 25, 2017-2027.	6.1	127
56	A time-resolved proteomic and prognostic map of COVID-19. Cell Systems, 2021, 12, 780-794.e7.	6.2	125
57	Independent protein-profiling studies show a decrease in apolipoprotein A1 levels in schizophrenia CSF, brain and peripheral tissues. Molecular Psychiatry, 2008, 13, 1118-1128.	7.9	124
58	Proteomic Analysis Reveals the Role of Synaptic Vesicle Cycling in Sustaining the Suprachiasmatic Circadian Clock. Current Biology, 2009, 19, 2031-2036.	3.9	123
59	dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts. Nature Communications, 2022, 13, .	12.8	120
60	Molecular Analysis of Core Kinetochore Composition and Assembly in Drosophila melanogaster. PLoS ONE, 2007, 2, e478.	2.5	119
61	Multiple Protein Phosphatases Are Required for Mitosis in Drosophila. Current Biology, 2007, 17, 293-303.	3.9	119
62	Identification of Internal Ribosome Entry Segment (IRES)- <i>trans</i> -Acting Factors for the Myc Family of IRESs. Molecular and Cellular Biology, 2008, 28, 40-49.	2.3	117
63	Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance. Phytochemistry, 2004, 65, 1805-1816.	2.9	114
64	Interrelationships between Colonies, Biofilms, and Planktonic Cells of Pseudomonas aeruginosa. Journal of Bacteriology, 2007, 189, 2411-2416.	2.2	114
65	Using hyperLOPIT to perform high-resolution mapping of the spatial proteome. Nature Protocols, 2017, 12, 1110-1135.	12.0	113
66	New Insights into the DT40 B Cell Receptor Cluster Using a Proteomic Proximity Labeling Assay. Journal of Biological Chemistry, 2014, 289, 14434-14447.	3.4	110
67	Interaction between Anillin and RacGAP50C connects the actomyosin contractile ring with spindle microtubules at the cell division site. Journal of Cell Science, 2008, 121, 1151-1158.	2.0	109
68	Global analysis of protein-RNA interactions in SARS-CoV-2-infected cells reveals key regulators of infection. Molecular Cell, 2021, 81, 2851-2867.e7.	9.7	108
69	Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE). BMC Genomics, 2010, 11, 43.	2.8	107
70	Protein Neighbors and Proximity Proteomics. Molecular and Cellular Proteomics, 2015, 14, 2848-2856.	3.8	105
71	2-D DIGE Analysis of Liver and Red Blood Cells Provides Further Evidence for Oxidative Stress in Schizophrenia. Journal of Proteome Research, 2007, 6, 141-149.	3.7	104
72	The Association of Biomolecular Resource Facilities Proteomics Research Group 2006 Study. Molecular and Cellular Proteomics, 2007, 6, 1291-1298.	3.8	100

#	Article	IF	CITATIONS
73	Quantitative proteomic approach to study subcellular localization of membrane proteins. Nature Protocols, 2006, 1, 1778-1789.	12.0	96
74	Deciphering Thylakoid Sub-compartments using a Mass Spectrometry-based Approach. Molecular and Cellular Proteomics, 2014, 13, 2147-2167.	3.8	96
75	MRMaid, the Web-based Tool for Designing Multiple Reaction Monitoring (MRM) Transitions. Molecular and Cellular Proteomics, 2009, 8, 696-705.	3.8	95
76	Proteomic approaches to the characterization of protein thiol modification. Current Opinion in Chemical Biology, 2011, 15, 120-128.	6.1	90
77	Nutrient control of eukaryote cell growth: a systems biology study in yeast. BMC Biology, 2010, 8, 68.	3.8	89
78	DNA microarray normalization methods can remove bias from differential protein expression analysis of 2D difference gel electrophoresis results. Bioinformatics, 2004, 20, 2026-2034.	4.1	87
79	Protein profiling of human postmortem brain using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE). Molecular Psychiatry, 2004, 9, 128-143.	7.9	85
80	Mass-spectrometry-based spatial proteomics data analysis using <tt>pRoloc</tt> and <tt>pRolocdata</tt> . Bioinformatics, 2014, 30, 1322-1324.	4.1	85
81	Precursor ion scanning for detection and structural characterization of heterogeneous glycopeptide mixtures. Journal of the American Society for Mass Spectrometry, 2002, 13, 1065-1077.	2.8	83
82	Mutation of <i>nfxB</i> Causes Global Changes in the Physiology and Metabolism of <i>Pseudomonas aeruginosa</i> Journal of Proteome Research, 2010, 9, 2957-2967.	3.7	83
83	Understudied proteins: opportunities and challenges for functional proteomics. Nature Methods, 2022, 19, 774-779.	19.0	83
84	Guidelines for reporting the use of mass spectrometry in proteomics. Nature Biotechnology, 2008, 26, 860-861.	17.5	82
85	Effects of Traveling Wave Ion Mobility Separation on Data Independent Acquisition in Proteomics Studies. Journal of Proteome Research, 2013, 12, 2323-2339.	3.7	81
86	<i>Trans</i> àêecting translational regulatory RNA binding proteins. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1465.	6.4	79
87	Methods of quantitative proteomics and their application to plant organelle characterization. Journal of Experimental Botany, 2006, 57, 1493-1499.	4.8	77
88	Isobaric tagging approaches in quantitative proteomics: the ups and downs. Analytical and Bioanalytical Chemistry, 2012, 404, 1029-1037.	3.7	77
89	Structural and functional characteristics of cGMP-dependent methionine oxidation in Arabidopsis thaliana proteins. Cell Communication and Signaling, 2013, 11, 1.	6.5	77
90	The metabolic background is a global player in Saccharomyces gene expression epistasis. Nature Microbiology, 2016, 1, 15030.	13.3	76

#	Article	IF	CITATIONS
91	Identification of a New Quorum-Sensing-Controlled Virulence Factor in Erwinia carotovora subsp. atroseptica Secreted via the Type II Targeting Pathway. Molecular Plant-Microbe Interactions, 2005, 18, 334-342.	2.6	73
92	Drosophila Larp associates with poly(A)-binding protein and is required for male fertility and syncytial embryo development. Developmental Biology, 2009, 334, 186-197.	2.0	73
93	Subâ€cellular localization of membrane proteins. Proteomics, 2008, 8, 3991-4011.	2.2	71
94	Mapping Organelle Proteins and Protein Complexes in <i>Drosophila melanogaster</i> . Journal of Proteome Research, 2009, 8, 2667-2678.	3.7	71
95	In Vivo Analysis of Proteomes and Interactomes Using Parallel Affinity Capture (iPAC) Coupled to Mass Spectrometry. Molecular and Cellular Proteomics, 2011, 10, M110.002386.	3.8	69
96	Sequestration of Polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis. Genes and Development, 2008, 22, 2707-2720.	5.9	67
97	Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay. BMC Genomics, 2010, 11 , 565 .	2.8	67
98	Identification of Trans-Golgi Network Proteins in <i>Arabidopsis thaliana</i> Root Tissue. Journal of Proteome Research, 2014, 13, 763-776.	3.7	65
99	Virulence and Prodigiosin Antibiotic Biosynthesis in <i>Serratia</i> Are Regulated Pleiotropically by the GGDEF/EAL Domain Protein, PigX. Journal of Bacteriology, 2007, 189, 7653-7662.	2.2	64
100	Improving Qualitative and Quantitative Performance for MS ^E -based Label-free Proteomics. Journal of Proteome Research, 2013, 12, 2340-2353.	3.7	64
101	Identification by 2â€D DIGE of apoplastic proteins regulated by oligogalacturonides in <i>Arabidopsis thaliana</i> . Proteomics, 2008, 8, 1042-1054.	2.2	63
102	Comparison of DIGE and postâ€stained gel electrophoresis with both traditional and SameSpots analysis for quantitative proteomics. Proteomics, 2008, 8, 948-960.	2.2	62
103	The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in Arabidopsis thaliana. Biochemical Society Transactions, 2004, 32, 520-523.	3.4	61
104	Guidelines for reporting the use of gel electrophoresis in proteomics. Nature Biotechnology, 2008, 26, 863-864.	17.5	61
105	Two-Dimensional Differential in Gel Electrophoresis (2D-DIGE) Analysis of Grape Berry Proteome during Postharvest Withering. Journal of Proteome Research, 2011, 10, 429-446.	3.7	61
106	PEDRo: A database for storing, searching and disseminating experimental proteomics data. BMC Genomics, 2004, 5, 68.	2.8	58
107	Proteome Mapping of a Cyanobacterium Reveals Distinct Compartment Organization and Cell-Dispersed Metabolism. Plant Physiology, 2019, 181, 1721-1738.	4.8	58
108	Genetic and proteomic analysis of the role of luxS in the enteric phytopathogen, Erwinia carotovora. Molecular Plant Pathology, 2006, 7, 31-45.	4.2	57

#	Article	IF	Citations
109	Genomic tagging reveals a random association of endogenous Ptdlns5 <i>P</i> 4-kinases Ilα and Ilβ and a partial nuclear localization of the Ilα isoform. Biochemical Journal, 2010, 430, 215-221.	3.7	57
110	The beauty of being (label)-free: sample preparation methods for SWATH-MS and next-generation targeted proteomics. F1000Research, 2013, 2, 272.	1.6	57
111	Plant endoplasmin supports the protein secretory pathway and has a role in proliferating tissues. Plant Journal, 2006, 48, 657-673.	5.7	56
112	N-Terminal sequence similarities between components of the multicatalytic proteinase complex. FEBS Letters, 1990, 262, 327-329.	2.8	55
113	Differential Gel Electrophoresis and Transgenic Mitochondrial Calcium Reporters Demonstrate Spatiotemporal Filtering in Calcium Control of Mitochondria. Journal of Biological Chemistry, 2006, 281, 18849-18858.	3.4	54
114	The Organelle Proteome of the DT40 Lymphocyte Cell Line. Molecular and Cellular Proteomics, 2009, 8, 1295-1305.	3.8	54
115	Organelle proteomics experimental designs and analysis. Proteomics, 2010, 10, 3957-3969.	2.2	54
116	Ketamine's antidepressant effect is mediated by energy metabolism and antioxidant defense system. Scientific Reports, 2017, 7, 15788.	3.3	54
117	A Bayesian mixture modelling approach for spatial proteomics. PLoS Computational Biology, 2018, 14, e1006516.	3.2	53
118	Changes in the Oligodendrocyte Progenitor Cell Proteome with Ageing. Molecular and Cellular Proteomics, 2020, 19, 1281-1302.	3.8	53
119	RNA-seq reveals the RNA binding proteins, Hfq and RsmA, play various roles in virulence, antibiotic production and genomic flux in Serratia sp. ATCC 39006. BMC Genomics, 2013, 14, 822.	2.8	50
120	Changes in the Arabidopsis RNA-binding proteome reveal novel stress response mechanisms. BMC Plant Biology, 2019, 19, 139.	3.6	50
121	Plant organelle proteomics. Current Opinion in Plant Biology, 2007, 10, 594-599.	7.1	49
122	In Vivo Analyses of the Roles of Essential Omp85-Related Proteins in the Chloroplast Outer Envelope Membrane Á Â. Plant Physiology, 2011, 157, 147-159.	4.8	49
123	A Foundation for Reliable Spatial Proteomics Data Analysis. Molecular and Cellular Proteomics, 2014, 13, 1937-1952.	3.8	49
124	DsbA Plays a Critical and Multifaceted Role in the Production of Secreted Virulence Factors by the Phytopathogen Erwinia carotovora subsp. atroseptica. Journal of Biological Chemistry, 2008, 283, 23739-23753.	3.4	48
125	Label-Free Protein Quantification for Plant Golgi Protein Localization and Abundance. Plant Physiology, 2014, 166, 1033-1043.	4.8	48
126	hiPSC hepatocyte model demonstrates the role of unfolded protein response and inflammatory networks in $\hat{l}\pm 1$ -antitrypsin deficiency. Journal of Hepatology, 2018, 69, 851-860.	3.7	48

#	Article	IF	Citations
127	Learning from Heterogeneous Data Sources: An Application in Spatial Proteomics. PLoS Computational Biology, 2016, 12, e1004920.	3.2	47
128	Gel-Based Proteomics Approach to the Study of Metabolic Changes in Pear Tissue during Storage. Journal of Agricultural and Food Chemistry, 2009, 57, 6997-7004.	5.2	46
129	Popular Computational Methods to Assess Multiprotein Complexes Derived From Label-Free Affinity Purification and Mass Spectrometry (AP-MS) Experiments. Molecular and Cellular Proteomics, 2013, 12, 1-13.	3.8	46
130	The beauty of being (label)-free: sample preparation methods for SWATH-MS and next-generation targeted proteomics. F1000Research, 0, 2, 272.	1.6	46
131	Recruitment of Polo Kinase to the Spindle Midzone during Cytokinesis Requires the Feo/Klp3A Complex. PLoS ONE, 2007, 2, e572.	2.5	46
132	The essentail active-site lysines of clostridial glutamate dehydrogenase. A study with pyridoxal-5'-phophate. FEBS Journal, 1992, 207, 533-540.	0.2	45
133	Spatial proteomics defines the content of trafficking vesicles captured by golgin tethers. Nature Communications, 2020, $11,5987$.	12.8	45
134	Improved subâ€cellular resolution <i>via</i> simultaneous analysis of organelle proteomics data across varied experimental conditions. Proteomics, 2010, 10, 4213-4219.	2.2	44
135	Evaluation and Properties of the Budding Yeast Phosphoproteome. Molecular and Cellular Proteomics, 2012, 11, M111.009555.	3.8	44
136	Nâ€ŧerminomics reveals control of Arabidopsis seed storage proteins and proteases by the Arg/Nâ€end rule pathway. New Phytologist, 2018, 218, 1106-1126.	7.3	44
137	Optimizing the Difference Gel Electrophoresis (DIGE) Technology. Methods in Molecular Biology, 2008, 428, 93-124.	0.9	43
138	A Combined Metabolomic and Proteomic Investigation of the Effects of a Failure to Express Dystrophin in the Mouse Heart. Journal of Proteome Research, 2008, 7, 2069-2077.	3.7	43
139	qcML: An Exchange Format for Quality Control Metrics from Mass Spectrometry Experiments. Molecular and Cellular Proteomics, 2014, 13, 1905-1913.	3.8	42
140	Multiple marker abundance profiling: combining selected reaction monitoring and dataâ€dependent acquisition for rapid estimation of organelle abundance in subcellular samples. Plant Journal, 2017, 92, 1202-1217.	5.7	42
141	Differentiation of Isomeric N-Glycan Structures by Normal-Phase Liquid Chromatographyâ^'MALDI-TOF/TOF Tandem Mass Spectrometry. Analytical Chemistry, 2006, 78, 8491-8498.	6.5	41
142	Isolation and Preparation of Chloroplasts from Arabidopsis thaliana Plants. Methods in Molecular Biology, 2008, 425, 171-186.	0.9	40
143	Proteomics for the Food Industry: Opportunities and Challenges. Critical Reviews in Food Science and Nutrition, 2010, 50, 680-692.	10.3	40
144	Separating Golgi Proteins from <i>Cis</i> to <i>Trans</i> Reveals Underlying Properties of Cisternal Localization. Plant Cell, 2019, 31, 2010-2034.	6.6	40

#	Article	IF	CITATIONS
145	Inâ€depth characterization of the tomato fruit pericarp proteome. Proteomics, 2017, 17, 1600406.	2.2	39
146	A Quantitative Phosphoproteome Analysis of cGMP-Dependent Cellular Responses in Arabidopsis thaliana. Molecular Plant, 2016, 9, 621-623.	8.3	38
147	Ethylene Receptors, CTRs and EIN2 Target Protein Identification and Quantification Through Parallel Reaction Monitoring During Tomato Fruit Ripening. Frontiers in Plant Science, 2018, 9, 1626.	3.6	38
148	Drought Stress Causes Specific Changes to the Spliceosome and Stress Granule Components. Frontiers in Molecular Biosciences, 2019, 6, 163.	3.5	38
149	Quantitative proteomics analysis of the Arg/Nâ€end rule pathway of targeted degradation in Arabidopsis roots. Proteomics, 2015, 15, 2447-2457.	2.2	37
150	Impact of Azithromycin on the Quorum Sensing-Controlled Proteome of Pseudomonas aeruginosa. PLoS ONE, 2016, 11, e0147698.	2.5	37
151	Antibody-mediated neutralization of myelin-associated EphrinB3 accelerates CNS remyelination. Acta Neuropathologica, 2016, 131, 281-298.	7.7	37
152	Organic phase separation opens up new opportunities to interrogate the RNA-binding proteome. Current Opinion in Chemical Biology, 2020, 54, 70-75.	6.1	35
153	Mutations in rpsL that confer streptomycin resistance show pleiotropic effects on virulence and the production of a carbapenem antibiotic in Erwinia carotovora. Microbiology (United Kingdom), 2010, 156, 1030-1039.	1.8	34
154	A Bioconductor workflow for processing and analysing spatial proteomics data. F1000Research, 2016, 5, 2926.	1.6	34
155	Proteomic analysis of the EhV-86 virion. Proteome Science, 2008, 6, 11.	1.7	33
156	The Parkinson's Disease-Linked Protein DJ-1 Associates with Cytoplasmic mRNP Granules During Stress and Neurodegeneration. Molecular Neurobiology, 2019, 56, 61-77.	4.0	33
157	Mep72, a Metzincin Protease That Is Preferentially Secreted by Biofilms of Pseudomonas aeruginosa. Journal of Bacteriology, 2015, 197, 762-773.	2.2	32
158	Assessing sub-cellular resolution in spatial proteomics experiments. Current Opinion in Chemical Biology, 2019, 48, 123-149.	6.1	31
159	Unresolved stalled ribosome complexes restrict cell-cycle progression after genotoxic stress. Molecular Cell, 2022, 82, 1557-1572.e7.	9.7	30
160	Characterization of the Necrotic Protein That Regulates the Toll-mediated Immune Response in Drosophila. Journal of Biological Chemistry, 2003, 278, 6175-6180.	3.4	29
161	Confident protein identification using the average peptide score method coupled with search-specific, ab initio thresholds. Rapid Communications in Mass Spectrometry, 2005, 19, 3363-3368.	1.5	29
162	Quantification and identification of mitochondrial proteins containing vicinal dithiols. Archives of Biochemistry and Biophysics, 2010, 504, 228-235.	3.0	29

#	Article	IF	Citations
163	Interlaboratory studies and initiatives developing standards for proteomics. Proteomics, 2013, 13, 904-909.	2.2	29
164	Spatiotemporal proteomic profiling of the pro-inflammatory response to lipopolysaccharide in the THP-1 human leukaemia cell line. Nature Communications, 2021, 12, 5773.	12.8	29
165	Proteomic Complex Detection Using Sedimentation. Analytical Chemistry, 2007, 79, 2078-2083.	6.5	28
166	Negative feedback via RSK modulates Erkâ€dependent progression from naÃ⁻ve pluripotency. EMBO Reports, 2018, 19, .	4.5	28
167	A proteomic survival predictor for COVID-19 patients in intensive care., 2022, 1, e0000007.		28
168	Phosphorylation of the dimeric cytoplasmic domain of the phytosulfokine receptor, PSKR1. Biochemical Journal, 2016, 473, 3081-3098.	3.7	27
169	A Bioconductor workflow for the Bayesian analysis of spatial proteomics. F1000Research, 2019, 8, 446.	1.6	27
170	Comparative proteomic analysis reveals differential expression of Hsp25 following the directed differentiation of mouse embryonic stem cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 147-156.	4.1	26
171	Stat3-mediated alterations in lysosomal membrane protein composition. Journal of Biological Chemistry, 2018, 293, 4244-4261.	3.4	26
172	The subcellular organisation of Saccharomyces cerevisiae. Current Opinion in Chemical Biology, 2019, 48, 86-95.	6.1	26
173	Biotin proximity tagging favours unfolded proteins and enables the study of intrinsically disordered regions. Communications Biology, 2020, 3, 38.	4.4	26
174	A Bioconductor workflow for processing and analysing spatial proteomics data. F1000Research, 2016, 5, 2926.	1.6	26
175	An open invitation to the Understudied Proteins Initiative. Nature Biotechnology, 2022, 40, 815-817.	17.5	25
176	Taming the isobaric tagging elephant in the room in quantitative proteomics. Nature Methods, 2011, 8, 911-913.	19.0	24
177	Remodelling of a polypyrimidine tract-binding protein complex during apoptosis activates cellular IRESs. Cell Death and Differentiation, 2014, 21, 161-171.	11.2	24
178	Dynamic Regulation of the COP9 Signalosome in Response to DNA Damage. Molecular and Cellular Biology, 2014, 34, 1066-1076.	2.3	24
179	Analysis of <i>Drosophila melanogaster</i> proteome dynamics during embryonic development by a combination of labelâ€free proteomics approaches. Proteomics, 2016, 16, 2068-2080.	2.2	24
180	Early Responses to Severe Drought Stress in the Arabidopsis thaliana Cell Suspension Culture Proteome. Proteomes, 2018, 6, 38.	3.5	24

#	Article	IF	CITATIONS
181	Subcellular Transcriptomics and Proteomics: A Comparative Methods Review. Molecular and Cellular Proteomics, 2022, 21, 100186.	3.8	23
182	Chapter 19 Measuring Redox Changes to Mitochondrial Protein Thiols With Redox Difference Gel Electrophoresis (Redoxâ€Dige). Methods in Enzymology, 2009, 456, 343-361.	1.0	22
183	Big results from small samples: evaluation of amplification protocols for gene expression profiling. Journal of Biomolecular Techniques, 2007, 18, 150-61.	1.5	22
184	Spectral Libraries for SWATHâ€MS Assays for <i>Drosophila melanogaster</i> and <i>Solanum lycopersicum</i> Proteomics, 2017, 17, 1700216.	2.2	21
185	The Dominant Cold-Sensitive Out-Cold Mutants of Drosophila melanogaster Have Novel Missense Mutations in the Voltage-Gated Sodium Channel Gene paralytic. Genetics, 2008, 180, 873-884.	2.9	20
186	Pipeline to assess the greatest source of technical variance in quantitative proteomics using metabolic labelling. Journal of Proteomics, 2012, 77, 441-454.	2.4	20
187	Pan-cancer analysis of transcripts encoding novel open-reading frames (nORFs) and their potential biological functions. Npj Genomic Medicine, 2021, 6, 4.	3.8	20
188	Exploring the Arabidopsis Proteome: Influence of Protein Solubilization Buffers on Proteome Coverage. International Journal of Molecular Sciences, 2015, 16, 857-870.	4.1	19
189	Time, space, and disorder in the expanding proteome universe. Proteomics, 2017, 17, 1600399.	2.2	19
190	Identification of the RNA polymerase I-RNA interactome. Nucleic Acids Research, 2018, 46, 11002-11013.	14.5	19
191	Proteomic responses of HepG2 cell monolayers and 3D spheroids to selected hepatotoxins. Toxicology Letters, 2019, 300, 40-50.	0.8	19
192	Moving Profiling Spatial Proteomics Beyond Discrete Classification. Proteomics, 2020, 20, e1900392.	2.2	19
193	The ABRF Proteomics Research Group Studies: Educational exercises for qualitative and quantitative proteomic analyses. Proteomics, 2011, 11, 1371-1381.	2.2	18
194	Co-complex protein membership evaluation using Maximum Entropy on GO ontology and InterPro annotation. Bioinformatics, 2018, 34, 1884-1892.	4.1	18
195	A Proteomics Approach to Membrane Trafficking. Plant Physiology, 2008, 147, 1584-1589.	4.8	17
196	Method for suppressing non-specific protein interactions observed with affinity resins. Methods, 2011, 54, 407-412.	3.8	16
197	Dynamic Proteomic Profiling of Extra-Embryonic Endoderm Differentiation in Mouse Embryonic Stem Cells. Stem Cells, 2015, 33, 2712-2725.	3.2	16
198	A semi-supervised Bayesian approach for simultaneous protein sub-cellular localisation assignment and novelty detection. PLoS Computational Biology, 2020, 16, e1008288.	3.2	16

#	Article	IF	CITATIONS
199	Protein Profiling Using Twoâ€Dimensional Difference Gel Electrophoresis (2â€D DIGE). Current Protocols in Protein Science, 2002, 30, Unit 22.2.	2.8	15
200	MRMaid 2.0: Mining PRIDE for Evidence-Based SRM Transitions. OMICS A Journal of Integrative Biology, 2012, 16, 483-488.	2.0	15
201	Palmitoylation in plants. Plant Signaling and Behavior, 2013, 8, e25209.	2.4	15
202	A proteomic time course through the differentiation of human induced pluripotent stem cells into hepatocyte-like cells. Scientific Reports, 2019, 9, 3270.	3.3	15
203	Ketamine's Effects on the Glutamatergic and GABAergic Systems: A Proteomics and Metabolomics Study in Mice. Molecular Neuropsychiatry, 2019, 5, 42-51.	2.9	15
204	Efficient recovery of the RNA-bound proteome and protein-bound transcriptome using phase separation (OOPS). Nature Protocols, 2020, 15, 2568-2588.	12.0	15
205	Proteomics of total membranes and subcellular membranes. Expert Review of Proteomics, 2010, 7, 867-878.	3.0	14
206	Additional Precursor Purification in Isobaric Mass Tagging Experiments by Traveling Wave Ion Mobility Separation (TWIMS). Journal of Proteome Research, 2014, 13, 3360-3369.	3.7	13
207	Determining Protein Subcellular Localization in Mammalian Cell Culture with Biochemical Fractionation and iTRAQ 8-Plex Quantification. Methods in Molecular Biology, 2014, 1156, 157-174.	0.9	13
208	ABRF-PRG07: advanced quantitative proteomics study. Journal of Biomolecular Techniques, 2011, 22, 21-6.	1.5	13
209	Uromodulin exclusion list improves urinary exosomal protein identification. Journal of Biomolecular Techniques, 2011, 22, 136-45.	1.5	13
210	A protocol for the subcellular fractionation of Saccharomyces cerevisiae using nitrogen cavitation and density gradient centrifugation. Yeast, 2014, 31, 127-135.	1.7	12
211	The Arabidopsis thaliana Nâ€recognin E3 ligase PROTEOLYSIS1 influences the immune response. Plant Direct, 2019, 3, e00194.	1.9	12
212	Determination of Genuine Residents of Plant Endomembrane Organelles using Isotope Tagging and Multivariate Statistics. Methods in Molecular Biology, 2008, 432, 373-387.	0.9	12
213	GARNet, the Genomic Arabidopsis Resource Network. Trends in Plant Science, 2002, 7, 145-147.	8.8	10
214	Proteomics of cryoprotective dehydration in Megaphorura arctica Tullberg 1876 (Onychiuridae:) Tj ETQq0 0 0 rg	gBT_/Qverlo	ock ₁₀ Tf 50 1
215	Mimicking nature: Phosphopeptide enrichment using combinatorial libraries of affinity ligands. Journal of Chromatography A, 2016, 1457, 76-87.	3.7	10
216	Ciprofloxacin binding to GyrA causes global changes in the proteome of Pseudomonas aeruginosa. FEMS Microbiology Letters, 2018, 365, .	1.8	10

#	Article	IF	CITATIONS
217	Difference gel electrophoresis DIGE. Drug Discovery Today: Technologies, 2006, 3, 347-353.	4.0	9
218	LC-MS/MS Methods for Absolute Quantification and Identification of Proteins Associated with Chimeric Plant Oil Bodies. Analytical Chemistry, 2011, 83, 9267-9272.	6.5	9
219	Systems Analyses Reveal the Resilience of Escherichia coli Physiology during Accumulation and Export of the Nonnative Organic Acid Citramalate. MSystems, 2019, 4, .	3.8	9
220	A direct role for SNX9 in the biogenesis of filopodia. Journal of Cell Biology, 2020, 219, .	5.2	9
221	Nuclear Phospholipase C Gamma:Â Punctate Distribution and Association with the Promyelocytic Leukemia Protein. Journal of Proteome Research, 2007, 6, 2027-2032.	3.7	8
222	Challenges for proteomics core facilities. Proteomics, 2011, 11, 1017-1025.	2.2	8
223	Identification and Quantitation of Signal Molecule-Dependent Protein Phosphorylation. Methods in Molecular Biology, 2013, 1016, 121-137.	0.9	8
224	SILAC-iPAC: A quantitative method for distinguishing genuine from non-specific components of protein complexes by parallel affinity capture. Journal of Proteomics, 2015, 115, 143-156.	2.4	8
225	Mass spectrometry approaches to study plant endomembrane trafficking. Seminars in Cell and Developmental Biology, 2018, 80, 123-132.	5.0	8
226	Mapping the Saccharomyces cerevisiae Spatial Proteome with High Resolution Using hyperLOPIT. Methods in Molecular Biology, 2019, 2049, 165-190.	0.9	8
227	Differences in Protein Profiles in Schizophrenia Prefrontal Cortex Compared to Other Major Brain Disorders. Clinical Schizophrenia and Related Psychoses, 2007, 1, 73-91.	1.4	8
228	Protein Profiling Using Twoâ€Dimensional Difference Gel Electrophoresis (2â€D DIGE). Current Protocols in Protein Science, 2014, 75, 22.2.1-22.2.17.	2.8	7
229	SWATH-MS data of Drosophila melanogaster proteome dynamics during embryogenesis. Data in Brief, 2016, 9, 771-775.	1.0	7
230	Analysis of temperature-mediated changes in the wine yeast <i>Saccharomyces bayanus var uvarum</i> . An oenological study of how the protein content influences wine quality. Proteomics, 2016, 16, 576-592.	2.2	7
231	Glareosin: a novel sexually dimorphic urinary lipocalin in the bank vole, <i>Myodes glareolus</i> . Open Biology, 2017, 7, 170135.	3.6	7
232	Differential Interactome and Innate Immune Response Activation of Two Structurally Distinct Misfolded Protein Oligomers. ACS Chemical Neuroscience, 2019, 10, 3464-3478.	3.5	7
233	Comparison of <i>Drosophila melanogaster</i> Embryo and Adult Proteome by SWATH-MS Reveals Differential Regulation of Protein Synthesis, Degradation Machinery, and Metabolism Modules. Journal of Proteome Research, 2019, 18, 2525-2534.	3.7	7
234	Editorial overview: Untangling proteome organization in space and time. Current Opinion in Chemical Biology, 2019, 48, A1-A4.	6.1	6

#	Article	IF	Citations
235	A Bayesian semi-parametric model for thermal proteome profiling. Communications Biology, 2021, 4, 810.	4.4	6
236	Multi-omic based production strain improvement (MOBpsi) for bio-manufacturing of toxic chemicals. Metabolic Engineering, 2022, 72, 133-149.	7.0	6
237	In Depth Exploration of the Alternative Proteome of Drosophila melanogaster. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	6
238	Identification of Protein Biomarkers in Human Serum Using iTRAQ and Shotgun Mass Spectrometry. Methods in Molecular Biology, 2013, 1061, 291-307.	0.9	5
239	Analysis of Quality-Related Parameters in Mature Kernels of Polygalacturonase Inhibiting Protein (PGIP) Transgenic Bread Wheat Infected with <i>Fusarium graminearum</i> . Journal of Agricultural and Food Chemistry, 2015, 63, 3962-3969.	5.2	5
240	Proteomic Comparison of Various Hepatic Cell Cultures for Preclinical Safety Pharmacology. Toxicological Sciences, 2018, 164, 229-239.	3.1	5
241	Characterisation of protein isoforms encoded by the Drosophila Glycogen Synthase Kinase 3 gene shaggy. PLoS ONE, 2020, 15, e0236679.	2.5	5
242	Localization of Organelle Proteins by Isotope Tagging: Current status and potential applications in drug discovery research. Drug Discovery Today: Technologies, 2021, 39, 57-67.	4.0	5
243	Drosophila nicotinic acetylcholine receptor subunits and their native interactions with insecticidal peptide toxins. ELife, 2022, 11 , .	6.0	5
244	Proteomics in Drosophila melanogaster. Briefings in Functional Genomics & Proteomics, 2003, 2, 106-113.	3.8	4
245	Enabling Technologies for Yeast Proteome Analysis. Methods in Molecular Biology, 2011, 759, 149-178.	0.9	4
246	CFTR Rescue by Lumacaftor (VX-809) Induces an Extensive Reorganization of Mitochondria in the Cystic Fibrosis Bronchial Epithelium. Cells, 2022, 11, 1938.	4.1	4
247	SWATH-MS dataset of heat-shock treated Drosophila melanogaster embryos. Data in Brief, 2016, 9, 991-995.	1.0	3
248	Spatial Proteomics: Practical Considerations for Data Acquisition and Analysis in Protein Subcellular Localisation Studies. New Developments in Mass Spectrometry, 2014, , 185-210.	0.2	3
249	Proteomic Complex Detection using Sedimentation (ProCoDeS): screening for proteins in stable complexes and their candidate interaction partners. Biochemical Society Transactions, 2010, 38, 923-927.	3.4	2
250	Focus on Quantitative Proteomics. Proteomics, 2015, 15, 3101-3103.	2.2	2
251	A Protocol to Map the Spatial Proteome Using HyperLOPIT in Saccharomyces cerevisiae. Bio-protocol, 2019, 9, e3303.	0.4	2
252	Identification of the cis‑molecular neighbours of the immune checkpoint protein�B7‑H4 in the breast cancer cell‑line SK‑BR‑3 by proteomic proximity labelling. International Journal of Oncology, 2020, 57, 87-99.	3.3	2

#	Article	IF	CITATIONS
253	The ABRF MARG microarray survey 2005: taking the pulse of the microarray field. Journal of Biomolecular Techniques, 2006, 17, 176-86.	1.5	2
254	The chicken B-cell line DT40 proteome, beadome and interactomes. Data in Brief, 2015, 3, 29-33.	1.0	1
255	Transcriptional regulation of the genes involved in protein metabolism and processing in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2019, 19, .	2.3	1
256	Proteomics of intracellular freezing survival. PLoS ONE, 2020, 15, e0233048.	2.5	1
257	Identification of Clock Genes Using Difference Gel Electrophoresis. Methods in Molecular Biology, 2007, 362, 265-287.	0.9	1
258	Difference Gel Electrophoresis (DIGE). Springer Protocols, 2009, , 379-408.	0.3	0
259	Proteomic analysis in primary T cells reveals IL-7 alters T cell receptor thresholding via CYTIP/cytohesin/LFA-1 localisation and activation. Biochemical Journal, 2022, 479, 225-243.	3.7	0
260	Prior Signal Acquisition Software Versions for Orbitrap Underestimate Low Isobaric Mass Tag Intensities, Without Detriment to Differential Abundance Experiments. ACS Measurement Science Au, 2022, 2, 233-240.	4.4	0
261	Title is missing!. , 2020, 15, e0236679.		0
262	Title is missing!. , 2020, 15, e0236679.		0
263	Title is missing!. , 2020, 15, e0236679.		0
264	Title is missing!. , 2020, 15, e0236679.		0