Mika Lindén

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7461678/publications.pdf

Version: 2024-02-01

83 papers

2,985 citations

30 h-index 52 g-index

83 all docs 83 docs citations

83 times ranked

4833 citing authors

#	Article	IF	CITATIONS
1	Methods for the determination and speciation of mercury in natural waters—A review. Analytica Chimica Acta, 2010, 663, 127-138.	5.4	434
2	Efficiency Improvement of Solutionâ€Processed Dithienopyrroleâ€Based Aâ€Dâ€A Oligothiophene Bulkâ€Heterojunction Solar Cells by Solvent Vapor Annealing. Advanced Energy Materials, 2014, 4, 1400266.	19.5	144
3	Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. Journal of Colloid and Interface Science, 2016, 475, 161-170.	9.4	142
4	Gold-Coated Silica as a Preconcentration Phase for the Determination of Total Dissolved Mercury in Natural Waters Using Atomic Fluorescence Spectrometry. Analytical Chemistry, 2009, 81, 3421-3428.	6.5	115
5	Superâ€Resolution Microscopy Unveils Dynamic Heterogeneities in Nanoparticle Protein Corona. Small, 2017, 13, 1701631.	10.0	109
6	Inhibiting Notch Activity in Breast Cancer Stem Cells by Glucose Functionalized Nanoparticles Carrying ³ -secretase Inhibitors. Molecular Therapy, 2016, 24, 926-936.	8.2	91
7	Dissolution kinetics of mesoporous silica nanoparticles in different simulated body fluids. Journal of Sol-Gel Science and Technology, 2016, 79, 319-327.	2.4	90
8	Mesoporous silica nanoparticles in tissue engineering – a perspective. Nanomedicine, 2016, 11, 391-402.	3.3	83
9	Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environmental Science and Pollution Research, 2015, 22, 8549-8558.	5.3	80
10	Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. Journal of Controlled Release, 2020, 326, 544-555.	9.9	75
11	Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS ONE, 2019, 14, e0212858.	2.5	66
12	Long-term study of palladium in road tunnel dust and sewage sludge ash. Environmental Pollution, 2008, 156, 341-347.	7.5	62
13	Analytical strategies to the determination of metal-containing nanoparticles in environmental waters. TrAC - Trends in Analytical Chemistry, 2016, 84, 107-120.	11.4	60
14	Ligand-Assisted Extraction for Separation and Preconcentration of Gold Nanoparticles from Waters. Analytical Chemistry, 2012, 84, 4340-4349.	6.5	58
15	Nanomaterial-based strategies for enhanced mercury trace analysis in environmental and drinking waters. TrAC - Trends in Analytical Chemistry, 2016, 80, 280-292.	11.4	54
16	Control of Nanoparticle Release Kinetics from 3D Printed Hydrogel Scaffolds. Angewandte Chemie - International Edition, 2017, 56, 4623-4628.	13.8	53
17	Targeting murine leukemic stem cells by antibody functionalized mesoporous silica nanoparticles. Scientific Reports, 2018, 8, 989.	3.3	52
18	Palladium Nanoparticles Induce Disturbances in Cell Cycle Entry and Progression of Peripheral Blood Mononuclear Cells: Paramount Role of Ions. Journal of Immunology Research, 2014, 2014, 1-8.	2.2	51

#	Article	IF	CITATIONS
19	Comparison of different cytotoxicity assays for in vitro evaluation of mesoporous silica nanoparticles. Toxicology in Vitro, 2018, 52, 214-221.	2.4	51
20	A new fully automated on-line digestion system for ultra trace analysis of mercury in natural waters by means of FI-CV-AFS. Talanta, 2008, 76, 382-388.	5 . 5	48
21	Detection of silver nanoparticles in parsley by solid sampling high-resolution–continuum source atomic absorption spectrometry. Analytical and Bioanalytical Chemistry, 2014, 406, 3887-3894.	3.7	44
22	Activated gold surfaces for the direct preconcentration of mercury species from natural waters. Journal of Analytical Atomic Spectrometry, 2009, 24, 767.	3.0	43
23	Cargo-influences on the biodistribution of hollow mesoporous silica nanoparticles as studied by quantitative 19 F-magnetic resonance imaging. Journal of Colloid and Interface Science, 2017, 488, 1-9.	9.4	39
24	The effects of palladium nanoparticles on the renal function of female Wistar rats. Nanotoxicology, 2015, 9, 843-851.	3.0	38
25	In vitro evaluation of the potential toxic effects of palladium nanoparticles on fibroblasts and lung epithelial cells. Toxicology in Vitro, 2017, 42, 191-199.	2.4	38
26	Serum Protein Adsorption Enhances Active Leukemia Stem Cell Targeting of Mesoporous Silica Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18566-18574.	8.0	36
27	Independent Fine-Tuning of the Intrawall Porosity and Primary Mesoporosity of SBA-15. Chemistry of Materials, 2013, 25, 1989-1997.	6.7	35
28	Biodistribution and Excretion of Intravenously Injected Mesoporous Silica Nanoparticles: Implications for Drug Delivery Efficiency and Safety. The Enzymes, 2018, 43, 155-180.	1.7	34
29	Analysis of total dissolved mercury in waters after on-line preconcentration on an active gold column. Talanta, 2010, 81, 1529-1535.	5.5	33
30	Functional tuning of A–D–A oligothiophenes: the effect of solvent vapor annealing on blend morphology and solar cell performance. Journal of Materials Chemistry A, 2015, 3, 13738-13748.	10.3	32
31	A direct solid sampling analysis method for the detection of silver nanoparticles in biological matrices. Analytical and Bioanalytical Chemistry, 2016, 408, 295-305.	3.7	31
32	On the importance of the linking chemistry for the PEGylation of mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 2021, 589, 453-461.	9.4	29
33	Determination of traffic-related palladium in tunnel dust and roadside soil. Science of the Total Environment, 2017, 583, 169-175.	8.0	28
34	Exposure to Palladium Nanoparticles Affects Serum Levels of Cytokines in Female Wistar Rats. PLoS ONE, 2015, 10, e0143801.	2.5	27
35	Retention and remobilization mechanisms of environmentally aged silver nanoparticles in an artificial riverbank filtration system. Science of the Total Environment, 2018, 645, 192-204.	8.0	26
36	Assessing the potential of inorganic anions (Clâ^', NO3â^', SO42â^' and PO43â^') to increase the bioaccessibility of emitted palladium in the environment: Experimental studies with soils and a Pd model substance. Environmental Pollution, 2017, 220, 1050-1058.	7.5	25

#	Article	IF	CITATIONS
37	Sizing gold nanoparticles using graphite furnace atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2017, 32, 723-730.	3.0	22
38	Nanogold-Decorated Silica Monoliths as Highly Efficient Solid-Phase Adsorbent for Ultratrace Mercury Analysis in Natural Waters. Analytical Chemistry, 2015, 87, 11122-11129.	6.5	21
39	The influence of alkyl side chains on molecular packing and solar cell performance of dithienopyrrole-based oligothiophenes. Journal of Materials Chemistry A, 2016, 4, 10514-10523.	10.3	21
40	Scavenging Reactive Oxygen Species Production Normalizes Ferroportin Expression and Ameliorates Cellular and Systemic Iron Disbalances in Hemolytic Mouse Model. Antioxidants and Redox Signaling, 2018, 29, 484-499.	5.4	21
41	Ultra-trace determination of mercury in river waters after online UV digestion of humic matter. Analytical and Bioanalytical Chemistry, 2012, 403, 2419-2428.	3.7	20
42	Hydrophobization of marble pore surfaces using a total immersion treatment method – Product selection and optimization of concentration and treatment time. Progress in Organic Coatings, 2015, 85, 159-167.	3.9	20
43	Influence of mesopore size and peptide aggregation on the adsorption and release of a model antimicrobial peptide onto/from mesoporous silica nanoparticles in vitro. Molecular Systems Design and Engineering, 2017, 2, 393-400.	3.4	18
44	Multi-Modal PET and MR Imaging in the Hen's Egg Test-Chorioallantoic Membrane (HET-CAM) Model for Initial In Vivo Testing of Target-Specific Radioligands. Cancers, 2020, 12, 1248.	3.7	18
45	Preparation of efficient oligomer-based bulk-heterojunction solar cells from eco-friendly solvents. Journal of Materials Chemistry C, 2017, 5, 9920-9928.	5.5	17
46	The eastern extent of seasonal iron limitation in the high latitude North Atlantic Ocean. Scientific Reports, 2019, 9, 1435.	3.3	17
47	Geochemical behaviour of palladium in soils and Pd/PdO model substances in the presence of the organic complexing agents <scp>l</scp> -methionine and citric acid. Environmental Sciences: Processes and Impacts, 2016, 18, 22-31.	3.5	16
48	Preparation and characterization of Pd/Al2O3 and Pd nanoparticles as standardized test material for chemical and biochemical studies of traffic related emissions. Science of the Total Environment, 2008, 394, 177-182.	8.0	15
49	Subchronic exposure to palladium nanoparticles affects serum levels of cytokines in female Wistar rats. Human and Experimental Toxicology, 2018, 37, 309-320.	2.2	15
50	Palladium nanoparticle effects on endocrine reproductive system of female rats. Human and Experimental Toxicology, 2018, 37, 1069-1079.	2.2	14
51	Comparative study of alkylthiols and alkylamines for the phase transfer of gold nanoparticles from an aqueous phase to n-hexane. Journal of Colloid and Interface Science, 2013, 397, 199-205.	9.4	13
52	Templateâ€Derived Submicrometric Carbon Spheres for Lithium–Sulfur and Sodiumâ€lon Battery Electrodes. Energy Technology, 2018, 6, 1797-1804.	3.8	13
53	Investigation of the atomization mechanism of gold nanoparticles in graphite furnace atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 150, 26-32.	2.9	13
54	Quantitative 19F MRI of perfluoro-15-crown-5-ether using uniformity correction of the spin excitation and signal reception. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 25-36.	2.0	13

#	Article	IF	Citations
55	Delivery by Dendritic Mesoporous Silica Nanoparticles Enhances the Antimicrobial Activity of a Napsinâ€Derived Peptide Against Intracellular <i>Mycobacterium tuberculosis</i> Materials, 2021, 10, e2100453.	7.6	13
56	XRD/Raman spectroscopy studies of the mechanism of (de)intercalation of Na ⁺ from/into highly crystalline birnessite. Materials Advances, 2021, 2, 3940-3953.	5.4	13
57	Mobility of traffic-related Pd and Pt species in soils evaluated by sequential extraction. Environmental Pollution, 2018, 242, 1119-1127.	7.5	12
58	Biphenyl-Bridged Organosilica as a Precursor for Mesoporous Silicon Oxycarbide and Its Application in Lithium and Sodium Ion Batteries. Nanomaterials, 2019, 9, 754.	4.1	12
59	Intermediate pickering emulsion formation as a means for synthesizing hollow mesoporous silica nanoparticles. New Journal of Chemistry, 2016, 40, 4217-4222.	2.8	11
60	Dissolution and morphology evolution of mesoporous silica nanoparticles under biologically relevant conditions. Journal of Colloid and Interface Science, 2022, 608, 995-1004.	9.4	11
61	Solid-phase extraction of Cu ²⁺ and Pb ²⁺ from waters using new thermally treated chitosan/polyacrylamide thin films; adsorption kinetics and thermodynamics. International Journal of Environmental Analytical Chemistry, 2017, 97, 965-982.	3.3	10
62	Sizing silver nanoparticles in chicken meat using direct slurry sampling graphite furnace atomic absorption spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 4551-4558.	3.7	10
63	Redox-Sensitive Glyoxalase 1 Up-Regulation Is Crucial for Protecting Human Lung Cells from Gold Nanoparticles Toxicity. Antioxidants, 2020, 9, 697.	5.1	10
64	Characterization of various metal nanoparticles by graphite furnace atomic absorption spectrometry: possibilities and limitations with regard to size and shape. Journal of Analytical Atomic Spectrometry, 2020, 35, 2536-2544.	3.0	10
65	Total reflection X-ray fluorescence spectrometry for trace determination of iron and some additional elements in biological samples. Analytical and Bioanalytical Chemistry, 2020, 412, 6419-6429.	3.7	10
66	Mesoporous Silica-gold Films for Straightforward, Highly Reproducible Monitoring of Mercury Traces in Water. Nanomaterials, 2019, 9, 35.	4.1	9
67	The hidden impact of structural water – how interlayer water largely controls the Raman spectroscopic response of birnessite-type manganese oxide. Journal of Materials Chemistry A, 2021, 9, 18466-18476.	10.3	9
68	The influence of the central acceptor unit on the optoelectronic properties and photovoltaic performance of A–D–A–D–A-type co-oligomers. Organic Chemistry Frontiers, 2017, 4, 755-766.	4.5	8
69	Green Chemistry in Red Emulsion: Interface of Dye Stabilized Emulsions as a Powerful Platform for the Formation of sub-20-nm SiO ₂ Nanoparticles. ACS Applied Materials & Diterfaces, 2018, 10, 24310-24319.	8.0	8
70	A new method for quasi-reagent-free biomonitoring of mercury in human urine. Analytica Chimica Acta, 2017, 965, 63-71.	5 . 4	7
71	Selective Binding of Inhibitorâ€Assisted Surfaceâ€Imprinted Core/Shell Microbeads in Protein Mixtures. ChemistrySelect, 2018, 3, 4277-4282.	1.5	7
72	Sub-chronic palladium nanoparticle effects on the endocrine reproductive system of female Wistar rats: Preliminary data. Toxicology and Industrial Health, 2019, 35, 403-409.	1.4	7

#	Article	IF	CITATIONS
73	Macrophage-HFE controls iron metabolism and immune responses in aged mice. Haematologica, 2020, 106, 259-263.	3.5	7
74	Sustainable and reagent-free mercury trace determination in natural waters using nanogold dipsticks. Microchemical Journal, 2019, 147, 253-262.	4.5	6
75	Determination of trace elements in placenta by total reflection X-ray fluorescence spectrometry: effects of sampling and sample preparation. Analytical and Bioanalytical Chemistry, 2022, , .	3.7	6
76	Highly Transparent w/o Pickering Emulsions without Adjusting the Refractive Index of the Stabilizing Particles. Langmuir, 2017, 33, 10302-10310.	3.5	5
77	Determination of activation energies for atomization of gold nanoparticles in graphite furnace atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 173, 105976.	2.9	5
78	In Vitro Evaluation of a Peptide-Mesoporous Silica Nanoparticle Drug Release System against HIV-1. Inorganics, 2020, 8, 42.	2.7	5
79	Atomization of gold nanoparticles in graphite furnace AAS: Modelling and simulative exploration of experimental results. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 182, 106249.	2.9	4
80	In vitro Targetability Validation of Peptide-Functionalized Mesoporous Silica Nanoparticles in the Presence of Serum Proteins. Frontiers in Chemistry, 2020, 8, 603616.	3.6	2
81	Photoactive Titanium Dioxide Films with Embedded Gold Nanoparticles for Quantitative Determination of Mercury Traces in Humic Matter-Containing Freshwaters. Nanomaterials, 2021, 11, 512.	4.1	2
82	Targeting of Leukemic Stem Cells By Antibody Functionalized Mesoporous Silica Nanoparticles in a Mouse Model of CALM-AF10 Positive Acute Myeloid Leukemia. Blood, 2016, 128, 4713-4713.	1.4	2
83	Michael Haschke, Jörg Flock, and Michael Haller: X-ray fluorescence spectroscopy for laboratory applications. Analytical and Bioanalytical Chemistry, 2021, 413, 6455-6456.	3.7	1