Anderson G M Da Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7464650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities. Journal of Materials Chemistry A, 2019, 7, 5857-5874.	10.3	229
2	Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chemical Communications, 2017, 53, 7135-7148.	4.1	222
3	Synthesis of Colloidal Metal Nanocrystals: A Comprehensive Review on the Reductants. Chemistry - A European Journal, 2018, 24, 16944-16963.	3.3	143
4	Plasmonic Nanorattles as Nextâ€Generation Catalysts for Surface Plasmon Resonanceâ€Mediated Oxidations Promoted by Activated Oxygen. Angewandte Chemie - International Edition, 2016, 55, 7111-7115.	13.8	101
5	Carbon-supported MnO2 nanoflowers: Introducing oxygen vacancies for optimized volcano-type electrocatalytic activities towards H2O2 generation. Electrochimica Acta, 2018, 268, 101-110.	5.2	60
6	MnO2 nanowires decorated with Au ultrasmall nanoparticles for the green oxidation of silanes and hydrogen production under ultralow loadings. Applied Catalysis B: Environmental, 2016, 184, 35-43.	20.2	55
7	The Fault in Their Shapes: Investigating the Surface-Plasmon-Resonance-Mediated Catalytic Activities of Silver Quasi-Spheres, Cubes, Triangular Prisms, and Wires. Langmuir, 2015, 31, 10272-10278.	3.5	51
8	Why Could the Nature of Surface Facets Lead to Differences in the Activity and Stability of Cu ₂ O-Based Electrocatalytic Sensors?. ACS Catalysis, 2018, 8, 6265-6272.	11.2	49
9	Versatile and efficient catalysts for energy and environmental processes: Mesoporous silica containing Au, Pd and Au-Pd. Journal of Power Sources, 2015, 285, 460-468.	7.8	43
10	Controlling Size, Morphology, and Surface Composition of AgAu Nanodendrites in 15 s for Improved Environmental Catalysis under Low Metal Loadings. ACS Applied Materials & Interfaces, 2015, 7, 25624-25632.	8.0	42
11	Controlled synthesis of noble metal nanomaterials: motivation, principles, and opportunities in nanocatalysis. Anais Da Academia Brasileira De Ciencias, 2018, 90, 719-744.	0.8	42
12	Ni supported Ce0.9Sm0.1O2-δ nanowires: An efficient catalyst for ethanol steam reforming for hydrogen production. Fuel, 2019, 237, 1244-1253.	6.4	42
13	Sub-15 nm CeO ₂ nanowires as an efficient non-noble metal catalyst in the room-temperature oxidation of aniline. Catalysis Science and Technology, 2018, 8, 1828-1839.	4.1	39
14	PdPt-TiO2 nanowires: correlating composition, electronic effects and O-vacancies with activities towards water splitting and oxygen reduction. Applied Catalysis B: Environmental, 2020, 277, 119177.	20.2	36
15	Air stable ligandless heterogeneous catalyst systems based on Pd and Au supported in SiO2 and MCM-41 for Suzuki–Miyaura cross-coupling in aqueous medium. Applied Catalysis A: General, 2013, 462-463, 39-45.	4.3	35
16	Synthesis of highly dispersed gold nanoparticles on Al2O3, SiO2, and TiO2 for the solvent-free oxidation of benzyl alcohol under low metal loadings. Journal of Materials Science, 2019, 54, 238-251.	3.7	34
17	Plasmonic catalysis with designer nanoparticles. Chemical Communications, 2022, 58, 2055-2074.	4.1	34
18	Probing the catalytic activity of bimetallic versus trimetallic nanoshells. Journal of Materials	3.7	33

Science, 2015, 50, 5620-5629.

#	Article	IF	CITATIONS
19	In situ FTIR insights into the electrooxidation mechanism of glucose as a function of the surface facets of Cu2O-based electrocatalytic sensors. Journal of Catalysis, 2019, 375, 95-103.	6.2	33
20	Combining active phase and support optimization in MnO2-Au nanoflowers: Enabling high activities towards green oxidations. Journal of Colloid and Interface Science, 2018, 530, 282-291.	9.4	32
21	Ce1â^xSmxO1.9â^`î^ nanoparticles obtained by microwave-assisted hydrothermal processing: an efficient application for catalytic oxidation of α-bisabolol. Catalysis Science and Technology, 2014, 4, 814.	4.1	31
22	Rapid Synthesis of Hollow Ag–Au Nanodendrites in 15 Seconds by Combining Galvanic Replacement and Precursor Reduction Reactions. Chemistry - A European Journal, 2014, 20, 15040-15046.	3.3	28
23	AgPt Hollow Nanodendrites: Synthesis and Uniform Dispersion over SiO ₂ Support for Catalytic Applications. ChemNanoMat, 2015, 1, 46-51.	2.8	28
24	Rational design of plasmonic catalysts: matching the surface plasmon resonance with lamp emission spectra for improved performance in AgAu nanorings. RSC Advances, 2016, 6, 62286-62290.	3.6	26
25	Pd-based nanoflowers catalysts: controlling size, composition, and structures for the 4-nitrophenol reduction and BTX oxidation reactions. Journal of Materials Science, 2016, 51, 603-614.	3.7	26
26	Hollow AgPt/SiO ₂ nanomaterials with controlled surface morphologies: is the number of Pt surface atoms imperative to optimize catalytic performances?. Catalysis Science and Technology, 2016, 6, 2162-2170.	4.1	24
27	Towards the Effect of Pt 0 /Pt δ+ and Ce 3+ Species at the Surface of CeO 2 Crystals: Understanding the Nature of the Interactions under CO Oxidation Conditions. ChemCatChem, 2021, 13, 1340-1354.	3.7	23
28	Cu2O spheres as an efficient source of catalytic Cu(I) species for performing azide-alkyne click reactions. Tetrahedron Letters, 2017, 58, 590-595.	1.4	22
29	Furfural Oxidation on Gold Supported on MnO2: Influence of the Support Structure on the Catalytic Performances. Applied Sciences (Switzerland), 2018, 8, 1246.	2.5	22
30	Addressing the Effects of Sizeâ€dependent Absorption, Scattering, and Nearâ€field Enhancements in Plasmonic Catalysis. ChemCatChem, 2018, 10, 3447-3452.	3.7	22
31	Controlled Synthesis of Nanomaterials at the Undergraduate Laboratory: Cu(OH) ₂ and CuO Nanowires. Journal of Chemical Education, 2017, 94, 743-750.	2.3	19
32	Synthesis of Palladium Nanoscale Octahedra through a Oneâ€Pot, Dualâ€Reductant Route and Kinetic Analysis. Chemistry - A European Journal, 2018, 24, 6133-6139.	3.3	18
33	Surface Segregated AgAu Tadpole haped Nanoparticles Synthesized Via a Single Step Combined Galvanic and Citrate Reduction Reaction. Chemistry - A European Journal, 2015, 21, 12314-12320.	3.3	17
34	Exploiting the Synergetic Behavior of PtPd Bimetallic Catalysts in the Selective Hydrogenation of Glucose and Furfural. Catalysts, 2019, 9, 132.	3.5	17
35	Gold, palladium and gold–palladium supported on silica catalysts prepared by sol–gel method: synthesis, characterization and catalytic behavior in the ethanol steam reforming. Journal of Sol-Gel Science and Technology, 2013, 67, 273-281.	2.4	16
36	Efficient ceria–silica catalysts for BTX oxidation: Probing the catalytic performance and oxygen storage. Chemical Engineering Journal, 2016, 286, 369-376.	12.7	15

#	Article	IF	CITATIONS
37	Catalytic Properties of AgPt Nanoshells as a Function of Size: Larger Outer Diameters Lead to Improved Performances. Langmuir, 2016, 32, 9371-9379.	3.5	13
38	A new use for modified sugarcane bagasse containing adsorbed Co2+ and Cr3+: Catalytic oxidation of terpenes. Industrial Crops and Products, 2013, 50, 288-296.	5.2	12
39	Ethanol steam reforming: understanding changes in the activity and stability of Rh/MxOy catalysts as function of the support. Journal of Materials Science, 2019, 54, 11400-11416.	3.7	12
40	Chemical versus electrochemical: What is the best synthesis method to ternary GO/WO3NW/PAni nanocomposites to improve performance as supercapacitor?. Electrochimica Acta, 2020, 356, 136786.	5.2	12
41	Plasmon-enhanced electrocatalytic oxygen reduction in alkaline media on gold nanohole electrodes. Journal of Materials Chemistry A, 2020, 8, 10395-10401.	10.3	12
42	Synergistic effect between CeO2 nanowires and gold NPs over the activity and selectivity in the oxidation of thioanisole. Applied Catalysis A: General, 2021, 613, 118010.	4.3	12
43	The importance of the shape of Cu2O nanocrystals on plasmon-enhanced oxygen evolution reaction in alkaline media. Electrochimica Acta, 2021, 390, 138810.	5.2	11
44	Nanoengineering of Catalysts for Enhanced Hydrogen Production. Hydrogen, 2022, 3, 218-254.	3.4	11
45	Systematic investigation of the effect of oxygen mobility on CO oxidation over AgPt nanoshells supported on CeO2, TiO2 and Al2O3. Journal of Materials Science, 2017, 52, 13764-13778.	3.7	9
46	Controlling Reduction Kinetics in the Galvanic Replacement Involving Metal Oxides Templates: Elucidating the Formation of Bimetallic Bowls, Rattles, and Dendrites from Cu ₂ 0 Spheres. Particle and Particle Systems Characterization, 2018, 35, 1700175.	2.3	9
47	AN UNDERGRADUATE LEVEL EXPERIMENT ON THE SYNTHESIS OF Au NANOPARTICLES AND THEIR SIZE-DEPENDENT OPTICAL AND CATALYTIC PROPERTIES. Quimica Nova, 2014, , .	0.3	7
48	Cerium oxide-sulfur nanohybrids: Combining the robust adsorption of polysulfides with enhanced redox kinetics to improve the energy Storage capabilities of Li-S batteries. Electrochimica Acta, 2021, 382, 138284.	5.2	7
49	Hydroquinone-Based Synthesis of Pd Nanostructures and the Interplay of Surface Capping, Reduction Kinetics, Attachment, Diffusion, and Fusion. Chemistry of Materials, 2021, 33, 8430-8439.	6.7	6
50	MnO2/Vulcan-Based Gas Diffusion Electrode for Mineralization of Diazo Dye in Simulated Effluent. Electrocatalysis, 2020, 11, 268-274.	3.0	4
51	Bimetallic Au@Pdâ€Au Tadpoleâ€Shaped Asymmetric Nanostructures by a Combination of Precursor Reduction and Ostwald Ripening. ChemNanoMat, 2016, 2, 509-514.	2.8	3
52	AgAu Nanotubes: Investigating the Effect of Surface Morphologies and Optical Properties over Applications in Catalysis and Photocatalysis. Journal of the Brazilian Chemical Society, 0, , .	0.6	0