
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7463537/publications.pdf Version: 2024-02-01

ם אלא אסניו

#	Article	IF	CITATIONS
1	Controllable FRET processes towards ratiometric Fe3+ ion sensor of pseudo [3]rotaxane containing naphthalimide-based macrocyclic host donor and multi-stimuli responsive rhodamine-modified guest acceptor. Dyes and Pigments, 2022, 197, 109907.	3.7	5
2	Synthesis and Columnar Organization of Partially Fluorinated Dehydrobenz[18]annulenes. Crystal Growth and Design, 2022, 22, 2076-2081.	3.0	2
3	Controlling Tautomerization in Pyridineâ€Fused Phosphorusâ€Nitrogen Heterocycles. Chemistry - A European Journal, 2022, 28, .	3.3	3
4	Platinum(II)-Substituted Phenylacetylide Complexes Supported by Acyclic Diaminocarbene Ligands. Inorganic Chemistry, 2022, 61, 8498-8508.	4.0	8
5	Efficient CO ₂ /CO Separation by Pressure Swing Adsorption Using an Intrinsically Nanoporous Molecular Crystal. ACS Applied Nano Materials, 2022, 5, 14021-14026.	5.0	3
6	Baird's rules at the tipping point. Nature Chemistry, 2022, 14, 723-725.	13.6	20
7	Antiaromatic compounds: a brief history, applications, and the many ways they escape antiaromaticity. , 2021, , 319-338.		6
8	Cyclobenzoin Esters as Hosts for Thin Guests. Organic Letters, 2021, 23, 2253-2257.	4.6	5
9	Cyano-Isocyanide Iridium(III) Complexes with Pure Blue Phosphorescence. Inorganic Chemistry, 2021, 60, 6391-6402.	4.0	15
10	Controllable FRET Behaviors of Supramolecular Host–Guest Systems as Ratiometric Aluminum Ion Sensors Manipulated by Tetraphenylethylene-Functionalized Macrocyclic Host Donor and Multistimuli-Responsive Fluorescein-Based Guest Acceptor. ACS Applied Materials & Interfaces, 2021, 13, 20662-20680.	8.0	17
11	FRET processes of bi-fluorophoric sensor material containing tetraphenylethylene donor and optical-switchable merocyanine acceptor for lead ion (Pb2+) detection in semi-aqueous media. Dyes and Pigments, 2021, 189, 109238.	3.7	10
12	A Tale of Two Isomers: Enhanced Antiaromaticity/Diradical Character versus Deleterious Ringâ€Opening of Benzofuranâ€fused s â€Indacenes and Dicyclopenta[b , g]naphthalenes. Angewandte Chemie, 2021, 133, 22559-22566.	2.0	1
13	A Tale of Two Isomers: Enhanced Antiaromaticity/Diradical Character versus Deleterious Ringâ€Opening of Benzofuranâ€fused <i>s</i> â€Indacenes and Dicyclopenta[<i>b</i> , <i>g</i>]naphthalenes. Angewandte Chemie - International Edition, 2021, 60, 22385-22392.	13.8	21
14	Multi-stimuli responsive fluorescence of amphiphilic AIEgen copolymers for ultrafast, highly sensitive and selective copper ion detection in water. Sensors and Actuators B: Chemical, 2021, 344, 130241.	7.8	22
15	Switching the Reactivity of Palladium Diimines with "Ancillary―Ligand to Select between Olefin Polymerization, Branching Regulation, or Olefin Isomerization. Angewandte Chemie - International Edition, 2021, 60, 1635-1640.	13.8	18
16	Hydrogen bonding interactions can decrease clar sextet character in acridone pigments. Organic and Biomolecular Chemistry, 2021, 19, 9619-9623.	2.8	1
17	Barrier-Lowering Effects of Baird Antiaromaticity in Photoinduced Proton-Coupled Electron Transfer (PCET) Reactions. Journal of the American Chemical Society, 2021, 143, 17970-17974.	13.7	10
18	Switching the Reactivity of Palladium Diimines with "Ancillary―Ligand to Select between Olefin Polymerization, Branching Regulation, or Olefin Isomerization. Angewandte Chemie, 2021, 133, 1659-1664.	2.0	2

#	Article	IF	CITATIONS
19	Antiaromaticity gain increases the potential for n-type charge transport in hydrogen-bonded Ï€-conjugated cores. Chemical Communications, 2020, 56, 2008-2011.	4.1	16
20	Azo-triazolide bis-cyclometalated Ir(<scp>iii</scp>) complexes <i>via</i> cyclization of 3-cyanodiarylformazanate ligands. Dalton Transactions, 2020, 49, 3775-3785.	3.3	6
21	Late-Stage Modification of Electronic Properties of Antiaromatic and Diradicaloid Indeno[1,2- <i>b</i>)fluorene Analogues via Sulfur Oxidation. Journal of Organic Chemistry, 2020, 85, 10846-10857.	3.2	21
22	Efficient FRET Approaches toward Copper(II) and Cyanide Detections via Host–Guest Interactions of Photo-Switchable [2]Pseudo-Rotaxane Polymers Containing Naphthalimide and Merocyanine Moieties. ACS Applied Materials & Interfaces, 2020, 12, 53257-53273.	8.0	19
23	Thiosquaramide-Based Supramolecular Polymers: Aromaticity Gain in a Switched Mode of Self-Assembly. Journal of the American Chemical Society, 2020, 142, 19907-19916.	13.7	26
24	Elucidating Secondary Metal Cation Effects on Nickel Olefin Polymerization Catalysts. ACS Catalysis, 2020, 10, 10760-10772.	11.2	36
25	Graphene/WS ₂ Nanodisk Van der Waals Heterostructures on Plasmonic Ag Nanoparticle-Embedded Silica Metafilms for High-Performance Photodetectors. ACS Applied Nano Materials, 2020, 3, 7858-7868.	5.0	25
26	Electron-driven proton transfer relieves excited-state antiaromaticity in photoexcited DNA base pairs. Chemical Science, 2020, 11, 10071-10077.	7.4	32
27	Optimization of FRET Behavior in Photoswitchable [2]Rotaxanes Containing Bifluorophoric Naphthalimide Donor and Merocyanine Acceptor with Sensor Approaches toward Sulfite Detection. Chemistry of Materials, 2020, 32, 9371-9389.	6.7	23
28	Antiaromaticity Gain Activates Tropone and Nonbenzenoid Aromatics as Normal-Electron-Demand Diels–Alder Dienes. Organic Letters, 2020, 22, 7083-7087.	4.6	18
29	Highly Efficient Förster Resonance Energy Transfer Modulations of Dual-AIEgens between a Tetraphenylethylene Donor and a Merocyanine Acceptor in Photo-Switchable [2]Rotaxanes and Reversible Photo-Patterning Applications. ACS Applied Materials & Interfaces, 2020, 12, 47921-47938.	8.0	43
30	Hydrogen bond design principles. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1477.	14.6	74
31	How does excited-state antiaromaticity affect the acidity strengths of photoacids?. Chemical Communications, 2020, 56, 8380-8383.	4.1	30
32	On the reciprocal relationship between σ-hole bonding and (anti)aromaticity gain in ketocyclopolyenes. Organic and Biomolecular Chemistry, 2020, 18, 5125-5129.	2.8	4
33	High-Performance Strain Sensors Based on Vertically Aligned Piezoelectric Zinc Oxide Nanowire Array/Graphene Nanohybrids. ACS Applied Nano Materials, 2020, 3, 6711-6718.	5.0	30
34	Efficient Deep Blue Platinum Acetylide Phosphors with Acyclic Diaminocarbene Ligands. Chemistry - A European Journal, 2020, 26, 16028-16035.	3.3	20
35	Multi-Stimuli Responsive FRET Processes of Bifluorophoric AlEgens in an Amphiphilic Copolymer and Its Application to Cyanide Detection in Aqueous Media. ACS Applied Materials & Interfaces, 2020, 12, 10959-10972.	8.0	81
36	Self-assembling purine and pteridine quartets: how do π-conjugation patterns affect resonance-assisted hydrogen bonding?. Organic and Biomolecular Chemistry, 2020, 18, 1078-1081.	2.8	4

#	Article	IF	CITATIONS
37	Why do A·T and G·C self-sort? Hückel aromaticity as a driving force for electronic complementarity in base pairing. Organic and Biomolecular Chemistry, 2019, 17, 1881-1885.	2.8	7
38	Solvation-dependent switching of solid-state luminescence of a fluorinated aromatic tetrapyrazole. Chemical Communications, 2019, 55, 9387-9390.	4.1	17
39	On the Mechanism of the Asymmetric Aldol Addition of Chiral Nâ€Amino Cyclic Carbamate Hydrazones: Evidence of Non urtin–Hammett Behavior. Chemistry - A European Journal, 2019, 25, 16037-16047.	3.3	3
40	Ground State Destabilization in Uracil DNA Glycosylase: Let's Not Forget "Tautomeric Strain―in Substrates. Journal of the American Chemical Society, 2019, 141, 13739-13743.	13.7	6
41	Excited-state proton transfer relieves antiaromaticity in molecules. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20303-20308.	7.1	63
42	Metal–organic insertion light initiated radical (MILRad) polymerization: photo-initiated radical polymerization of vinyl polar monomers with various palladium diimine catalysts. Polymer Chemistry, 2019, 10, 3040-3047.	3.9	23
43	Mixed-carbene cyclometalated iridium complexes with saturated blue luminescence. Chemical Science, 2019, 10, 6254-6260.	7.4	55
44	The quest for a triplet groundâ€state alkene: Highly twisted Câ•€ double bonds. Journal of Physical Organic Chemistry, 2019, 32, e3965.	1.9	7
45	Inkjet Printing Multicolor Pixelated Quantum Dots on Graphene for Broadband Photodetection. ACS Applied Nano Materials, 2019, 2, 3246-3252.	5.0	21
46	Superalkali ligands as a building block for aromatic trinuclear Cu(<scp>i</scp>)–NHC complexes. Inorganic Chemistry Frontiers, 2019, 6, 3336-3344.	6.0	12
47	Inkjet-Printed Imbedded Graphene Nanoplatelet/Zinc Oxide Bulk Heterojunctions Nanocomposite Films for Ultraviolet Photodetection. ACS Omega, 2019, 4, 22497-22503.	3.5	10
48	Stabilizing Borinium Cations [X–B–X] ⁺ through Conjugation and Hyperconjugation Effects. Inorganic Chemistry, 2019, 58, 243-249.	4.0	2
49	Scalable Grapheneâ€onâ€Organometal Halide Perovskite Heterostructure Fabricated by Dry Transfer. Advanced Materials Interfaces, 2019, 6, 1801419.	3.7	11
50	Dissecting Porosity in Molecular Crystals: Influence of Geometry, Hydrogen Bonding, and [π···π] Stacking on the Solid-State Packing of Fluorinated Aromatics. Journal of the American Chemical Society, 2018, 140, 6014-6026.	13.7	106
51	Aromaticity gain increases the inherent association strengths of multipoint hydrogen-bonded arrays. Chemical Communications, 2018, 54, 3512-3515.	4.1	15
52	Printing High-Performance Tungsten Oxide Thin Film Ultraviolet Photodetectors on ZnO Quantum Dot Textured SiO ₂ Surface. IEEE Sensors Journal, 2018, 18, 9542-9547.	4.7	15
53	Discrimination of dicarboxylic acids <i>via</i> assembly-induced emission. Chemical Communications, 2018, 54, 11578-11581.	4.1	16
54	Modern Treatments of Aromaticity. , 2018, , 273-288.		0

54 Modern Treatments of Aromaticity. , 2018, , 273-288.

#	Article	IF	CITATIONS
55	Homoleptic Platinum Azo-iminate Complexes via Hydrogenative Cleavage of Formazans. Inorganic Chemistry, 2018, 57, 9468-9477.	4.0	13
56	A Mismatch-Free Strategy for the Diastereoselective α,α-Bisalkylation of Chiral Nonracemic Methyl Ketones. Organic Letters, 2018, 20, 3723-3727.	4.6	3
57	Toward highly stable solid-state unconventional thin-film battery-supercapacitor hybrid devices: Interfacing vertical core-shell array electrodes with a gel polymer electrolyte. Journal of Power Sources, 2017, 342, 1006-1016.	7.8	11
58	Highâ€Field NMR Spectroscopy Reveals Aromaticityâ€Modulated Hydrogen Bonding in Heterocycles. Angewandte Chemie - International Edition, 2017, 56, 9842-9846.	13.8	11
59	Self-Organization of lons at the Interface between Graphene and Ionic Liquid DEME-TFSI. ACS Applied Materials & Interfaces, 2017, 9, 35437-35443.	8.0	17
60	Highâ€Field NMR Spectroscopy Reveals Aromaticityâ€Modulated Hydrogen Bonding in Heterocycles. Angewandte Chemie, 2017, 129, 9974-9978.	2.0	1
61	Enormous Hydrogen Bond Strength Enhancement through π-Conjugation Gain: Implications for Enzyme Catalysis. Biochemistry, 2017, 56, 4318-4322.	2.5	8
62	Highâ€Performance Photodetectors Based on Effective Exciton Dissociation in Proteinâ€Adsorbed Multiwalled Carbon Nanotube Nanohybrids. Advanced Optical Materials, 2017, 5, 1600478.	7.3	10
63	Hydrogen bond–aromaticity cooperativity in selfâ€assembling 4â€pyridone chains. Journal of Computational Chemistry, 2016, 37, 59-63.	3.3	15
64	Probing effect of temperature on energy storage properties of relaxor-ferroelectric epitaxial Pb0.92La0.08Zr0.52Ti0.48O3 thin film capacitors. Thin Solid Films, 2016, 616, 711-716.	1.8	10
65	AMHB: (Anti)aromaticity-Modulated Hydrogen Bonding. Journal of the American Chemical Society, 2016, 138, 3427-3432.	13.7	29
66	Heteroleptic Complexes of Cyclometalated Platinum with Triarylformazanate Ligands. Inorganic Chemistry, 2016, 55, 956-963.	4.0	33
67	Effects of deposition temperature and CdCl2 annealing on the CdS thin films prepared by pulsed laser deposition. Journal of Alloys and Compounds, 2016, 654, 333-339.	5.5	27
68	Time-Resolved Measurements of Photocarrier Dynamics in TiS ₃ Nanoribbons. ACS Applied Materials & Interfaces, 2016, 8, 18334-18338.	8.0	35
69	A Novel High-Power Battery-Pseudocapacitor Hybrid Based on Fast Lithium Reactions in Silicon Anode and Titanium Dioxide Cathode Coated on Vertically Aligned Carbon Nanofibers. Electrochimica Acta, 2015, 178, 797-805.	5.2	17
70	The hydrogen bond strength of the phenol–phenolate anionic complex: a computational and photoelectron spectroscopic study. Physical Chemistry Chemical Physics, 2015, 17, 25109-25113.	2.8	13
71	Study of ArÂ+ÂO2 deposition pressures on properties of pulsed laser deposited CdTe thin films at high substrate temperature. Journal of Materials Science: Materials in Electronics, 2014, 25, 1901-1907.	2.2	7
72	Do π-Conjugative Effects Facilitate SN2 Reactions?. Journal of the American Chemical Society, 2014, 136, 3118-3126.	13.7	20

#	Article	IF	CITATIONS
73	Aromaticity Evaluations of Planar [6]Radialenes. Organic Letters, 2014, 16, 6116-6119.	4.6	26
74	Aromaticity in transition structures. Chemical Society Reviews, 2014, 43, 4909-4921.	38.1	124
75	Dimension effect on the performance of carbon nanotube nanobolometers. Nanotechnology, 2014, 25, 425503.	2.6	11
76	Reciprocal Hydrogen Bonding–Aromaticity Relationships. Journal of the American Chemical Society, 2014, 136, 13526-13529.	13.7	50
77	On the large Ïf-hyperconjugation in alkanes and alkenes. Journal of Molecular Modeling, 2014, 20, 2228.	1.8	10
78	Luminol-labeled gold nanoparticles for ultrasensitive chemiluminescence-based chemical analyses. Analyst, The, 2013, 138, 5600.	3.5	12
79	Preparation and characterization of pulsed laser deposited CdTe thin films at higher FTO substrate temperature and in Ar+O2 atmosphere. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 801-806.	3.5	32
80	Free Cyclooctatetraene Dianion: Planarity, Aromaticity, and Theoretical Challenges. Journal of Chemical Theory and Computation, 2013, 9, 4436-4443.	5.3	33
81	Hyperconjugation in hydrocarbons: Not just a "mild sort of conjugation― Pure and Applied Chemistry, 2013, 85, 921-940.	1.9	51
82	Description of Aromaticity in Porphyrinoids. Journal of the American Chemical Society, 2013, 135, 315-321.	13.7	99
83	Light Trapping on Plasmonic-Photonic Nanostructured Fluorine-Doped Tin Oxide. Journal of Physical Chemistry C, 2013, 117, 11725-11730.	3.1	12
84	Substituent Effects on "Hyperconjugative―Aromaticity and Antiaromaticity in Planar Cyclopolyenes. Organic Letters, 2013, 15, 2990-2993.	4.6	87
85	A Hückel Theory Perspective on Möbius Aromaticity. Organic Letters, 2013, 15, 3432-3435.	4.6	21
86	Why Do Two π-Electron Four-Membered Hückel Rings Pucker?. Organic Letters, 2012, 14, 5712-5715.	4.6	23
87	Is C60 buckminsterfullerene aromatic?. Physical Chemistry Chemical Physics, 2012, 14, 14886.	2.8	58
88	Aromatic Transition States in Nonpericyclic Reactions: Anionic 5-Endo Cyclizations Are Aborted Sigmatropic Shifts. Journal of the American Chemical Society, 2012, 134, 10584-10594.	13.7	78
89	Why Are S _{<i>n</i>} N ₄ (<i>n</i> = 1–4) Species "Missing� Answers in a Broader Theoretical Context of Binary S–N Compounds. Inorganic Chemistry, 2012, 51, 13321-13327.	4.0	18
90	Why Cyclooctatetraene Is Highly Stabilized: The Importance of "Two-Way―(Double) Hyperconjugation. Journal of Chemical Theory and Computation, 2012, 8, 1280-1287.	5.3	52

#	Article	IF	CITATIONS
91	Is cyclobutadiene really highly destabilized by antiaromaticity?. Chemical Communications, 2012, 48, 8437.	4.1	71
92	Effects of the substrate temperature on the properties of CdTe thin films deposited by pulsed laser deposition. Surface and Coatings Technology, 2012, 213, 84-89.	4.8	27
93	A study of aromatic three membered rings. International Journal of Quantum Chemistry, 2011, 111, 1031-1038.	2.0	21
94	Starlike Aluminum–Carbon Aromatic Species. Chemistry - A European Journal, 2011, 17, 714-719.	3.3	45
95	Aromaticity in Groupâ€14 Homologues of the Cyclopropenylium Cation. Chemistry - A European Journal, 2011, 17, 2215-2224.	3.3	50
96	Aromaticity and Relative Stabilities of Azines. Organic Letters, 2010, 12, 4824-4827.	4.6	81
97	Investigation into Photoconductivity in Single CNF/TiO2-Dye Core–Shell Nanowire Devices. Nanoscale Research Letters, 2010, 5, 1480-1486.	5.7	16
98	Why Are Some (CH)4X6 and (CH2)6X4 Polyheteroadamantanes So Stable?. Organic Letters, 2010, 12, 1320-1323.	4.6	18
99	Is Cyclopropane Really the σâ€Aromatic Paradigm?. Chemistry - A European Journal, 2009, 15, 9730-9736.	3.3	63
100	Ab Initio Study of the Geometry, Stability, and Aromaticity of the Cyclic S2N3+ Cation Isomers and Their Isoelectronic Analogues. Inorganic Chemistry, 2009, 48, 6773-6780.	4.0	15
101	4n π Electrons but Stable: <i>N</i> , <i>N</i> -Dihydrodiazapentacenes. Journal of Organic Chemistry, 2009, 74, 4343-4349.	3.2	75
102	The Effect of Perfluorination on the Aromaticity of Benzene and Heterocyclic Six-Membered Rings. Journal of Physical Chemistry A, 2009, 113, 6789-6794.	2.5	41
103	Electrophile Affinity: A Reactivity Measure for Aromatic Substitution. Journal of the American Chemical Society, 2009, 131, 14722-14727.	13.7	60
104	Are <i>N</i> , <i>N</i> -Dihydrodiazatetracene Derivatives Antiaromatic?. Journal of the American Chemical Society, 2008, 130, 7339-7344.	13.7	158
105	Interplay of ï€-Electron Delocalization and Strain in [<i>n</i>](2,7)Pyrenophanes. Journal of Organic Chemistry, 2008, 73, 8001-8009.	3.2	55
106	Homobenzene: Homoaromaticity and Homoantiaromaticity in Cycloheptatrienes. Journal of Physical Chemistry A, 2008, 112, 10586-10594.	2.5	36
107	<i>In situ</i> switch of boron nanowire growth mode from vapor-liquid-solid to oxide-assisted growth. Applied Physics Letters, 2008, 92, .	3.3	8
108	A Thiadiazole-FusedN,N-Dihydroquinoxaline:Â Antiaromatic but Isolable. Organic Letters, 2007, 9, 1073-1076.	4.6	25

#	Article	IF	CITATIONS
109	Conformational Lability in Serine Protease Active Sites: Structures of Hepatocyte Growth Factor Activator (HGFA) Alone and with the Inhibitory Domain from HGFA Inhibitor-1B. Journal of Molecular Biology, 2005, 346, 1335-1349.	4.2	64