Benjamin Gaglioti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7464021/publications.pdf

Version: 2024-02-01

430874 395702 1,189 33 18 33 g-index citations h-index papers 33 33 33 2046 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications, 2020, 11, 4621.	12.8	201
2	lce-age megafauna in Arctic Alaska: extinction, invasion, survival. Quaternary Science Reviews, 2013, 70, 91-108.	3.0	86
3	Life and extinction of megafauna in the ice-age Arctic. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14301-14306.	7.1	78
4	Inland waters and their role in the carbon cycle of Alaska. Ecological Applications, 2017, 27, 1403-1420.	3.8	78
5	Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon. Nature Climate Change, 2018, 8, 166-171.	18.8	72
6	Pleistocene graminoid-dominated ecosystems in the Arctic. Quaternary Science Reviews, 2011, 30, 2906-2929.	3.0	65
7	Climateâ€driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis. Biological Reviews, 2019, 94, 328-352.	10.4	62
8	Reconstruction of past methane availability in an Arctic Alaska wetland indicates climate influenced methane release during the past ~12,000Âyears. Journal of Paleolimnology, 2012, 48, 27-42.	1.6	59
9	Identification of unrecognized tundra fire events on the north slope of Alaska. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1334-1344.	3.0	58
10	Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1630-1651.	3.0	49
11	Lake and drained lake basin systems in lowland permafrost regions. Nature Reviews Earth & Environment, 2022, 3, 85-98.	29.7	41
12	Younger-Dryas cooling and sea-ice feedbacks were prominent features of the Pleistocene-Holocene transition in Arctic Alaska. Quaternary Science Reviews, 2017, 169, 330-343.	3.0	36
13	Aeolian stratigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska. Quaternary Science Reviews, 2018, 182, 175-190.	3.0	33
14	An ~11,200Âyear paleolimnological perspective for emerging archaeological findings at Quartz Lake, Alaska. Journal of Paleolimnology, 2012, 48, 83-99.	1.6	31
15	Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes. Biogeosciences, 2015, 12, 29-47.	3.3	25
16	Methane turnover and environmental change from Holocene lipid biomarker records in a thermokarst lake in Arctic Alaska. Holocene, 2016, 26, 1766-1777.	1.7	24
17	A narrow window of summer temperatures associated with shrub growth in Arctic Alaska. Environmental Research Letters, 2020, 15, 105012.	5.2	23
18	Ice roads through lake-rich Arctic watersheds: Integrating climate uncertainty and freshwater habitat responses into adaptive management. Arctic, Antarctic, and Alpine Research, 2019, 51, 9-23.	1.1	22

#	Article	IF	CITATIONS
19	The detailed palaeoecology of a midâ€Wisconsinan interstadial (ca. 32 000 < sup > 14 < /sup > C a BP) vegetation surface from interior Alaska. Journal of Quaternary Science, 2011, 26, 746-756.	2.1	19
20	Yellow-cedar blue intensity tree-ring chronologies as records of climate in Juneau, Alaska, USA. Canadian Journal of Forest Research, 2019, 49, 1483-1492.	1.7	16
21	Post-glacial dispersal patterns of Northern pike inferred from an 8800 year old pike (Esox cf. lucius) skull from interior Alaska. Quaternary Science Reviews, 2015, 120, 118-125.	3.0	15
22	Late Pleistocene shrub expansion preceded megafauna turnover and extinctions in eastern Beringia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
23	Late Pleistocene paleoecology of arctic ground squirrel (Urocitellus parryii) caches and nests from Interior Alaska's mammoth steppe ecosystem, USA. Quaternary Research, 2011, 76, 373-382.	1.7	13
24	High-resolution records detect human-caused changes to the boreal forest wildfire regime in interior Alaska. Holocene, 2016, 26, 1064-1074.	1.7	11
25	Traumatic Resin Ducts in Alaska Mountain Hemlock Trees Provide a New Proxy for Winter Storminess. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1923-1938.	3.0	11
26	Geophysical Observations of Taliks Below Drained Lake Basins on the Arctic Coastal Plain of Alaska. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020889.	3 . 4	9
27	Tussocks Enduring or Shrubs Greening: Alternate Responses to Changing Fire Regimes in the Noatak River Valley, Alaska. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006009.	3.0	8
28	Remote Sensing-Based Statistical Approach for Defining Drained Lake Basins in a Continuous Permafrost Region, North Slope of Alaska. Remote Sensing, 2021, 13, 2539.	4.0	8
29	Expanding beaver pond distribution in Arctic Alaska, 1949 to 2019. Scientific Reports, 2022, 12, 7123.	3.3	8
30	Multi-Dimensional Remote Sensing Analysis Documents Beaver-Induced Permafrost Degradation, Seward Peninsula, Alaska. Remote Sensing, 2021, 13, 4863.	4.0	5
31	Developing graminoid cuticle analysis for application to Beringian palaeoecology. Review of Palaeobotany and Palynology, 2010, 162, 95-110.	1.5	4
32	Is the modern-day dieback of yellow-cedar unprecedented?. Canadian Journal of Forest Research, 2021, 51, 1953-1965.	1.7	2
33	Ecosystems at Glacier Margins Can Serve as Climateâ€Change Laboratories. Geophysical Research Letters, 2022, 49, .	4.0	2