List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7465198/publications.pdf Version: 2024-02-01

FRIC II RODCHET

#	Article	IF	CITATIONS
1	Second harmonic generation from the surface of centrosymmetric particles in bulk solution. Chemical Physics Letters, 1996, 259, 15-20.	2.6	230
2	Effect of Intercalated Metals on the Electrocatalytic Activity of 1T-MoS ₂ for the Hydrogen Evolution Reaction. ACS Energy Letters, 2018, 3, 7-13.	17.4	211
3	Contact Angle Measurements Using a Simplified Experimental Setup. Journal of Chemical Education, 2010, 87, 1403-1407.	2.3	202
4	Sensitivity of Ammonia Interaction with Single-Walled Carbon Nanotube Bundles to the Presence of Defect Sites and Functionalities. Journal of the American Chemical Society, 2005, 127, 10533-10538.	13.7	167
5	Adsorption of Hydrogen Sulfide onto Activated Carbon Fibers:Â Effect of Pore Structure and Surface Chemistry. Environmental Science & Technology, 2005, 39, 9744-9749.	10.0	154
6	Generalized Interface Polarity Scale Based on Second Harmonic Spectroscopy. Journal of Physical Chemistry B, 1998, 102, 4927-4932.	2.6	144
7	Effect of Interlayer Spacing on the Activity of Layered Manganese Oxide Bilayer Catalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2017, 139, 1863-1870.	13.7	144
8	Polarity of Liquid Interfaces by Second Harmonic Generation Spectroscopy. Journal of Physical Chemistry A, 1997, 101, 713-718.	2.5	137
9	Towards graphyne molecular electronics. Nature Communications, 2015, 6, 6321.	12.8	135
10	Sulfurization of a carbon surface for vapor phase mercury removal – II: Sulfur forms and mercury uptake. Carbon, 2006, 44, 2998-3004.	10.3	130
11	Structure of Water at Charged Interfaces: A Molecular Dynamics Study. Langmuir, 2014, 30, 8056-8065.	3.5	130
12	Ambient stability of chemically passivated germanium interfaces. Surface Science, 2003, 543, 63-74.	1.9	120
13	Effect of Hydrogen-Bond Strength on the Vibrational Relaxation of Interfacial Water. Journal of the American Chemical Society, 2010, 132, 3756-3761.	13.7	119
14	Porphyrin Self-Assembly at Electrochemical Interfaces:Â Role of Potential Modulated Surface Mobility. Journal of the American Chemical Society, 2002, 124, 11964-11970.	13.7	115
15	Effect of Surface Charge on the Vibrational Dynamics of Interfacial Water. Journal of the American Chemical Society, 2009, 131, 12034-12035.	13.7	115
16	Nickel Confined in the Interlayer Region of Birnessite: an Active Electrocatalyst for Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 10381-10385.	13.8	112
17	Optimizing Single-Molecule Conductivity of Conjugated Organic Oligomers with Carbodithioate Linkers. Journal of the American Chemical Society, 2010, 132, 7946-7956.	13.7	102
18	TiO ₂ /LiCl-Based Nanostructured Thin Film for Humidity Sensor Applications. ACS Applied Materials & amp; Interfaces, 2011, 3, 528-533.	8.0	102

#	Article	IF	CITATIONS
19	Regulating a Benzodifuran Single Molecule Redox Switch via Electrochemical Gating and Optimization of Molecule/Electrode Coupling. Journal of the American Chemical Society, 2014, 136, 8867-8870.	13.7	100
20	Thin polymer film based rapid surface acoustic wave humidity sensors. Sensors and Actuators B: Chemical, 2011, 156, 444-449.	7.8	97
21	Palladium Nanoparticle-Based Surface Acoustic Wave Hydrogen Sensor. ACS Applied Materials & Interfaces, 2015, 7, 5709-5714.	8.0	94
22	Quasi-Ohmic Single Molecule Charge Transport through Highly Conjugated <i>meso</i> -to- <i>meso</i> Ethyne-Bridged Porphyrin Wires. Nano Letters, 2012, 12, 2722-2727.	9.1	90
23	Experimental Correlation Between Interfacial Water Structure and Mineral Reactivity. Journal of Physical Chemistry Letters, 2013, 4, 1977-1982.	4.6	89
24	Effect of Anchoring Groups on Single Molecule Charge Transport through Porphyrins. Journal of Physical Chemistry C, 2013, 117, 14890-14898.	3.1	88
25	Effect of Electric Fields on the Ultrafast Vibrational Relaxation of Water at a Charged Solid–Liquid Interface as Probed by Vibrational Sum Frequency Generation. Journal of Physical Chemistry Letters, 2011, 2, 1353-1358.	4.6	83
26	Singleâ€Molecule Sensing of Environmental pH—an STM Break Junction and NEGFâ€DFT Approach. Angewandte Chemie - International Edition, 2014, 53, 1098-1102.	13.8	82
27	Seeing Is Believing: Hot Electron Based Gold Nanoplasmonic Optical Hydrogen Sensor. ACS Nano, 2014, 8, 7755-7762.	14.6	80
28	Intercalation of Cobalt into the Interlayer of Birnessite Improves Oxygen Evolution Catalysis. ACS Catalysis, 2016, 6, 7739-7743.	11.2	79
29	Conjugated Thiol Linker for Enhanced Electrical Conduction of Goldâ^'Molecule Contacts. Journal of Physical Chemistry B, 2005, 109, 5398-5402.	2.6	77
30	Structure Evolution and Thermoelectric Properties of Carbonized Polydopamine Thin Films. ACS Applied Materials & Interfaces, 2017, 9, 6655-6660.	8.0	77
31	Siteâ€specific properties and dynamical dipole coupling of CO molecules adsorbed on a vicinal Cu(100) surface. Journal of Chemical Physics, 1994, 101, 9080-9095.	3.0	76
32	Copper-Intercalated Birnessite as a Water Oxidation Catalyst. Langmuir, 2015, 31, 12807-12813.	3.5	69
33	Sulfurization of carbon surface for vapor phase mercury removal – I: Effect of temperature and sulfurization protocol. Carbon, 2006, 44, 2990-2997.	10.3	68
34	The Single-Molecule Conductance and Electrochemical Electron-Transfer Rate Are Related by a Power Law. ACS Nano, 2013, 7, 5391-5401.	14.6	65
35	Mechanism of UV Photoreactivity of Alkylsiloxane Self-Assembled Monolayers. Journal of Physical Chemistry B, 2005, 109, 9927-9938.	2.6	64
36	Determining Charge Transport Pathways through Single Porphyrin Molecules Using Scanning Tunneling Microscopy Break Junctions. Journal of the American Chemical Society, 2012, 134, 63-66.	13.7	62

#	Article	IF	CITATIONS
37	Photoreactivity of Alkylsiloxane Self-Assembled Monolayers on Silicon Oxide Surfaces. Langmuir, 2001, 17, 4497-4500.	3.5	56
38	Linking Surface Potential and Deprotonation in Nanoporous Silica: Second Harmonic Generation and Acid/Base Titration. Journal of Physical Chemistry C, 2010, 114, 18465-18473.	3.1	55
39	Purification of carbon nanotubes by dynamic oxidation in air. Journal of Materials Chemistry, 2009, 19, 7904.	6.7	54
40	Hydrophobicity of Hydroxylated Amorphous Fused Silica Surfaces. Langmuir, 2013, 29, 7885-7895.	3.5	54
41	Insights on Interfacial Structure, Dynamics, and Proton Transfer from Ultrafast Vibrational Sum Frequency Generation Spectroscopy of the Alumina(0001)/Water Interface. Journal of Physical Chemistry C, 2017, 121, 5168-5177.	3.1	53
42	Ions Tune Interfacial Water Structure and Modulate Hydrophobic Interactions at Silica Surfaces. Journal of the American Chemical Society, 2020, 142, 6991-7000.	13.7	53
43	Potential-Induced Structural Change in a Self-Assembled Monolayer of 4-Methylbenzenethiol on Au(111). Journal of Physical Chemistry C, 2007, 111, 6335-6342.	3.1	52
44	Charge Transfer through Single-Stranded Peptide Nucleic Acid Composed of Thymine Nucleotides. Journal of Physical Chemistry C, 2008, 112, 7233-7240.	3.1	50
45	Fluorescence Labeling and Quantification of Oxygen-Containing Functionalities on the Surface of Single-Walled Carbon Nanotubes. Langmuir, 2009, 25, 7573-7577.	3.5	50
46	An STM Study of the pH Dependent Redox Activity of a Two-Dimensional Hydrogen Bonding Porphyrin Network at an Electrochemical Interface. Journal of the American Chemical Society, 2010, 132, 5054-5060.	13.7	50
47	Fluorescence Quenching of Dyes Covalently Attached to Single-Walled Carbon Nanotubes. Journal of Physical Chemistry A, 2011, 115, 9579-9584.	2.5	48
48	The Role of Hydrophobic Chains in Self-Assembly at Electrified Interfaces:Â Observation of Potential-Induced Transformations of Two-Dimensional Crystals of Hexadecane by In-situ Scanning Tunneling Microscopy. Journal of Physical Chemistry B, 2002, 106, 11264-11271.	2.6	47
49	Fluorescence Detection of Surface-Bound Intermediates Produced from UV Photoreactivity of Alkylsiloxane SAMs. Journal of the American Chemical Society, 2004, 126, 2260-2261.	13.7	47
50	Electrical and mechanical properties of poly(dopamine)-modified copper/reduced graphene oxide composites. Journal of Materials Science, 2017, 52, 11620-11629.	3.7	45
51	Sulfur Impregnation on Activated Carbon Fibers through H2S Oxidation for Vapor Phase Mercury Removal. Journal of Environmental Engineering, ASCE, 2006, 132, 292-300.	1.4	44
52	Adsorption and Electrochemical Activity:Â An In Situ Electrochemical Scanning Tunneling Microscopy Study of Electrode Reactions and Potential-Induced Adsorption of Porphyrins. Journal of Physical Chemistry B, 2006, 110, 6141-6147.	2.6	43
53	Detection of low concentration oxygen containing functional groups on activated carbon fiber surfaces through fluorescent labeling. Carbon, 2006, 44, 1203-1209.	10.3	43
54	Dynamics of Porphyrin Electronâ€Transfer Reactions at the Electrode–Electrolyte Interface at the Molecular Level. Angewandte Chemie - International Edition, 2007, 46, 6098-6101.	13.8	43

#	Article	IF	CITATIONS
55	Systematic Doping of Cobalt into Layered Manganese Oxide Sheets Substantially Enhances Water Oxidation Catalysis. Inorganic Chemistry, 2018, 57, 557-564.	4.0	43
56	The effect of surface chemical functional groups on the adsorption and desorption of a polar molecule, acetone, from a model carbonaceous surface, graphite. Surface Science, 2003, 522, 17-26.	1.9	42
57	A Vibrational Spectroscopic Study of the Fate of Oxygen-Containing Functional Groups and Trapped CO2in Single-Walled Carbon Nanotubes During Thermal Treatment. Journal of Physical Chemistry B, 2004, 108, 19949-19954.	2.6	42
58	Neuronal adhesion and differentiation driven by nanoscale surface free-energy gradients. Biomaterials, 2010, 31, 3762-3771.	11.4	42
59	Impact of synthesis conditions on surface chemistry and structure of carbide-derived carbons. Thermochimica Acta, 2010, 497, 137-142.	2.7	42
60	Spectroscopy and Ultrafast Vibrational Dynamics of Strongly Hydrogen Bonded OH Species at the α-Al ₂ O ₃ (112ì0)/H ₂ O Interface. Journal of Physical Chemistry C, 2016, 120, 16153-16161.	3.1	42
61	Generation of ultra-broadband pulses in the near-IR by non-collinear optical parametric amplification in potassium titanyl phosphate. Optics Express, 2008, 16, 3949.	3.4	41
62	Specificity and Sensitivity of Fluorescence Labeling of Surface Species. Langmuir, 2007, 23, 684-688.	3.5	39
63	Enhancement of adsorption on graphite (HOPG) by modification of surface chemical functionality and morphology. Carbon, 2002, 40, 2351-2358.	10.3	38
64	Chemical labeling for quantitative characterization of surface chemistry. Current Opinion in Solid State and Materials Science, 2007, 11, 86-91.	11.5	37
65	Dramatic Reduction of IR Vibrational Cross Sections of Molecules Encapsulated in Carbon Nanotubes. Journal of the American Chemical Society, 2011, 133, 8191-8198.	13.7	36
66	Synergistic In-Layer Cobalt Doping and Interlayer Iron Intercalation into Layered MnO ₂ Produces an Efficient Water Oxidation Electrocatalyst. ACS Energy Letters, 2018, 3, 2280-2285.	17.4	36
67	Observation of the Bending Mode of Interfacial Water at Silica Surfaces by Near-Infrared Vibrational Sum-Frequency Generation Spectroscopy of the [Stretch + Bend] Combination Bands. Journal of Physical Chemistry Letters, 2013, 4, 531-535.	4.6	35
68	Orientation ontrolled Singleâ€Molecule Junctions. Angewandte Chemie - International Edition, 2014, 53, 9771-9774.	13.8	35
69	Ultrafast vibrational dynamics and spectroscopy of a siloxane self-assembled monolayer. Journal of Chemical Physics, 2011, 134, 084701.	3.0	33
70	Design, Synthesis, and Characterization of Metal–Organic Frameworks for Enhanced Sorption of Chemical Warfare Agent Simulants. Journal of Physical Chemistry C, 2019, 123, 19748-19758.	3.1	33
71	Nanolithographic Write, Read, and Erase via Reversible Nanotemplated Nanostructure Electrodeposition on Alkanethiol-Modified Au(111) in an Aqueous Solution. Langmuir, 2006, 22, 1388-1391.	3.5	32
72	Pulse-front matching of ultrabroadband near-infrared noncollinear optical parametric amplified pulses. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 965.	2.1	32

#	Article	IF	CITATIONS
73	Vibrational Dynamics of Interfacial Water by Free Induction Decay Sum Frequency Generation (FID-SFG) at the Al ₂ O ₃ (1120)/H ₂ O Interface. Journal of Physical Chemistry Letters, 2014, 5, 528-533.	4.6	31
74	Interaction of Acetone with Single Wall Carbon Nanotubes at Cryogenic Temperatures: A Combined Temperature Programmed Desorption and Theoretical Study. Langmuir, 2008, 24, 7848-7856.	3.5	30
75	Relating Interfacial Order to Sum Frequency Generation with Ab Initio Simulations of the Aqueous Al ₂ O ₃ (0001) and (112i0) Interfaces. Journal of Physical Chemistry C, 2018, 122, 21284-21294.	3.1	30
76	Hapticity-Dependent Charge Transport through Carbodithioate-Terminated [5,15-Bis(phenylethynyl)porphinato]zinc(II) Complexes in Metal–Molecule–Metal Junctions. Nano Letters, 2014, 14, 5493-5499.	9.1	29
77	Monovalent and Divalent Cations at the α-Al ₂ O ₃ (0001)/Water Interface: How Cation Identity Affects Interfacial Ordering and Vibrational Dynamics. Journal of Physical Chemistry C, 2019, 123, 18315-18324.	3.1	29
78	Nickel Confined in the Interlayer Region of Birnessite: an Active Electrocatalyst for Water Oxidation. Angewandte Chemie, 2016, 128, 10537-10541.	2.0	28
79	Effect of Halide Anions on the Structure and Dynamics of Water Next to an Alumina (0001) Surface. Journal of Physical Chemistry C, 2018, 122, 12819-12830.	3.1	28
80	Impact of Surface Heterogeneity on Mercury Uptake by Carbonaceous Sorbents under UHV and Atmospheric Pressure. Environmental Science & Technology, 2002, 36, 4162-4169.	10.0	27
81	Transformation of truncated gold octahedrons into triangular nanoprisms through the heterogeneous nucleation of silver. Nanoscale, 2015, 7, 6827-6835.	5.6	27
82	Optical second harmonic generation studies of ultrathin high-k dielectric stacks. Journal of Applied Physics, 2005, 97, 083711.	2.5	26
83	Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation. ACS Sensors, 2016, 1, 73-80.	7.8	26
84	Strong dynamical dipole coupling between CO molecules adsorbed at two distinct sites on Cu(100). Chemical Physics Letters, 1992, 194, 57-61.	2.6	25
85	Second Harmonic Generation as a Probe of Multisite Adsorption at Solidâ^'Liquid Interfaces of Aqueous Colloid Suspensionsâ€. Journal of Physical Chemistry C, 2007, 111, 8805-8813.	3.1	25
86	Layering and orientational ordering of propane on graphite: An experimental and simulation study. Journal of Chemical Physics, 2002, 117, 7719-7731.	3.0	23
87	Detecting and quantifying oxygen functional groups on graphite nanofibers by fluorescence labeling of surface species. Carbon, 2010, 48, 4256-4267.	10.3	23
88	Ultra-broadband sum-frequency spectrometer of aqueous interfaces based on a non-collinear optical parametric amplifier. Optics Express, 2012, 20, 547.	3.4	23
89	Modeling of Diffusion of Acetone in UiO-66. Journal of Physical Chemistry C, 2020, 124, 28469-28478.	3.1	23
90	Nonquadratic second-harmonic generation from semiconductor-oxide interfaces. Physical Review B, 2001, 63, .	3.2	22

#	Article	IF	CITATIONS
91	Second harmonic generation probing of dopant type and density at the Si/SiO2 interface. Applied Physics Letters, 2011, 98, .	3.3	22
92	Effect of Functional and Electron Correlation on the Structure and Spectroscopy of the Al ₂ O ₃ (001)–H ₂ O Interface. Journal of Physical Chemistry Letters, 2019, 10, 2031-2036.	4.6	22
93	Combined Experimental and Theoretical Investigation of Polar Organic Adsorption/Desorption from Model Carbonaceous Surfaces:Â Acetone on Graphite. Langmuir, 2002, 18, 2595-2600.	3.5	21
94	Probing Heterogeneous Charge Distributions at the α-Al ₂ O ₃ (0001)/H ₂ O Interface. Journal of the American Chemical Society, 2020, 142, 12096-12105.	13.7	21
95	Investigations of water/oxide interfaces by molecular dynamics simulations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1537.	14.6	21
96	Self-Assembled Monolayer Compatible with Metal Surface Acoustic Wave Devices on Lithium Niobate. Langmuir, 2008, 24, 5161-5165.	3.5	19
97	Temperature and pressure dependence of molecular adsorption on single wall carbon nanotubes and the existence of an "adsorption/desorption pressure gap― Carbon, 2010, 48, 1867-1875.	10.3	19
98	Sodium Halide Adsorption and Water Structure at the α-Alumina(0001)/Water Interface. Journal of Physical Chemistry C, 2019, 123, 15618-15628.	3.1	19
99	Structural evolution and electrical properties of metal ion-containing polydopamine. Journal of Materials Science, 2019, 54, 6393-6400.	3.7	19
100	First-Principles Calculation of Water p <i>K</i> _a Using the Newly Developed SCAN Functional. Journal of Physical Chemistry Letters, 2020, 11, 54-59.	4.6	19
101	Self-Assembly of Insoluble Porphyrins on Au(111) under Aqueous Electrochemical Control. Langmuir, 2011, 27, 14828-14833.	3.5	18
102	Anisotropic Conductivity at the Singleâ€Molecule Scale. Angewandte Chemie - International Edition, 2019, 58, 14275-14280.	13.8	18
103	Effect of local environment on nanoscale dynamics at electrochemical interfaces: Anisotropic growth and dissolution in the presence of a step providing evidence for a Schwoebel–Ehrlich barrier at solid/liquid interfaces. Faraday Discussions, 2002, 121, 17-25.	3.2	17
104	Interplay between Intrinsic Thermal Stability and Expansion Properties of Functionalized UiO-67 Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 910-920.	6.7	17
105	Monitoring adsorption and desorption on a metal surface by optical non-resonant reflectivity changes. Surface Science, 1996, 369, L122-L130.	1.9	16
106	Picosecond infrared optical parametric amplifier for nonlinear interface spectroscopy. Review of Scientific Instruments, 2000, 71, 4050.	1.3	16
107	Second harmonic generation investigations of charge transfer at chemically-modified semiconductor interfaces. Journal of Applied Physics, 2002, 91, 4394-4398.	2.5	16
108	Potential-Induced High-Conductance Transport Pathways through Single-Molecule Junctions. Journal of the American Chemical Society, 2019, 141, 10109-10116.	13.7	16

#	Article	IF	CITATIONS
109	Spectroscopy and Dynamics of the Multiple Free OH Species at an Aqueous/Hydrophobic Interface. Journal of Physical Chemistry C, 2012, 116, 21734-21741.	3.1	15
110	Combined electron-hole dynamics at UV-irradiated ultrathinSiâ^'SiO2interfaces probed by second harmonic generation. Physical Review B, 2003, 68, .	3.2	14
111	Probing Surface Short Range Order and Inter-Adsorbate Interactions through IR Vibrational Spectroscopy: CO on Cu(100)â€. Journal of Physical Chemistry B, 2005, 109, 8509-8512.	2.6	14
112	High-repetition-rate near-infrared noncollinear ultrabroadband optical parametric amplification in KTiOPO_4. Optics Letters, 2010, 35, 3832.	3.3	14
113	In situsecond-harmonic generation measurements of the stability of Si(111)–H and kinetics of oxide regrowth in ambient. Journal of Applied Physics, 2004, 95, 4675-4680.	2.5	13
114	Vibrational Dynamics at Aqueous–Mineral Interfaces. Journal of Physical Chemistry C, 2022, 126, 2307-2324.	3.1	13
115	Second-harmonic generation from chemically modified Ge(111) interfaces. Journal of Chemical Physics, 2002, 116, 6745-6754.	3.0	12
116	Ultrafast Time-Evolution of the Nonlinear Susceptibility of Hot Carriers at the Ge(111)â^'GeO2Interface As Probed by SHG. Journal of Physical Chemistry B, 2004, 108, 3789-3793.	2.6	12
117	Oxygen-containing functionalities on the surface of multi-walled carbon nanotubes quantitatively determined by fluorescent labeling. Applied Surface Science, 2012, 258, 10185-10190.	6.1	11
118	Capturing the Ultrafast Vibrational Decoherence of Hydrogen Bonding in Interfacial Water. Journal of Physical Chemistry Letters, 2016, 7, 5080-5085.	4.6	11
119	Dynamics and second-order nonlinear optical susceptibility of photoexcited carriers at Si(111) interfaces. Applied Physics Letters, 2003, 83, 2357-2359.	3.3	10
120	Metastable Phase of the Au(111) Surface in Electrolyte Revealed by STM and Asymmetric Potential Pulse Perturbation. Journal of Physical Chemistry C, 2011, 115, 5726-5731.	3.1	10
121	Synergistic Electronic Effects in AuCo Nanoparticles Stabilized in a Triazine-Based Covalent Organic Framework: A Catalyst for Methyl Orange and Methylene Blue Reduction. ACS Applied Nano Materials, 2022, 5, 4744-4753.	5.0	10
122	Electrodeposition of Metal Wires onto a Molecular Scale Template: An In Situ Investigation. Langmuir, 2009, 25, 5491-5495.	3.5	9
123	Resolving the source of blue luminescence from alkyl-capped silicon nanoparticles synthesized by laser pulse ablation. Journal of Materials Chemistry C, 2016, 4, 6894-6899.	5.5	9
124	Ultrabroadband mid-infrared noncollinear difference frequency generation in a silver thiogallate crystal. Optics Letters, 2018, 43, 4402.	3.3	9
125	Tuning the Lewis acidity of metal–organic frameworks for enhanced catalysis. Dalton Transactions, 2021, 50, 3116-3120	3.3	9
126	Infrared second harmonic generation spectroscopy of Ge(111) interfaces. Journal of Chemical Physics, 2003, 119, 3958-3962.	3.0	8

#	Article	IF	CITATIONS
127	Photoreactivity of Si(111)â^'H in Ambient. Journal of Physical Chemistry C, 2007, 111, 234-239.	3.1	8
128	Generation of sub-30-fs microjoule mid-infrared pulses for ultrafast vibrational dynamics at solid/liquid interfaces. Optics Letters, 2013, 38, 5008.	3.3	8
129	Time-resolved surface kinetics by IR diode laser reflection-absorption spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 1990, 54-55, 573-580.	1.7	7
130	Amineâ€Directed Hydrogenâ€Bonded Twoâ€Dimensional Supramolecular Structures. ChemPhysChem, 2016, 17, 3385-3389.	2.1	7
131	Electrochemical Nanoscale Templating: Laterally Self-Aligned Growth of Organic–Metal Nanostructures. Langmuir, 2012, 28, 17537-17544.	3.5	6
132	Ultrabroadband few-cycle infrared pulse generation from a noncollinear optical parametric amplifier based on bulk niobate crystals. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2075.	2.1	6
133	Anisotropic Conductivity at the Singleâ€Molecule Scale. Angewandte Chemie, 2019, 131, 14413-14418.	2.0	6
134	Bond-Dependent Thole Model for Polarizability and Spectroscopy. Journal of Physical Chemistry A, 2019, 123, 5378-5387.	2.5	6
135	Reimagining the <i>e_g</i> ¹ Electronic State in Oxygen Evolution Catalysis: Oxidationâ€Stateâ€Modulated Superlattices as a New Type of Heterostructure for Maximizing Catalysis. Advanced Energy Materials, 2021, 11, 2101636.	19.5	6
136	Identifying UiOâ€67 Metalâ€Organic Framework Defects and Binding Sites through Ammonia Adsorption. ChemSusChem, 2022, 15, .	6.8	6
137	Ultrafast Hot-Carrier Dynamics at Chemically Modified Ge Interfaces Probed by SHGâ€. Journal of Physical Chemistry B, 2006, 110, 19784-19787.	2.6	4
138	Synthesis and Properties of Au Hydride. ChemistrySelect, 2019, 4, 4287-4292.	1.5	4
139	Combined Impact of Denticity and Orientation on Molecular-Scale Charge Transport. Journal of Physical Chemistry C, 2020, 124, 9460-9469.	3.1	4
140	Nonquadratic Second-Harmonic Generation at Interfaces. Optics and Photonics News, 2001, 12, 41.	0.5	2
141	Innentitelbild: Anisotropic Conductivity at the Singleâ€Molecule Scale (Angew. Chem. 40/2019). Angewandte Chemie, 2019, 131, 14138-14138.	2.0	1
142	TIME-RESOLVED DIODE LASER IR REFLECTION-ABSORPTION SPECTROSCOPY. Advanced Series in Physical Chemistry, 1995, , 243-274.	1.5	1
143	Layer by Layer Deposition of 1T′â€MoS ₂ for the Hydrogen Evolution Reaction. ChemistrySelect, 2022, 7, .	1.5	1
144	<title>Transient IR and visible laser absorption-reflection spectroscopic studies of interadsorbate and adsorbate/substrate interactions</title> . , 1994, , .		0

#	Article	IF	CITATIONS
145	<title>Adsorbate-induced reflectivity changes in the visible region on a metal surface</title> . , 1995, 2547, 30.		0
146	Tribute to Hai-Lung Dai. Journal of Physical Chemistry A, 2019, 123, 10463-10464.	2.5	0
147	Near-infrared non-collinear optical parametric amplification in bulk potassium-titanyl phosphate with ≫2500 cm ^{−1} bandwidth. , 2008, , .		0
148	Ultra-Broadband Infrared Pulses from a Potassium-Titanyl Phosphate Optical Parametric Amplifier for VIS-IR-SFG Spectroscopy. Springer Series in Chemical Physics, 2009, , 777-779.	0.2	0
149	Near-Infrared Pulse-Front Matched Non-collinear Optical Parametric Amplification in Bulk KTP. , 2009, ,		0
150	Ultra-Broadband Near-IR Non-collinear Optical Parametric Amplification in Potassium Niobate and Lithium Niobate. , 2009, , .		0
151	Non-Collinear Optical Parametric Amplification of Near-IR pulses in KTiOPO4 at a High Repetition Rate. , 2010, , .		0