

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7463793/publications.pdf Version: 2024-02-01

Ιιλιί Υιι

#	Article	IF	CITATIONS
1	Cellulose nanosphere: Preparation and applications of the novel nanocellulose. Carbohydrate Polymers, 2022, 277, 118863.	10.2	37
2	Facile access to photo-switchable, dynamic-optical, multi-colored and solid-state materials from carbon dots and cellulose for photo-rewritable paper and advanced anti-counterfeiting. Chemical Engineering Journal, 2021, 406, 126794.	12.7	50
3	Immobilization of Ionic Liquids with a New Cellulose Ester Containing Imidazolium Cation for Highâ€Performance CO 2 Separation Membranes. Macromolecular Rapid Communications, 2021, 42, 2000494.	3.9	9
4	Molecular weight characterization of cellulose using ionic liquids. Polymer Testing, 2021, 93, 106985.	4.8	20
5	Time-Dependent Elastic Tensor of Cellulose Nanocrystal Probed by Hydrostatic Pressure and Uniaxial Stretching. Journal of Physical Chemistry Letters, 2021, 12, 3779-3785.	4.6	12
6	A biaxially stretched cellulose film prepared from ionic liquid solution. Carbohydrate Polymers, 2021, 260, 117816.	10.2	12
7	Poly(propylene carbonate)/clay nanocomposites with enhanced mechanical property, thermal stability and oxygen barrier property. Composites Communications, 2020, 22, 100520.	6.3	9
8	Thermostable and Redispersible Cellulose Nanocrystals with Thixotropic Gelation Behavior by a Facile Desulfation Process. ACS Sustainable Chemistry and Engineering, 2020, 8, 11737-11746.	6.7	10
9	Facile Access to Solid-State Carbon Dots with High Luminescence Efficiency and Excellent Formability via Cellulose Derivative Coatings. ACS Sustainable Chemistry and Engineering, 2020, 8, 5937-5945.	6.7	45
10	Direct and complete utilization of agricultural straw to fabricate all-biomass films with high-strength, high-haze and UV-shielding properties. Carbohydrate Polymers, 2019, 223, 115057.	10.2	38
11	Reâ€Dispersible 1D and 2D Nanoparticle Solid Powders without any Surfactant. ChemNanoMat, 2019, 5, 163-168.	2.8	5
12	Visual and Precise Detection of pH Values under Extreme Acidic and Strong Basic Environments by Cellulose-Based Superior Sensor. Analytical Chemistry, 2019, 91, 3085-3092.	6.5	37
13	Phototunable Fullâ€Color Emission of Celluloseâ€Based Dynamic Fluorescent Materials. Advanced Functional Materials, 2018, 28, 1703548.	14.9	163
14	All-cellulose composites based on the self-reinforced effect. Composites Communications, 2018, 9, 42-53.	6.3	51
15	Nucleation Enhancement in Stereodefective Poly(l-lactide) by Free Volume Expansion Resulting from Low-Temperature Pressure CO2 Preconditioning. Polymers, 2018, 10, 120.	4.5	1
16	A Novel Cellulose/Ionic Liquid Complex Crystal. Crystal Growth and Design, 2018, 18, 4260-4264.	3.0	13
17	Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Materials Chemistry Frontiers, 2017, 1, 1273-1290.	5.9	304
18	Directly Converting Agricultural Straw into All-Biomass Nanocomposite Films Reinforced with Additional in Situ-Retained Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2017, 5, 5127-5133.	6.7	36

Jian Yu

#	Article	IF	CITATIONS
19	Transparent Cellulose–Silica Composite Aerogels with Excellent Flame Retardancy via an in Situ Sol–Gel Process. ACS Sustainable Chemistry and Engineering, 2017, 5, 11117-11123.	6.7	81
20	Cellulose Aerogel Membranes with a Tunable Nanoporous Network as a Matrix of Gel Polymer Electrolytes for Safer Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 24591-24599.	8.0	103
21	Direct formation of banded spherulites in poly(l-lactide) from the glassy state: Unexpected synergistic role of chain structure and compressed CO2. Polymer, 2016, 99, 662-670.	3.8	5
22	Celluloseâ€Based Solid Fluorescent Materials. Advanced Optical Materials, 2016, 4, 2044-2050.	7.3	81
23	Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels. Science China Chemistry, 2016, 59, 1335-1341.	8.2	45
24	Understanding cellulose dissolution: effect of the cation and anion structure of ionic liquids on the solubility of cellulose. Science China Chemistry, 2016, 59, 1421-1429.	8.2	62
25	All-Cellulose Nanocomposites Reinforced with <i>in Situ</i> Retained Cellulose Nanocrystals during Selective Dissolution of Cellulose in an Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2016, 4, 4417-4423.	6.7	87
26	Transparent cellulose/Laponite nanocomposite films. Journal of Materials Science, 2016, 51, 4125-4133.	3.7	27
27	Flexible and Transparent Cellulose Aerogels with Uniform Nanoporous Structure by a Controlled Regeneration Process. ACS Sustainable Chemistry and Engineering, 2016, 4, 656-660.	6.7	99
28	An unusual spherulite morphology induced by nano-fillers from a concentrated cellulose/ionic liquid solution. RSC Advances, 2015, 5, 44648-44651.	3.6	11
29	Homogeneous esterification of cellulose in room temperature ionic liquids. Polymer International, 2015, 64, 963-970.	3.1	39
30	User-centric social context information management: an ontology-based approach and platform. Personal and Ubiquitous Computing, 2014, 18, 1061-1083.	2.8	29
31	Supercritical CO2 conditioning promotes \hat{i}^3 -crystal formation in amorphous syndiotactic polystyrene during further heating. Polymer, 2014, 55, 1108-1112.	3.8	3
32	Transparent bionanocomposites with improved properties from poly(propylene carbonate) (PPC) and cellulose nanowhiskers (CNWs). Composites Science and Technology, 2013, 85, 83-89.	7.8	78
33	Synergistic Effect of 1-Dodecyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid and Montmorillonite on Microcellular Foaming Behavior of Poly(methyl methacrylate) by Supercritical CO ₂ . Industrial & Engineering Chemistry Research, 2013, 52, 11988-11995.	3.7	5
34	Preparation and morphology of different types of cellulose spherulites from concentrated cellulose ionic liquid solutions. Soft Matter, 2013, 9, 3013.	2.7	29
35	Plasticization of [C ₁₂ MIM][PF ₆] Ionic Liquid on Foaming Performance of Poly(methyl methacrylate) in Supercritical CO ₂ . Industrial & Engineering Chemistry Research, 2012, 51, 12329-12336.	3.7	10
36	A oneâ€pot method to prepare transparent poly(methyl methacrylate)/montmorillonite nanocomposites using imidazoliumâ€based ionic liquids. Polymer International, 2012, 61, 1382-1388.	3.1	18

Jian Yu

#	Article	IF	CITATIONS
37	Enhanced Crystallization of Bisphenol A Polycarbonate in Thin and Ultrathin Films by Supercritical Carbon Dioxide. Macromolecules, 2011, 44, 5743-5749.	4.8	34
38	Cellulose aerogels prepared from cellulose/AmimCl solutions. Scientia Sinica Chimica, 2011, 41, 1331-1337.	0.4	3
39	Free volume and crystallinity of poly(ethylene naphthalate) treated in pressurized carbon dioxide. Polymer, 2010, 51, 146-152.	3.8	15
40	Thermal Behavior of Poly(<scp>l</scp> -lactide) Having Low <scp>l</scp> -lsomer Content of 94% after Compressed CO ₂ Treatment. Macromolecules, 2010, 43, 8602-8609.	4.8	30
41	Effect of substituents on electronic properties, thin film structure and device performance of dithienothiophene–phenylene cooligomers. Thin Solid Films, 2009, 517, 2968-2973.	1.8	14
42	Thermoplastic Cellulose- <i>graft</i> -poly(<scp>l</scp> -lactide) Copolymers Homogeneously Synthesized in an Ionic Liquid with 4-Dimethylaminopyridine Catalyst. Biomacromolecules, 2009, 10, 2013-2018.	5.4	145
43	Ultrasonic irradiation enhanced cell nucleation: An effective approach to microcellular foams of both high cell density and expansion ratio. Polymer, 2008, 49, 2430-2434.	3.8	45
44	Foaming behavior of polypropylene/polystyrene blends enhanced by improved interfacial compatibility. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1641-1651.	2.1	63
45	Cell coalescence suppressed by crosslinking structure in polypropylene microcellular foaming. Polymer Engineering and Science, 2008, 48, 1312-1321.	3.1	91
46	Foaming behavior of isotactic polypropylene in supercritical CO2 influenced by phase morphology via chain grafting. Polymer, 2008, 49, 3146-3156.	3.8	82
47	Influence of Long-Chain Branching on the Crystallization and Melting Behavior of Polycarbonates in Supercritical CO2. Macromolecules, 2007, 40, 73-80.	4.8	47
48	Stability of form II of syndiotactic polypropylene confirmed by cold and melt crystallization in supercritical carbon dioxide. Polymer, 2007, 48, 1741-1748.	3.8	7
49	Cosolvent effect of water in supercritical carbon dioxide facilitating induced crystallization of polycarbonate. Polymer Engineering and Science, 2007, 47, 1338-1343.	3.1	13
50	Competitive influence of atactic polystyrene and supercritical carbon dioxide on the conformation of syndiotactic polystyrene. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1755-1764.	2.1	6
51	Establishing a three-dimensional diagram with solubility parameter representing the general behavior of crystallization for amorphous poly(ethylene 2,6-naphthalate). Polymer International, 2007, 56, 1298-1304.	3.1	6
52	Preparation of conductive polypyrrole (PPy) composites under supercritical carbon dioxide conditions. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2007, 2, 118-122.	0.4	11
53	Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams. Polymer, 2006, 47, 7580-7589.	3.8	184
54	Supercritical carbon dioxide assisted preparation of conductive polypyrrole/cellulose diacetate composites. Journal of Applied Polymer Science, 2006, 100, 4575-4580.	2.6	2

Jian Yu

#	Article	IF	CITATIONS
55	Supercritical Fluid Assisted Crystal Transition of?-Form Crystal in Syndiotactic Polystyrene. Macromolecular Rapid Communications, 2005, 26, 112-115.	3.9	15
56	Process analysis of phase transformation of $\hat{I}\pm$ to \hat{I}^2 -form crystal of syndiotactic polystyrene investigated in supercritical CO2. Polymer, 2005, 46, 5789-5796.	3.8	17
57	Stability of crystal forms of syndiotactic polystyrene correlated with their formation in different media having different solubility parameters. Polymer, 2005, 46, 11104-11111.	3.8	15
58	Empty δ Crystal as an Intermediate Form for the δ to γ Transition of Syndiotactic Polystyrene in Supercritical Carbon Dioxide. Macromolecules, 2005, 38, 4755-4760.	4.8	49
59	A Reexamination of andMeof Syndiotactic Polypropylenes with Metallocene Catalysts. Macromolecules, 2004, 37, 9279-9282.	4.8	23
60	Direct Formation ofγForm Crystal of Syndiotactic Polystyrene from Amorphous State in Supercritical CO2. Macromolecules, 2004, 37, 6912-6917.	4.8	38
61	Thermal degradation studies of cyclic olefin copolymers. Polymer Degradation and Stability, 2003, 81, 197-205.	5.8	57
62	Crystallization kinetics of maleic anhydride grafted polypropylene ionomers. Polymer, 2000, 41, 891-898.	3.8	79
63	Micron-size uniform poly(methyl methacrylate) particles by dispersion polymerization in polar media. Chemical Engineering Journal, 2000, 78, 211-215.	12.7	47
64	Hydrothermal Oxidation of Industrial Alkali Lignin for Producing Small Molecular Organic Acids. Advanced Materials Research, 0, 608-609, 1399-1406.	0.3	2