
## Victor De Freitas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7461458/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Interaction between salivary proteins and cork phenolic compounds able to migrate to wine model solutions. Food Chemistry, 2022, 367, 130607.                                                                                                            | 8.2  | 2         |
| 2  | New insights into the oral interactions of different families of phenolic compounds: Deepening the astringency mouthfeels. Food Chemistry, 2022, 375, 131642.                                                                                            | 8.2  | 10        |
| 3  | Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chemical Reviews, 2022, 122, 1416-1481.                                                                                                                                      | 47.7 | 95        |
| 4  | pH-regulated interaction modes between cyanidin-3-glucoside and phenylboronic acid-modified alginate. Carbohydrate Polymers, 2022, 280, 119029.                                                                                                          | 10.2 | 4         |
| 5  | A New Insight into the Degradation of Anthocyanins: Reversible versus the Irreversible Chemical<br>Processes. Journal of Agricultural and Food Chemistry, 2022, 70, 656-668.                                                                             | 5.2  | 15        |
| 6  | Pyranoflavylium-cellulose acetate films and the glycerol effect towards the development of pH-freshness smart label for food packaging. Food Hydrocolloids, 2022, 127, 107501.                                                                           | 10.7 | 31        |
| 7  | Identification of gallotannins and ellagitannins in aged wine spirits: A new perspective using<br>alternative ageing technology and high-resolution mass spectrometry. Food Chemistry, 2022, 382,<br>132322.                                             | 8.2  | 9         |
| 8  | Unravelling the immunomodulatory role of apple phenolic rich extracts on human THP-1- derived macrophages using multiplatform metabolomics. Food Research International, 2022, 155, 111037.                                                              | 6.2  | 2         |
| 9  | Dietary polyglycosylated anthocyanins, the smart option? A comprehensive review on their health benefits and technological applications. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3096-3128.                                     | 11.7 | 6         |
| 10 | Colorimetric pH-Responsive Biomaterials Based on Pyranoflavylium-Biopolymer Hybrid Conjugates. ACS<br>Applied Polymer Materials, 2022, 4, 4961-4971.                                                                                                     | 4.4  | 6         |
| 11 | Berry anthocyanin-based films in smart food packaging: A mini-review. Food Hydrocolloids, 2022, 133, 107885.                                                                                                                                             | 10.7 | 35        |
| 12 | Preparation of 10-(hexylcarbamoyl)pyranomalvidin-3-glucoside from<br>10-carboxypyranomalvidin-3-glucoside using carbodiimide chemistry. Food Chemistry, 2022, 393, 133429.                                                                               | 8.2  | 4         |
| 13 | Wine astringent compounds monitored by an electrochemical biosensor. Food Chemistry, 2022, 395, 133587.                                                                                                                                                  | 8.2  | 1         |
| 14 | Interactions of dietary polyphenols with epithelial lipids: advances from membrane and cell models in the study of polyphenol absorption, transport and delivery to the epithelium. Critical Reviews in Food Science and Nutrition, 2021, 61, 3007-3030. | 10.3 | 9         |
| 15 | Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chemistry, 2021, 334, 127521.                                                                           | 8.2  | 117       |
| 16 | Grape pectic polysaccharides stabilization of anthocyanins red colour: Mechanistic insights.<br>Carbohydrate Polymers, 2021, 255, 117432.                                                                                                                | 10.2 | 18        |
| 17 | Interactions between polyphenol oxidation products and salivary proteins: Specific affinity of CQA dehydrodimers with cystatins and P-B peptide. Food Chemistry, 2021, 343, 128496.                                                                      | 8.2  | 5         |
| 18 | Disaccharide anthocyanin delphinidin 3-O-sambubioside from Hibiscus sabdariffa L.: Candida antarctica<br>lipase B-catalyzed fatty acid acylation and study of its color properties. Food Chemistry, 2021, 344,<br>128603.                                | 8.2  | 17        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Exploratory analysis of large-scale lipidome in large cohorts: are we any closer of finding lipid-based<br>markers suitable for CVD risk stratification and management?. Analytica Chimica Acta, 2021, 1142,<br>189-200. | 5.4  | 7         |
| 20 | Recent advances on dietary polyphenol's potential roles in Celiac Disease. Trends in Food Science and Technology, 2021, 107, 213-225.                                                                                    | 15.1 | 38        |
| 21 | First morphological-level insights into the efficiency of green tea catechins and grape seed<br>procyanidins on a transgenic mouse model of celiac disease enteropathy. Food and Function, 2021, 12,<br>5903-5912.       | 4.6  | 3         |
| 22 | Microwave-Assisted Extraction as a Green Technology Approach to Recover Polyphenols from <i>Castanea sativa</i> Shells. ACS Food Science & Technology, 2021, 1, 229-241.                                                 | 2.7  | 36        |
| 23 | On the Limits of Anthocyanins Co-Pigmentation Models and Respective Equations. Journal of Agricultural and Food Chemistry, 2021, 69, 1359-1367.                                                                          | 5.2  | 10        |
| 24 | Development of lignin-based nanoparticles: fabrication methods and functionalization approaches. , 2021, , 227-270.                                                                                                      |      | 0         |
| 25 | Cyanidin-3-glucoside Lipophilic Conjugates for Topical Application: Tuning the Antimicrobial Activities with Fatty Acid Chain Length. Processes, 2021, 9, 340.                                                           | 2.8  | 10        |
| 26 | Metabolomics Insights of the Immunomodulatory Activities of Phlorizin and Phloretin on Human THP-1 Macrophages. Molecules, 2021, 26, 787.                                                                                | 3.8  | 8         |
| 27 | Dendrimers as Color-Stabilizers of Pyranoanthocyanins: The Dye Concentration Governs the<br>Host–Guest Interaction Mechanisms. ACS Applied Polymer Materials, 2021, 3, 1457-1464.                                        | 4.4  | 6         |
| 28 | A pH-responsive fluorescent sensor based on a new pyranoxanthylium salt. Photochemical and<br>Photobiological Sciences, 2021, 20, 513-521.                                                                               | 2.9  | 0         |
| 29 | Going "Green―in the Prevention and Management of Atherothrombotic Diseases: The Role of Dietary<br>Polyphenols. Journal of Clinical Medicine, 2021, 10, 1490.                                                            | 2.4  | 9         |
| 30 | In-depth phenolic characterization of iron gall inks by deconstructing representative Iberian recipes.<br>Scientific Reports, 2021, 11, 8811.                                                                            | 3.3  | 14        |
| 31 | An Insight into Kiwiberry Leaf Valorization: Phenolic Composition, Bioactivity and Health Benefits.<br>Molecules, 2021, 26, 2314.                                                                                        | 3.8  | 14        |
| 32 | Understanding the molecular interactions between a yeast protein extract and phenolic compounds.<br>Food Research International, 2021, 143, 110261.                                                                      | 6.2  | 5         |
| 33 | Synthesis of novel pyrano-3,7-deoxyanthocyanin derivatives and study of their thermodynamic, photophysical and cytotoxicity properties. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 415, 113313.      | 3.9  | 6         |
| 34 | The Role of Anthocyanins, Deoxyanthocyanins and Pyranoanthocyanins on the Modulation of<br>Tyrosinase Activity: An In Vitro and In Silico Approach. International Journal of Molecular Sciences,<br>2021, 22, 6192.      | 4.1  | 6         |
| 35 | (Poly)phenolâ€Rich Diets in the Management of Endothelial Dysfunction in Diabetes Mellitus: Biological<br>Properties in Cultured Endothelial Cells. Molecular Nutrition and Food Research, 2021, 65, e2001130.           | 3.3  | 3         |
| 36 | Anthocyanin-Related Pigments: Natural Allies for Skin Health Maintenance and Protection.<br>Antioxidants, 2021, 10, 1038.                                                                                                | 5.1  | 22        |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Use of Polyphenols as Modulators of Food Allergies. From Chemistry to Biological Implications.<br>Frontiers in Sustainable Food Systems, 2021, 5, .                                                                           | 3.9  | 15        |
| 38 | Effect of oxidation on color parameters, tannins, and sensory characteristics of Sangiovese wines.<br>European Food Research and Technology, 2021, 247, 2977-2991.                                                            | 3.3  | 10        |
| 39 | Development of a new procedure for the determination of the reactivity of brandies used in wine fortification. Oeno One, 2021, 55, 161-172.                                                                                   | 1.4  | 1         |
| 40 | From soil to cosmetic industry: Validation of a new cosmetic ingredient extracted from chestnut shells. Sustainable Materials and Technologies, 2021, 29, e00309.                                                             | 3.3  | 9         |
| 41 | Copigmentation of anthocyanins with copigments possessing an acid-base equilibrium in moderately acidic solutions. Dyes and Pigments, 2021, 193, 109438.                                                                      | 3.7  | 9         |
| 42 | Anthocyanin Color Stabilization by Host-Guest Complexation with p-Sulfonatocalix[n]arenes.<br>Molecules, 2021, 26, 5389.                                                                                                      | 3.8  | 5         |
| 43 | Physicochemical and nutritional profile of leaves, flowers, and fruits of the edible halophyte<br>chorão-da-praia (Carpobrotus edulis) on Portuguese west shores. Food Bioscience, 2021, 43, 101288.                          | 4.4  | 12        |
| 44 | Strategies used by nature to fix the red, purple and blue colours in plants: a physical chemistry approach. Physical Chemistry Chemical Physics, 2021, 23, 24080-24101.                                                       | 2.8  | 6         |
| 45 | Characterization of Anthocyanins and Anthocyanin-Derivatives in Red Wines during Ageing in Custom<br>Oxygenation Oak Wood Barrels. Molecules, 2021, 26, 64.                                                                   | 3.8  | 12        |
| 46 | Synthesis, structural characterization and chromatic features of new 2-phenyl-1-benzopyrylium and 2-phenyl-styryl-1-benzopyrylium amino-based blue dyes. Tetrahedron Letters, 2021, 85, 153487.                               | 1.4  | 5         |
| 47 | Achieving Complexity at the Bottom: Molecular Metamorphosis Generated by Anthocyanins and Related Compounds. ACS Omega, 2021, 6, 30172-30188.                                                                                 | 3.5  | 4         |
| 48 | New-Level Insights into the Effects of Grape Seed Polyphenols on the Intestinal Processing and<br>Transport of a Celiac Disease Immunodominant Peptide. Journal of Agricultural and Food Chemistry,<br>2021, 69, 13474-13486. | 5.2  | 2         |
| 49 | Photoactivated cell-killing amino-based flavylium compounds. Scientific Reports, 2021, 11, 22005.                                                                                                                             | 3.3  | 2         |
| 50 | Castanea sativa Shells: Is Cosmetic Industry a Prominent Opportunity to Valorize This Agro-Waste?. ,<br>2021, 6, .                                                                                                            |      | 0         |
| 51 | The Antidiabetic Effect of Grape Pomace Polysaccharide-Polyphenol Complexes. Nutrients, 2021, 13, 4495.                                                                                                                       | 4.1  | 19        |
| 52 | Inhibition Mechanisms of Wine Polysaccharides on Salivary Protein Precipitation. Journal of<br>Agricultural and Food Chemistry, 2020, 68, 2955-2963.                                                                          | 5.2  | 21        |
| 53 | Polyphenol Chemistry: Implications for Nutrition, Health, and the Environment. Journal of Agricultural and Food Chemistry, 2020, 68, 2833-2835.                                                                               | 5.2  | 7         |
| 54 | Molecular binding between anthocyanins and pectic polysaccharides – Unveiling the role of pectic polysaccharides structure. Food Hydrocolloids, 2020, 102, 105625.                                                            | 10.7 | 65        |

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Bioinspired Synthesis and Physical-Chemical Properties of a New 10-Methylpyrano-4′-hydroxyflavylium<br>Chloride Salt. Synlett, 2020, 31, 334-338.                                                                                                        | 1.8 | 8         |
| 56 | Interaction of polyphenols with model membranes: Putative implications to mouthfeel perception.<br>Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183133.                                                                                     | 2.6 | 22        |
| 57 | Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated<br>Multi-Trophic Aquaculture System. Foods, 2020, 9, 1382.                                                                                                     | 4.3 | 55        |
| 58 | Exploring the Applications of the Photoprotective Properties of Anthocyanins in Biological Systems.<br>International Journal of Molecular Sciences, 2020, 21, 7464.                                                                                      | 4.1 | 25        |
| 59 | Photochemistry of 5-Hydroxy-4'-Dimethylaminoflavylium in the presence of SDS micelles. The role of metastable states of flavylium cation-quinoidal base and trans-chalcones. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 402, 112827. | 3.9 | 3         |
| 60 | When polyphenols meet lipids: Challenges in membrane biophysics and opportunities in epithelial lipidomics. Food Chemistry, 2020, 333, 127509.                                                                                                           | 8.2 | 15        |
| 61 | Migration of Tannins and Pectic Polysaccharides from Natural Cork Stoppers to the Hydroalcoholic Solution. Journal of Agricultural and Food Chemistry, 2020, 68, 14230-14242.                                                                            | 5.2 | 7         |
| 62 | Variation in the Phenolic Composition of Cork Stoppers from Different Geographical Origins. Journal of Agricultural and Food Chemistry, 2020, 68, 14970-14977.                                                                                           | 5.2 | 6         |
| 63 | Oral interactions between a green tea flavanol extract and red wine anthocyanin extract using a new cell-based model: insights on the effect of different oral epithelia. Scientific Reports, 2020, 10, 12638.                                           | 3.3 | 20        |
| 64 | Bioactive Peptides and Dietary Polyphenols: Two Sides of the Same Coin. Molecules, 2020, 25, 3443.                                                                                                                                                       | 3.8 | 40        |
| 65 | Solid Lipid Nanoparticles as Carriers of Natural Phenolic Compounds. Antioxidants, 2020, 9, 998.                                                                                                                                                         | 5.1 | 85        |
| 66 | Chemical/Color Stability and Rheological Properties of Cyanidin-3-Glucoside in Deep Eutectic Solvents<br>as a Gateway to Design Task-Specific Bioactive Compounds. ACS Sustainable Chemistry and Engineering,<br>2020, 8, 16184-16196.                   | 6.7 | 12        |
| 67 | Anthocyanins as Antidiabetic Agents—In Vitro and In Silico Approaches of Preventive and Therapeutic<br>Effects. Molecules, 2020, 25, 3813.                                                                                                               | 3.8 | 48        |
| 68 | Polyphenolic Characterization of Nebbiolo Red Wines and Their Interaction with Salivary Proteins.<br>Foods, 2020, 9, 1867.                                                                                                                               | 4.3 | 8         |
| 69 | Interaction of a Procyanidin Mixture with Human Saliva and the Variations of Salivary Protein<br>Profiles over a 1-Year Period. Journal of Agricultural and Food Chemistry, 2020, 68, 13824-13832.                                                       | 5.2 | 7         |
| 70 | Orthogonal method for solving maximum correntropyâ€based power system state estimation. IET<br>Generation, Transmission and Distribution, 2020, 14, 1930-1941.                                                                                           | 2.5 | 5         |
| 71 | Dye-sensitized solar cells based on dimethylamino-Ï€-bridge-pyranoanthocyanin dyes. Solar Energy,<br>2020, 206, 188-199.                                                                                                                                 | 6.1 | 15        |
| 72 | Color stabilization of cyanidin-3-glucoside-based dyes by encapsulation with biocompatible PEGylated phospholipid micelles. Dyes and Pigments, 2020, 181, 108592.                                                                                        | 3.7 | 9         |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules, 2020, 25, 2590.                                                                                                       | 3.8  | 112       |
| 74 | Microwave-Assisted Synthesis and Ionic Liquids: Green and Sustainable Alternatives toward Enzymatic<br>Lipophilization of Anthocyanin Monoglucosides. Journal of Agricultural and Food Chemistry, 2020,<br>68, 7387-7392. | 5.2  | 14        |
| 75 | In vitro gastrointestinal absorption of red wine anthocyanins – Impact of structural complexity and phase II metabolization. Food Chemistry, 2020, 317, 126398.                                                           | 8.2  | 32        |
| 76 | The effect of pectic polysaccharides from grape skins on salivary protein – procyanidin interactions.<br>Carbohydrate Polymers, 2020, 236, 116044.                                                                        | 10.2 | 25        |
| 77 | Impact of grape pectic polysaccharides on anthocyanins thermostability. Carbohydrate Polymers, 2020, 239, 116240.                                                                                                         | 10.2 | 45        |
| 78 | The peculiarity of malvidin 3-O-(6-O-p-coumaroyl) glucoside aggregation. Intra and intermolecular interactions. Dyes and Pigments, 2020, 180, 108382.                                                                     | 3.7  | 8         |
| 79 | A 1000-year-old mystery solved: Unlocking the molecular structure for the medieval blue from <i>Chrozophora tinctoria</i> , also known as folium. Science Advances, 2020, 6, eaaz7772.                                    | 10.3 | 19        |
| 80 | Correction to "New Procedure to Calculate All Equilibrium Constants in Flavylium Compounds:<br>Application to the Copigmentation of Anthocyanins― ACS Omega, 2020, 5, 25476-25476.                                        | 3.5  | 0         |
| 81 | Polyphenol Interactions and Food Organoleptic Properties. , 2019, , 650-655.                                                                                                                                              |      | 1         |
| 82 | Synergistic effect of mixture of two proline-rich-protein salivary families (aPRP and bPRP) on the interaction with wine flavanols. Food Chemistry, 2019, 272, 210-215.                                                   | 8.2  | 18        |
| 83 | Development and optimization of a HS-SPME-GC-MS methodology to quantify volatile carbonyl compounds in Port wines. Food Chemistry, 2019, 270, 518-526.                                                                    | 8.2  | 52        |
| 84 | Interaction between Ellagitannins and Salivary Proline-Rich Proteins. Journal of Agricultural and Food Chemistry, 2019, 67, 9579-9590.                                                                                    | 5.2  | 24        |
| 85 | An efficient method for anthocyanins lipophilization based on enzyme retention in membrane systems.<br>Food Chemistry, 2019, 300, 125167.                                                                                 | 8.2  | 11        |
| 86 | New Procedure To Calculate All Equilibrium Constants in Flavylium Compounds: Application to the Copigmentation of Anthocyanins. ACS Omega, 2019, 4, 12058-12070.                                                          | 3.5  | 34        |
| 87 | A new interior point solver with generalized correntropy for multiple gross error suppression in state estimation. Electric Power Systems Research, 2019, 176, 105937.                                                    | 3.6  | 10        |
| 88 | Impact of a Waterâ€Soluble Gallic Acidâ€Based Dendrimer on the Colorâ€Stabilizing Mechanisms of<br>Anthocyanins. Chemistry - A European Journal, 2019, 25, 11696-11706.                                                   | 3.3  | 16        |
| 89 | Development of a New Cell-Based Oral Model To Study the Interaction of Oral Constituents with<br>Food Polyphenols. Journal of Agricultural and Food Chemistry, 2019, 67, 12833-12843.                                     | 5.2  | 17        |
| 90 | Study of the multi-equilibria of red wine colorants pyranoanthocyanins and evaluation of their potential in dye-sensitized solar cells. Solar Energy, 2019, 191, 100-108.                                                 | 6.1  | 17        |

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Recovery of added value compounds from cork industry by-products. Industrial Crops and Products, 2019, 140, 111599.                                                                                                                    | 5.2 | 16        |
| 92  | Anthocyanins: Nutrition and Health. Reference Series in Phytochemistry, 2019, , 1097-1133.                                                                                                                                             | 0.4 | 4         |
| 93  | Polymeric Pigments in Red Wines. , 2019, , 207-218.                                                                                                                                                                                    |     | 5         |
| 94  | GLUT1 and GLUT3 involvement in anthocyanin gastric transport- Nanobased targeted approach.<br>Scientific Reports, 2019, 9, 789.                                                                                                        | 3.3 | 42        |
| 95  | A multi-spectroscopic study on the interaction of food polyphenols with a bioactive gluten peptide:<br>From chemistry to biological implications. Food Chemistry, 2019, 299, 125051.                                                   | 8.2 | 19        |
| 96  | Catechol versus carboxyl linkage impact on DSSC performance of synthetic pyranoflavylium salts.<br>Dyes and Pigments, 2019, 170, 107577.                                                                                               | 3.7 | 26        |
| 97  | Insights into the development of grapefruit nutraceutical powder by spray drying: physical characterization, chemical composition and 3D intestinal permeability. Journal of the Science of Food and Agriculture, 2019, 99, 4686-4694. | 3.5 | 10        |
| 98  | Sulfate-based lipids: Analysis of healthy human fluids and cell extracts. Chemistry and Physics of<br>Lipids, 2019, 221, 53-64.                                                                                                        | 3.2 | 17        |
| 99  | Purple-fleshed sweet potato acylated anthocyanins: Equilibrium network and photophysical properties. Food Chemistry, 2019, 288, 386-394.                                                                                               | 8.2 | 33        |
| 100 | Stabilization of bluish pyranoanthocyanin pigments in aqueous systems using lignin nanoparticles.<br>Dyes and Pigments, 2019, 166, 367-374.                                                                                            | 3.7 | 14        |
| 101 | Synthesis and chemical equilibria of a new 10-methylpyrano-2-styrylbenzopyrylium pigment in aqueous solution and its modulation by different micellar systems. Dyes and Pigments, 2019, 167, 60-67.                                    | 3.7 | 9         |
| 102 | Infusions and decoctions of dehydrated fruits of Actinidia arguta and Actinidia deliciosa: Bioactivity, radical scavenging activity and effects on cells viability. Food Chemistry, 2019, 289, 625-634.                                | 8.2 | 36        |
| 103 | Red wine extract preserves tight junctions in intestinal epithelial cells under inflammatory conditions: implications for intestinal inflammation. Food and Function, 2019, 10, 1364-1374.                                             | 4.6 | 69        |
| 104 | Comparison of the in vitro gastrointestinal bioavailability of acylated and non-acylated anthocyanins:<br>Purple-fleshed sweet potato vs red wine. Food Chemistry, 2019, 276, 410-418.                                                 | 8.2 | 67        |
| 105 | Effect of malvidin-3-glucoside and epicatechin interaction on their ability to interact with salivary proline-rich proteins. Food Chemistry, 2019, 276, 33-42.                                                                         | 8.2 | 26        |
| 106 | Chapter 2. Chemistry of Anthocyanins. Food Chemistry, Function and Analysis, 2019, , 34-76.                                                                                                                                            | 0.2 | 2         |
| 107 | Assessment of oxidation compounds in oaked Chardonnay wines: A GC–MS and 1 H NMR metabolomics approach. Food Chemistry, 2018, 257, 120-127.                                                                                            | 8.2 | 23        |
| 108 | Synthesis and Structural Characterization of a Novel Symmetrical 2,10-Bis-Styryl-1-Benzopyrylium Dye.<br>Synlett, 2018, 29, 1390-1394.                                                                                                 | 1.8 | 9         |

| #   | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Colour modulation of blue anthocyanin-derivatives. Lignosulfonates as a tool to improve the water solubility of natural blue dyes. Dyes and Pigments, 2018, 153, 150-159.                                                                                               | 3.7 | 10        |
| 110 | Molecular insights on the interaction and preventive potential of epigallocatechin-3-gallate in Celiac<br>Disease. International Journal of Biological Macromolecules, 2018, 112, 1029-1037.                                                                            | 7.5 | 16        |
| 111 | Extending the stability of red and blue colors of malvidin-3-glucoside-lipophilic derivatives in the presence of SDS micelles. Dyes and Pigments, 2018, 151, 321-326.                                                                                                   | 3.7 | 20        |
| 112 | Identification and characterization of proteolytically resistant gluten-derived peptides. Food and Function, 2018, 9, 1726-1735.                                                                                                                                        | 4.6 | 11        |
| 113 | Blackberry anthocyanins: β-Cyclodextrin fortification for thermal and gastrointestinal stabilization.<br>Food Chemistry, 2018, 245, 426-431.                                                                                                                            | 8.2 | 80        |
| 114 | Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Bioresource Technology, 2018, 247, 829-837.                                                                                 | 9.6 | 115       |
| 115 | Study of human salivary proline-rich proteins interaction with food tannins. Food Chemistry, 2018, 243, 175-185.                                                                                                                                                        | 8.2 | 43        |
| 116 | Effect of <i>in vitro</i> digestion on the functional properties of <i>Psidium cattleianum</i> Sabine<br>(araçá), <i>Butia odorata</i> (Barb. Rodr.) Noblick (butiá) and <i>Eugenia uniflora</i> L. (pitanga) fruit<br>extracts. Food and Function, 2018, 9, 6380-6390. | 4.6 | 20        |
| 117 | New insights into iron-gall inks through the use of historically accurate reconstructions. Heritage<br>Science, 2018, 6, .                                                                                                                                              | 2.3 | 53        |
| 118 | Anthocyanins: Nutrition and Health. Reference Series in Phytochemistry, 2018, , 1-37.                                                                                                                                                                                   | 0.4 | 4         |
| 119 | Improvement of the Color Stability of Cyanidin-3-glucoside by Fatty Acid Enzymatic Acylation. Journal of Agricultural and Food Chemistry, 2018, 66, 10003-10010.                                                                                                        | 5.2 | 37        |
| 120 | Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Science of the Total Environment, 2018, 644, 229-236.                                                                                              | 8.0 | 126       |
| 121 | Human Bitter Taste Receptors Are Activated by Different Classes of Polyphenols. Journal of Agricultural and Food Chemistry, 2018, 66, 8814-8823.                                                                                                                        | 5.2 | 65        |
| 122 | Hybrid systems control applied to wind power forecasting deviation considering PHS. , 2018, , .                                                                                                                                                                         |     | 0         |
| 123 | Antiproliferative Activity of Neem Leaf Extracts Obtained by a Sequential Pressurized Liquid Extraction. Pharmaceuticals, 2018, 11, 76.                                                                                                                                 | 3.8 | 13        |
| 124 | Impact of Lignosulfonates on the Thermodynamic and Kinetic Parameters of<br>Malvidin-3- <i>O</i> -glucoside in Aqueous Solutions. Journal of Agricultural and Food Chemistry,<br>2018, 66, 6382-6387.                                                                   | 5.2 | 11        |
| 125 | Wine industry by-product: Full polyphenolic characterization of grape stalks. Food Chemistry, 2018, 268, 110-117.                                                                                                                                                       | 8.2 | 45        |
| 126 | Selective enzymatic lipophilization of anthocyanin glucosides from blackcurrant (Ribes nigrum L.)<br>skin extract and characterization of esterified anthocyanins. Food Chemistry, 2018, 266, 415-419.                                                                  | 8.2 | 37        |

| #   | Article                                                                                                                                                                                                                                                      | IF         | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 127 | Sensorial properties of red wine polyphenols: Astringency and bitterness. Critical Reviews in Food Science and Nutrition, 2017, 57, 937-948.                                                                                                                 | 10.3       | 134       |
| 128 | Wine-Inspired Chemistry: Anthocyanin Transformations for a Portfolio of Natural Colors. Synlett, 2017, 28, 898-906.                                                                                                                                          | 1.8        | 23        |
| 129 | Experimental Design, Modeling, and Optimization of High-Pressure-Assisted Extraction of Bioactive Compounds from Pomegranate Peel. Food and Bioprocess Technology, 2017, 10, 886-900.                                                                        | 4.7        | 57        |
| 130 | Molecular study of mucin-procyanidin interaction by fluorescence quenching and Saturation<br>Transfer Difference (STD)-NMR. Food Chemistry, 2017, 228, 427-434.                                                                                              | 8.2        | 37        |
| 131 | Malvidin 3-Glucoside–Fatty Acid Conjugates: From Hydrophilic toward Novel Lipophilic Derivatives.<br>Journal of Agricultural and Food Chemistry, 2017, 65, 6513-6518.                                                                                        | 5.2        | 42        |
| 132 | Interaction between Wine Phenolic Acids and Salivary Proteins by Saturation-Transfer Difference<br>Nuclear Magnetic Resonance Spectroscopy (STD-NMR) and Molecular Dynamics Simulations. Journal<br>of Agricultural and Food Chemistry, 2017, 65, 6434-6441. | 5.2        | 23        |
| 133 | Influence of the structural features of amino-based pyranoanthocyanins on their acid-base equilibria in aqueous solutions. Dyes and Pigments, 2017, 141, 479-486.                                                                                            | 3.7        | 17        |
| 134 | Gastrointestinal absorption, antiproliferative and anti-inflammatory effect of the major carotenoids of Gardenia jasminoides Ellis on cancer cells. Food and Function, 2017, 8, 1672-1679.                                                                   | 4.6        | 28        |
| 135 | First evidences of interaction between pyranoanthocyanins and salivary proline-rich proteins. Food Chemistry, 2017, 228, 574-581.                                                                                                                            | 8.2        | 41        |
| 136 | Pharmacokinetics of table and Port red wine anthocyanins: a crossover trial in healthy men. Food and Function, 2017, 8, 2030-2037.                                                                                                                           | 4.6        | 17        |
| 137 | A saliva molecular imprinted localized surface plasmon resonance biosensor for wine astringency estimation. Food Chemistry, 2017, 233, 457-466.                                                                                                              | 8.2        | 36        |
| 138 | Synthesis and structural characterization of novel pyranoluteolinidin dyes. Tetrahedron Letters, 2017, 58, 159-162.                                                                                                                                          | 1.4        | 14        |
| 139 | High-pressure assisted extraction of bioactive compounds from industrial fermented fig by-product.<br>Journal of Food Science and Technology, 2017, 54, 2519-2531.                                                                                           | 2.8        | 48        |
| 140 | Molecular Interaction Between Salivary Proteins and Food Tannins. Journal of Agricultural and Food<br>Chemistry, 2017, 65, 6415-6424.                                                                                                                        | 5.2        | 36        |
| 141 | New glycolipid biosurfactants produced by the yeast strain Wickerhamomyces anomalus CCMA 0358.<br>Colloids and Surfaces B: Biointerfaces, 2017, 154, 373-382.                                                                                                | 5.0        | 56        |
| 142 | Synthesis of the Main Red Wine Anthocyanin Metabolite: Malvidin-3-O-β-Glucuronide. Synlett, 2017, 28,<br>593-596.                                                                                                                                            | 1.8        | 8         |
| 143 | Unveiling the 6,8â€Rearrangement in 8â€Phenylâ€5,7â€dihydroxyflavylium and 8â€Methylâ€5,7â€dihydroxyflavyl<br>through Host–Guest Complexation. European Journal of Organic Chemistry, 2017, 2017, 5617-5626.                                                 | ium<br>2.4 | 11        |
| 144 | The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach.<br>Carbohydrate Polymers, 2017, 177, 77-85.                                                                                                                   | 10.2       | 77        |

| #   | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Reactivity of Cork Extracts with (+)-Catechin and Malvidin-3- <i>O</i> -glucoside in Wine Model<br>Solutions: Identification of a New Family of Ellagitannin-Derived Compounds (Corklins). Journal of<br>Agricultural and Food Chemistry, 2017, 65, 8714-8726. | 5.2 | 15        |
| 146 | Synthesis and equilibrium multistate of new pyrano-3-deoxyanthocyanin-type pigments in aqueous solutions. Tetrahedron, 2017, 73, 6021-6030.                                                                                                                    | 1.9 | 22        |
| 147 | The effect of anthocyanins from red wine and blackberry on the integrity of a keratinocyte model using ECIS. Food and Function, 2017, 8, 3989-3998.                                                                                                            | 4.6 | 23        |
| 148 | Chromatographic and mass spectrometry analysis of wheat flour prolamins, the causative compounds of celiac disease. Food and Function, 2017, 8, 2712-2721.                                                                                                     | 4.6 | 5         |
| 149 | Wine. , 2017, , 593-621.                                                                                                                                                                                                                                       |     | 2         |
| 150 | Merging conventional and phasor measurements in state estimation: A multi-criteria perspective. , 2017, , .                                                                                                                                                    |     | 4         |
| 151 | Robust state estimation based on orthogonal methods and maximum correntropy criterion. , 2017, , .                                                                                                                                                             |     | 4         |
| 152 | Wine Flavonoids in Health and Disease Prevention. Molecules, 2017, 22, 292.                                                                                                                                                                                    | 3.8 | 167       |
| 153 | A New Chemical Pathway Yielding A-Type Vitisins in Red Wines. International Journal of Molecular<br>Sciences, 2017, 18, 762.                                                                                                                                   | 4.1 | 14        |
| 154 | Comparison of anti-inflammatory activities of an anthocyanin-rich fraction from Portuguese<br>blueberries (Vaccinium corymbosum L.) and 5-aminosalicylic acid in a TNBS-induced colitis rat model.<br>PLoS ONE, 2017, 12, e0174116.                            | 2.5 | 58        |
| 155 | A review of the current knowledge of red wine colour Oeno One, 2017, 51, .                                                                                                                                                                                     | 1.4 | 43        |
| 156 | Oenological perspective of red wine astringency. Oeno One, 2017, 51, .                                                                                                                                                                                         | 1.4 | 3         |
| 157 | Pharmacokinetics of blackberry anthocyanins consumed with or without ethanol: A randomized and crossover trial. Molecular Nutrition and Food Research, 2016, 60, 2319-2330.                                                                                    | 3.3 | 36        |
| 158 | Updating the research on prodelphinidins from dietary sources. Food Research International, 2016, 85, 170-181.                                                                                                                                                 | 6.2 | 14        |
| 159 | Impact of a pectic polysaccharide on oenin copigmentation mechanism. Food Chemistry, 2016, 209, 17-26.                                                                                                                                                         | 8.2 | 33        |
| 160 | Valorization of agro-industrial wastes towards the production of rhamnolipids. Bioresource<br>Technology, 2016, 212, 144-150.                                                                                                                                  | 9.6 | 127       |
| 161 | Simulation of in vitro digestion coupled to gastric and intestinal transport models to estimate<br>absorption of anthocyanins from peel powder of jabuticaba, jamelão and jambo fruits. Journal of<br>Functional Foods, 2016, 24, 373-381.                     | 3.4 | 40        |
| 162 | Bioavailability studies and anticancer properties of malvidin based anthocyanins, pyranoanthocyanins and non-oxonium derivatives. Food and Function, 2016, 7, 2462-2468.                                                                                       | 4.6 | 37        |

| #   | Article                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Enzymatic synthesis, structural characterization and antioxidant capacity assessment of a new<br>lipophilic malvidin-3-glucoside–oleic acid conjugate. Food and Function, 2016, 7, 2754-2762.        | 4.6  | 45        |
| 164 | Experimental data for the synthesis of a new dimeric prodelphinidin gallate. Data in Brief, 2016, 8, 631-636.                                                                                        | 1.0  | 2         |
| 165 | Synthesis and Structural Characterization of Amino-Based Pyranoanthocyanins with Extended Electronic Delocalization. Synlett, 2016, 27, 2459-2462.                                                   | 1.8  | 13        |
| 166 | Effects of ohmic heating on extraction of food-grade phytochemicals from colored potato. LWT -<br>Food Science and Technology, 2016, 74, 493-503.                                                    | 5.2  | 93        |
| 167 | Contribution of Human Oral Cells to Astringency by Binding Salivary Protein/Tannin Complexes.<br>Journal of Agricultural and Food Chemistry, 2016, 64, 7823-7828.                                    | 5.2  | 31        |
| 168 | A Multistate Molecular Switch Based on the 6,8-Rearrangement in Bromo-apigeninidin Operated with<br>pH and Host–Guest Inputs. Journal of Physical Chemistry B, 2016, 120, 7053-7061.                 | 2.6  | 17        |
| 169 | Isolation and Characterization of Anthocyanins from <i>Hibiscus sabdariffa</i> Flowers. Journal of Natural Products, 2016, 79, 1709-1718.                                                            | 3.0  | 80        |
| 170 | Effect of flavonols on wine astringency and their interaction with human saliva. Food Chemistry, 2016, 209, 358-364.                                                                                 | 8.2  | 69        |
| 171 | Extending the Study of the 6,8 Rearrangement in Flavylium Compounds to Higher pH Values:<br>Interconversion between 6-Bromo and 8-Bromo-apigeninidin. ChemistryOpen, 2016, 5, 236-246.               | 1.9  | 8         |
| 172 | Synthesis and structural characterization by LC–MS and NMR of a new semi-natural blue amino-based pyranoanthocyanin compound. Tetrahedron Letters, 2016, 57, 1277-1281.                              | 1.4  | 14        |
| 173 | Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment. Chemical Reviews, 2016, 116, 4937-4982.                                                                     | 47.7 | 408       |
| 174 | Molecular Imprinting of Complex Matrices at Localized Surface Plasmon Resonance Biosensors for Screening of Global Interactions of Polyphenols and Proteins. ACS Sensors, 2016, 1, 258-264.          | 7.8  | 28        |
| 175 | Interaction study between wheat-derived peptides and procyanidin B3 by mass spectrometry. Food Chemistry, 2016, 194, 1304-1312.                                                                      | 8.2  | 24        |
| 176 | Red wine polyphenol extract efficiently protects intestinal epithelial cells from inflammation<br><i>via</i> opposite modulation of JAK/STAT and Nrf2 pathways. Toxicology Research, 2016, 5, 53-65. | 2.1  | 32        |
| 177 | Antioxidant and antiproliferative properties of 3-deoxyanthocyanidins. Food Chemistry, 2016, 192, 142-148.                                                                                           | 8.2  | 44        |
| 178 | Proanthocyanidin screening by LC–ESI-MS of Portuguese red wines made with teinturier grapes. Food<br>Chemistry, 2016, 190, 300-307.                                                                  | 8.2  | 35        |
| 179 | Effect of Myricetin, Pyrogallol, and Phloroglucinol on Yeast Resistance to Oxidative Stress. Oxidative<br>Medicine and Cellular Longevity, 2015, 2015, 1-10.                                         | 4.0  | 38        |
| 180 | Interaction between red wine procyanidins and salivary proteins: effect of stomach digestion on the resulting complexes. RSC Advances, 2015, 5, 12664-12670.                                         | 3.6  | 20        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Integrated State & topology estimation based on a priori topology information. , 2015, , .                                                                                                                                       |     | 5         |
| 182 | Anthocyanins and derivatives are more than flavylium cations. Tetrahedron, 2015, 71, 3107-3114.                                                                                                                                  | 1.9 | 95        |
| 183 | Characterization of Kinetic and Thermodynamic Parameters of Cyanidin-3-glucoside Methyl and<br>Glucuronyl Metabolite Conjugates Journal of Physical Chemistry B, 2015, 119, 2010-2018.                                           | 2.6 | 14        |
| 184 | A study of anthocyanin self-association by NMR spectroscopy. New Journal of Chemistry, 2015, 39, 2602-2611.                                                                                                                      | 2.8 | 50        |
| 185 | Identification and quantification of anthocyanins in fruits from Neomitranthes obscura (DC.) N.<br>Silveira an endemic specie from Brazil by comparison of chromatographic methodologies. Food<br>Chemistry, 2015, 185, 277-283. | 8.2 | 26        |
| 186 | New Anthocyanin–Human Salivary Protein Complexes. Langmuir, 2015, 31, 8392-8401.                                                                                                                                                 | 3.5 | 64        |
| 187 | Characterization of Sensory Properties of FlavanolsA Molecular Dynamic Approach. Chemical<br>Senses, 2015, 40, 381-390.                                                                                                          | 2.0 | 41        |
| 188 | Experimental and Theoretical Data on the Mechanism by Which Red Wine Anthocyanins Are<br>Transported through a Human MKN-28 Gastric Cell Model. Journal of Agricultural and Food<br>Chemistry, 2015, 63, 7685-7692.              | 5.2 | 69        |
| 189 | Screening of Anthocyanins and Anthocyanin-Derived Pigments in Red Wine Grape Pomace Using<br>LC-DAD/MS and MALDI-TOF Techniques. Journal of Agricultural and Food Chemistry, 2015, 63, 7636-7644.                                | 5.2 | 41        |
| 190 | Determination of amatoxins and phallotoxins in <i>Amanita phalloides</i> mushrooms from northeastern Portugal by HPLC-DAD-MS. Mycologia, 2015, 107, 679-687.                                                                     | 1.9 | 26        |
| 191 | How wine polyphenols can fight Alzheimer disease progression: towards a molecular explanation.<br>Tetrahedron, 2015, 71, 3163-3170.                                                                                              | 1.9 | 8         |
| 192 | The interaction between tannins and gliadin derived peptides in a celiac disease perspective. RSC<br>Advances, 2015, 5, 32151-32158.                                                                                             | 3.6 | 22        |
| 193 | Multiple-approach studies to assess anthocyanin bioavailability. Phytochemistry Reviews, 2015, 14, 899-919.                                                                                                                      | 6.5 | 55        |
| 194 | Ageing impact on the antioxidant and antiproliferative properties of Port wines. Food Research<br>International, 2015, 67, 199-205.                                                                                              | 6.2 | 12        |
| 195 | Synthesis, characterisation and antioxidant features of procyanidin B4 and malvidin-3-glucoside stearic acid derivatives. Food Chemistry, 2015, 174, 480-486.                                                                    | 8.2 | 40        |
| 196 | Direct Identification and Characterization of Phenolic Compounds from Crude Extracts of Buds and<br>Internodes of Grapevine (Vitis vinifera cv Merlot). Natural Product Communications, 2014, 9,<br>1934578X1400901.             | 0.5 | 4         |
| 197 | Anthocyanins and human health: How gastric absorption may influence acute human physiology.<br>Nutrition and Aging (Amsterdam, Netherlands), 2014, 2, 1-14.                                                                      | 0.3 | 24        |
| 198 | Human saliva protein profile: Influence of food ingestion. Food Research International, 2014, 64, 508-513.                                                                                                                       | 6.2 | 30        |

| #   | Article                                                                                                                                                                                                                          | IF        | CITATIONS          |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|
| 199 | Migration of phenolic compounds from different cork stoppers to wine model solutions: antioxidant<br>and biological relevance. European Food Research and Technology, 2014, 239, 951-960.                                        | 3.3       | 34                 |
| 200 | Special issue on anthocyanins. Planta, 2014, 240, 899-899.                                                                                                                                                                       | 3.2       | 4                  |
| 201 | Previous and recent advances in pyranoanthocyanins equilibria in aqueous solution. Dyes and Pigments, 2014, 100, 190-200.                                                                                                        | 3.7       | 66                 |
| 202 | Photochromism of the complex between 4′-(2-hydroxyethoxy)-7-hydroxyflavylium and β-cyclodextrin,<br>studied by 1H NMR, UV–Vis, continuous irradiation and circular dichroism. Dyes and Pigments, 2014,<br>110, 106-112.          | 3.7       | 9                  |
| 203 | Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var.) Tj ETQq1 1 0.784                                                                                                              | 1314 rgBT | /Qyerlock 1<br>141 |
| 204 | The phenolic chemistry and spectrochemistry of red sweet wine-making and oak-aging. Food Chemistry, 2014, 152, 522-530.                                                                                                          | 8.2       | 44                 |
| 205 | Structural characterization of inclusion complexes between cyanidin-3-O-glucoside and β-cyclodextrin. Carbohydrate Polymers, 2014, 102, 269-277.                                                                                 | 10.2      | 61                 |
| 206 | Anti-proliferative effects of quercetin and catechin metabolites. Food and Function, 2014, 5, 797.                                                                                                                               | 4.6       | 57                 |
| 207 | Flavonoid metabolites transport across a human BBB model. Food Chemistry, 2014, 149, 190-196.                                                                                                                                    | 8.2       | 104                |
| 208 | Color stability and spectroscopic properties of deoxyvitisins in aqueous solution. New Journal of Chemistry, 2014, 38, 539-544.                                                                                                  | 2.8       | 16                 |
| 209 | Evidence for Copigmentation Interactions between Deoxyanthocyanidin Derivatives (Oaklins) and<br>Common Copigments in Wine Model Solutions. Journal of Agricultural and Food Chemistry, 2014, 62,<br>6995-7001.                  | 5.2       | 15                 |
| 210 | In Vivo Interactions between Procyanidins and Human Saliva Proteins: Effect of Repeated Exposures to<br>Procyanidins Solution. Journal of Agricultural and Food Chemistry, 2014, 62, 9562-9568.                                  | 5.2       | 39                 |
| 211 | Rapid Screening and Identification of New Soluble Tannin–Salivary Protein Aggregates in Saliva by<br>Mass Spectrometry (MALDI-TOF-TOF and FIA-ESI-MS). Langmuir, 2014, 30, 8528-8537.                                            | 3.5       | 36                 |
| 212 | New Procyanidin B3–Human Salivary Protein Complexes by Mass Spectrometry. Effect of Salivary<br>Protein Profile, Tannin Concentration, and Time Stability. Journal of Agricultural and Food<br>Chemistry, 2014, 62, 10038-10045. | 5.2       | 10                 |
| 213 | Antioxidant Features of Red Wine Pyranoanthocyanins: Experimental and Theoretical Approaches.<br>Journal of Agricultural and Food Chemistry, 2014, 62, 7002-7009.                                                                | 5.2       | 48                 |
| 214 | Anthocyanins. Plant Pigments and Beyond. Journal of Agricultural and Food Chemistry, 2014, 62, 6879-6884.                                                                                                                        | 5.2       | 111                |
| 215 | Multifunctional Biosensor Based on Localized Surface Plasmon Resonance for Monitoring Small<br>Molecule–Protein Interaction. ACS Nano, 2014, 8, 7958-7967.                                                                       | 14.6      | 60                 |
| 216 | Understanding the Molecular Mechanism of Anthocyanin Binding to Pectin. Langmuir, 2014, 30,<br>8516-8527.                                                                                                                        | 3.5       | 117                |

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Grape anthocyanin oligomerization: A putative mechanism for red color stabilization?.<br>Phytochemistry, 2014, 105, 178-185.                                                          | 2.9 | 24        |
| 218 | Bioavailability of anthocyanins and derivatives. Journal of Functional Foods, 2014, 7, 54-66.                                                                                         | 3.4 | 292       |
| 219 | Pyranoflavylium Derivatives Extracted from Wine Grape as Photosensitizers in Solar Cells. Journal of the Brazilian Chemical Society, 2014, , .                                        | 0.6 | 5         |
| 220 | Network of carboxypyranomalvidin-3-O-glucoside (vitisin A) equilibrium forms in aqueous solution.<br>Tetrahedron Letters, 2013, 54, 5106-5110.                                        | 1.4 | 22        |
| 221 | Deoxyvitisins: a new set of pyrano-3-deoxyanthocyanidins. Tetrahedron Letters, 2013, 54, 4785-4788.                                                                                   | 1.4 | 8         |
| 222 | Structural characterization of a A-type linked trimeric anthocyanin derived pigment occurring in a young Port wine. Food Chemistry, 2013, 141, 1987-1996.                             | 8.2 | 34        |
| 223 | Antioxidant and antiproliferative properties of methylated metabolites of anthocyanins. Food Chemistry, 2013, 141, 2923-2933.                                                         | 8.2 | 74        |
| 224 | Fluorescence Approach for Measuring Anthocyanins and Derived Pigments in Red Wine. Journal of Agricultural and Food Chemistry, 2013, 61, 10156-10162.                                 | 5.2 | 31        |
| 225 | Effect of β-cyclodextrin on the chemistry of 3′,4′,7-trihydroxyflavylium. New Journal of Chemistry, 2013,<br>37, 3166.                                                                | 2.8 | 24        |
| 226 | Effect of cyclodextrins on the thermodynamic and kinetic properties of cyanidin-3-O-glucoside. Food<br>Research International, 2013, 51, 748-755.                                     | 6.2 | 51        |
| 227 | Emptying the β-Cyclodextrin Cavity by Light: Photochemical Removal of the <i>trans</i> -Chalcone of 4′,7-Dihydroxyflavylium. Journal of Physical Chemistry A, 2013, 117, 10692-10701. | 2.5 | 26        |
| 228 | Characterization and Modulation of Glucose Uptake in a Human Blood–Brain Barrier Model. Journal of Membrane Biology, 2013, 246, 669-677.                                              | 2.1 | 22        |
| 229 | Intestinal anti-inflammatory activity of red wine extract: unveiling the mechanisms in colonic epithelial cells. Food and Function, 2013, 4, 373-383.                                 | 4.6 | 54        |
| 230 | Different Phenolic Compounds Activate Distinct Human Bitter Taste Receptors. Journal of Agricultural and Food Chemistry, 2013, 61, 1525-1533.                                         | 5.2 | 197       |
| 231 | The metabolic profile of mitoxantrone and its relation with mitoxantrone-induced cardiotoxicity.<br>Archives of Toxicology, 2013, 87, 1809-1820.                                      | 4.2 | 49        |
| 232 | First chemical synthesis report of an anthocyanin metabolite with in vivo occurrence:<br>cyanidin-4′-O-methyl-3-glucoside. Tetrahedron Letters, 2013, 54, 2865-2869.                  | 1.4 | 23        |
| 233 | Protein–polyphenol interaction on silica beads for astringency tests based on eye, photography or reflectance detection modes. Analytical Methods, 2013, 5, 2694.                     | 2.7 | 4         |
| 234 | Flavanols: Catechins and Proanthocyanidins. , 2013, , 1753-1801.                                                                                                                      |     | 10        |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Thermodynamics, Kinetics, and Photochromism of Oaklins: A Recent Family of Deoxyanthocyanidins.<br>Journal of Physical Chemistry B, 2013, 117, 1901-1910.                                                                                   | 2.6 | 11        |
| 236 | Structural Features of Copigmentation of Oenin with Different Polyphenol Copigments. Journal of Agricultural and Food Chemistry, 2013, 61, 6942-6948.                                                                                       | 5.2 | 56        |
| 237 | Guest Editorial - XXVIth International Conference on Polyphenols (ICP 2012). Phytochemical Analysis, 2013, 24, 423-423.                                                                                                                     | 2.4 | 0         |
| 238 | Protein/Polyphenol Interactions: Past and Present Contributions. Mechanisms of Astringency<br>Perception. Current Organic Chemistry, 2012, 16, 724-746.                                                                                     | 1.6 | 114       |
| 239 | Effect of Condensed Tannins Addition on the Astringency of Red Wines. Chemical Senses, 2012, 37, 191-198.                                                                                                                                   | 2.0 | 39        |
| 240 | Water use efficiency and must quality of irrigated grapevines of north-eastern Portugal. Archives of<br>Agronomy and Soil Science, 2012, 58, 871-886.                                                                                       | 2.6 | 11        |
| 241 | Interaction of different classes of salivary proteins with food tannins. Food Research International, 2012, 49, 807-813.                                                                                                                    | 6.2 | 62        |
| 242 | SPR based Studies for Pentagalloyl Glucose Binding to α-Amylase. Procedia Engineering, 2012, 47, 498-501.                                                                                                                                   | 1.2 | 5         |
| 243 | Synthesis and Structural Characterization of Oaklin–Catechins. Journal of Agricultural and Food<br>Chemistry, 2012, 60, 1528-1534.                                                                                                          | 5.2 | 5         |
| 244 | Carbohydrates Inhibit Salivary Proteins Precipitation by Condensed Tannins. Journal of Agricultural and Food Chemistry, 2012, 60, 3966-3972.                                                                                                | 5.2 | 98        |
| 245 | Application of LC–MS and tristimulus colorimetry to assess the ageing aptitude of Syrah wine in the<br>Condado de Huelva D.O. (Spain), a typical warm climate region. Analytica Chimica Acta, 2012, 732, 162-171.                           | 5.4 | 22        |
| 246 | Interaction of phenolic compounds with bovine serum albumin (BSA) and $\hat{1}\pm$ -amylase and their relationship to astringency perception. Food Chemistry, 2012, 135, 651-658.                                                           | 8.2 | 75        |
| 247 | On the bioavailability of flavanols and anthocyanins: Flavanol–anthocyanin dimers. Food Chemistry, 2012, 135, 812-818.                                                                                                                      | 8.2 | 50        |
| 248 | Identification by mass spectrometry of new compounds arising from the reactions involving<br>malvidinâ€3â€glucosideâ€(O)â€catechin, catechin and malvidinâ€3â€glucoside. Rapid Communications in Mass<br>Spectrometry, 2012, 26, 2123-2130. | 1.5 | 10        |
| 249 | Influence of a Flavan-3-ol Substituent on the Affinity of Anthocyanins (Pigments) toward<br>Vinylcatechin Dimers and Proanthocyanidins (Copigments). Journal of Physical Chemistry B, 2012, 116,<br>14089-14099.                            | 2.6 | 31        |
| 250 | Quercetin Protects Saccharomyces cerevisiae against Oxidative Stress by Inducing Trehalose<br>Biosynthesis and the Cell Wall Integrity Pathway. PLoS ONE, 2012, 7, e45494.                                                                  | 2.5 | 30        |
| 251 | A new approach on the gastric absorption of anthocyanins. Food and Function, 2012, 3, 508.                                                                                                                                                  | 4.6 | 72        |
| 252 | Strawberries from integrated pest management and organic farming: Phenolic composition and antioxidant properties. Food Chemistry, 2012, 134, 1926-1931.                                                                                    | 8.2 | 69        |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | A novel reaction mechanism for the formation of deoxyanthocyanidins. Tetrahedron Letters, 2012, 53, 1300-1303.                                                                                                  | 1.4 | 10        |
| 254 | Insights into the putative catechin and epicatechin transport across blood-brain barrier. Food and Function, 2011, 2, 39-44.                                                                                    | 4.6 | 124       |
| 255 | A Kinetic Study of the Reaction of (+)-catechin and Malvidin-3-glucoside with Aldehydes Derived from<br>Toasted Oak. Natural Products Journal, 2011, 1, 47-56.                                                  | 0.3 | 4         |
| 256 | Mechanisms of Tannin-Induced Trypsin Inhibition: A Molecular Approach. Langmuir, 2011, 27, 13122-13129.                                                                                                         | 3.5 | 56        |
| 257 | Reactivity of Human Salivary Proteins Families Toward Food Polyphenols. Journal of Agricultural and Food Chemistry, 2011, 59, 5535-5547.                                                                        | 5.2 | 128       |
| 258 | Antiradical Properties of Red Wine Portisins. Journal of Agricultural and Food Chemistry, 2011, 59, 11833-11837.                                                                                                | 5.2 | 7         |
| 259 | Chemical Behavior of Methylpyranomalvidin-3- <i>O</i> -glucoside in Aqueous Solution Studied by NMR<br>and UVâ^'Visible Spectroscopy. Journal of Physical Chemistry B, 2011, 115, 1538-1545.                    | 2.6 | 28        |
| 260 | Influence of Carbohydrates on the Interaction of Procyanidin B3 with Trypsin. Journal of Agricultural and Food Chemistry, 2011, 59, 11794-11802.                                                                | 5.2 | 43        |
| 261 | Oxidation mechanisms occurring in wines. Food Research International, 2011, 44, 1115-1126.                                                                                                                      | 6.2 | 286       |
| 262 | Comparative antihemolytic and radical scavenging activities of strawberry tree (Arbutus unedo L.)<br>leaf and fruit. Food and Chemical Toxicology, 2011, 49, 2285-2291.                                         | 3.6 | 106       |
| 263 | Effect of sugar acylation on the antioxidant properties of <i>Vitis vinifera</i> red grape<br>malvidinâ€3â€glucoside. International Journal of Food Science and Technology, 2011, 46, 343-349.                  | 2.7 | 12        |
| 264 | Formation of pyranoanthocyanins in red wines: a new and diverse class of anthocyanin derivatives.<br>Analytical and Bioanalytical Chemistry, 2011, 401, 1463-1473.                                              | 3.7 | 141       |
| 265 | On the contribution of intramolecular kinetics properties of an important rotamer of<br>vinylpyranoanthocyaninâ€phenol pigment (portisin). International Journal of Quantum Chemistry, 2011,<br>111, 1355-1360. | 2.0 | 1         |
| 266 | Conformational study of two diasteroisomers of vinylcatechin dimers in a methanol solution.<br>International Journal of Quantum Chemistry, 2011, 111, 1498-1510.                                                | 2.0 | 3         |
| 267 | Inhibition of α-amylase activity by condensed tannins. Food Chemistry, 2011, 125, 665-672.                                                                                                                      | 8.2 | 117       |
| 268 | Analysis of phenolic compounds in cork from Quercus suber L. by HPLC–DAD/ESI–MS. Food Chemistry, 2011, 125, 1398-1405.                                                                                          | 8.2 | 84        |
| 269 | Oxidative formation and structural characterisation of new α-pyranone (lactone) compounds of non-oxonium nature originated from fruit anthocyanins. Food Chemistry, 2011, 127, 984-992.                         | 8.2 | 14        |
| 270 | Influence of the heterogeneity of grape phenolic maturity on wine composition and quality. Food<br>Chemistry, 2011, 124, 767-774.                                                                               | 8.2 | 121       |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | New sensing materials of molecularly-imprinted polymers for the selective recognition of Chlortetracycline. Microchemical Journal, 2011, 97, 173-181.                                                    | 4.5 | 38        |
| 272 | Synthesis of a new bluish pigment from the reaction of a methylpyranoanthocyanin with sinapaldehyde. Tetrahedron Letters, 2011, 52, 1996-2000.                                                           | 1.4 | 11        |
| 273 | Synthesis of a new pyranoanthocyanin dimer linked through a methyl-methine bridge. Tetrahedron<br>Letters, 2011, 52, 2957-2960.                                                                          | 1.4 | 3         |
| 274 | Flavonoid transport across RBE4 cells: A blood-brain barrier model. Cellular and Molecular Biology<br>Letters, 2010, 15, 234-41.                                                                         | 7.0 | 103       |
| 275 | Impact of culture media glucose levels on the intestinal uptake of organic cations. Cytotechnology, 2010, 62, 23-29.                                                                                     | 1.6 | 9         |
| 276 | The fate of flavanol–anthocyanin adducts in wines: Study of their putative reaction patterns in the presence of acetaldehyde. Food Chemistry, 2010, 121, 1129-1138.                                      | 8.2 | 44        |
| 277 | A computational study of vinylpyranoanthocyanin-phenolic pigments (portisins). Computational and<br>Theoretical Chemistry, 2010, 946, 113-118.                                                           | 1.5 | 5         |
| 278 | A theoretical interpretation of the color of two classes of pyranoanthocyanins. Computational and<br>Theoretical Chemistry, 2010, 948, 61-64.                                                            | 1.5 | 13        |
| 279 | Antioxidant properties of anthocyanidins, anthocyanidin-3-glucosides and respective portisins. Food Chemistry, 2010, 119, 518-523.                                                                       | 8.2 | 73        |
| 280 | Blueberry anthocyanins and pyruvic acid adducts: anticancer properties in breast cancer cell lines.<br>Phytotherapy Research, 2010, 24, 1862-1869.                                                       | 5.8 | 98        |
| 281 | Hemisynthesis and structural characterization of flavanolâ€(4,8)â€vitisins by mass spectrometry. Rapid<br>Communications in Mass Spectrometry, 2010, 24, 1964-1970.                                      | 1.5 | 10        |
| 282 | Pyranoanthocyanin Dimers: A New Family of Turquoise Blue Anthocyanin-Derived Pigments Found in<br>Port Wine. Journal of Agricultural and Food Chemistry, 2010, 58, 5154-5159.                            | 5.2 | 82        |
| 283 | Inhibition of Pancreatic Elastase by Polyphenolic Compounds. Journal of Agricultural and Food<br>Chemistry, 2010, 58, 10668-10676.                                                                       | 5.2 | 51        |
| 284 | Biological Relevance of the Interaction between Procyanidins and Trypsin: A Multitechnique<br>Approach. Journal of Agricultural and Food Chemistry, 2010, 58, 11924-11931.                               | 5.2 | 45        |
| 285 | Spectral Features and Stability of Oligomeric Pyranoanthocyanin-flavanol Pigments Isolated from Red<br>Wines. Journal of Agricultural and Food Chemistry, 2010, 58, 9249-9258.                           | 5.2 | 53        |
| 286 | Study of the Interaction of Pancreatic Lipase with Procyanidins by Optical and Enzymatic Methods.<br>Journal of Agricultural and Food Chemistry, 2010, 58, 11901-11906.                                  | 5.2 | 59        |
| 287 | Influence of Anthocyanins, Derivative Pigments and Other Catechol and Pyrogallol-Type Phenolics on<br>Breast Cancer Cell Proliferation. Journal of Agricultural and Food Chemistry, 2010, 58, 3785-3792. | 5.2 | 68        |
| 288 | Isolation and Structural Characterization of Anthocyanin-furfuryl Pigments. Journal of Agricultural and Food Chemistry, 2010, 58, 5664-5669.                                                             | 5.2 | 14        |

| #   | Article                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Vinylcatechin Dimers Are Much Better Copigments for Anthocyanins than Catechin Dimer Procyanidin<br>B3. Journal of Agricultural and Food Chemistry, 2010, 58, 3159-3166.                                                                                                            | 5.2 | 23        |
| 290 | Understanding the Binding of Procyanidins to Pancreatic Elastase by Experimental and Computational<br>Methods. Biochemistry, 2010, 49, 5097-5108.                                                                                                                                   | 2.5 | 39        |
| 291 | Thermodynamic and Kinetic Properties of a Red Wine Pigment:<br>Catechin-(4,8)-malvidin-3- <i>O</i> -glucoside. Journal of Physical Chemistry B, 2010, 114, 13487-13496.                                                                                                             | 2.6 | 41        |
| 292 | Oxovitisins: A New Class of Neutral Pyranone-anthocyanin Derivatives in Red Wines. Journal of<br>Agricultural and Food Chemistry, 2010, 58, 8814-8819.                                                                                                                              | 5.2 | 54        |
| 293 | Unusual Color Change of Vinylpyranoanthocyaninâ^'Phenolic Pigments. Journal of Agricultural and<br>Food Chemistry, 2010, 58, 4292-4297.                                                                                                                                             | 5.2 | 12        |
| 294 | Establishment of the Chemical Equilibria of Different Types of Pyranoanthocyanins in Aqueous<br>Solutions: Evidence for the Formation of Aggregation in<br>Pyranomalvidin-3- <i>O</i> -coumaroylglucoside-(+)-catechin. Journal of Physical Chemistry B, 2010, 114,<br>13232-13240. | 2.6 | 39        |
| 295 | Intestinal Oxidative State Can Alter Nutrient and Drug Bioavailability. Oxidative Medicine and Cellular Longevity, 2009, 2, 322-327.                                                                                                                                                | 4.0 | 14        |
| 296 | Absorption of anthocyanins through intestinal epithelial cells – Putative involvement of GLUT2.<br>Molecular Nutrition and Food Research, 2009, 53, 1430-1437.                                                                                                                      | 3.3 | 131       |
| 297 | Anti-tumoral activity of imidazoquines, a new class of antimalarials derived from primaquine.<br>Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6914-6917.                                                                                                                   | 2.2 | 17        |
| 298 | A novel synthetic pathway to vitisin B compounds. Tetrahedron Letters, 2009, 50, 3933-3935.                                                                                                                                                                                         | 1.4 | 28        |
| 299 | Synthesis and Structural Characterization of Two Diasteroisomers of Vinylcatechin Dimers. Journal of Agricultural and Food Chemistry, 2009, 57, 10341-10348.                                                                                                                        | 5.2 | 12        |
| 300 | Enzymatic Hemisynthesis of Metabolites and Conjugates of Anthocyanins. Journal of Agricultural and Food Chemistry, 2009, 57, 735-745.                                                                                                                                               | 5.2 | 29        |
| 301 | Influence of Phenolics on Wine Organoleptic Properties. , 2009, , 529-570.                                                                                                                                                                                                          |     | 24        |
| 302 | Antioxidant and Biological Properties of Bioactive Phenolic Compounds from <i>Quercus suber</i> L<br>Journal of Agricultural and Food Chemistry, 2009, 57, 11154-11160.                                                                                                             | 5.2 | 88        |
| 303 | Mechanistic Approach by Which Polysaccharides Inhibit α-Amylase/Procyanidin Aggregation. Journal of Agricultural and Food Chemistry, 2009, 57, 4352-4358.                                                                                                                           | 5.2 | 89        |
| 304 | Equilibrium Forms of Vitisin B Pigments in an Aqueous System Studied by NMR and Visible<br>Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 11352-11358.                                                                                                                   | 2.6 | 45        |
| 305 | Flavanâ€3â€ols Transport Across Bloodâ€Brain Barrier. FASEB Journal, 2009, 23, 717.8.                                                                                                                                                                                               | 0.5 | 0         |
| 306 | Influence of the degree of polymerisation in the ability of catechins to act as anthocyanin copigments.<br>European Food Research and Technology, 2008, 227, 83-92.                                                                                                                 | 3.3 | 34        |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Flavanol–anthocyanin pigments in corn: NMR characterisation and presence in different purple corn varieties. Journal of Food Composition and Analysis, 2008, 21, 521-526.                              | 3.9 | 52        |
| 308 | Influence of anthocyanins and derivative pigments from blueberry (Vaccinium myrtillus) extracts on MPP+ intestinal uptake: A structure–activity approach. Food Chemistry, 2008, 109, 587-594.          | 8.2 | 9         |
| 309 | PRECLINICAL STUDY: Modulation of rat cerebellum oxidative status by prolonged red wine consumption. Addiction Biology, 2008, 13, 337-344.                                                              | 2.6 | 10        |
| 310 | Effect of phenolic aldehydes and flavonoids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. Food Microbiology, 2008, 25, 105-112.                                           | 4.2 | 70        |
| 311 | Anthocyanins as Food Colorants. , 2008, , 284-304.                                                                                                                                                     |     | 17        |
| 312 | LDL Isolated from Plasma-Loaded Red Wine Procyanidins Resist Lipid Oxidation and Tocopherol Depletion. Journal of Agricultural and Food Chemistry, 2008, 56, 3798-3804.                                | 5.2 | 33        |
| 313 | Role of Vinylcatechin in the Formation of Pyranomalvidin-3-glucosideâ^'(+)-Catechin. Journal of<br>Agricultural and Food Chemistry, 2008, 56, 10980-10987.                                             | 5.2 | 58        |
| 314 | Red Wine, but not Port Wine, Protects Rat Hippocampal Dentate Gyrus Against Ethanol-Induced<br>Neuronal DamageRelevance of the Sugar Content. Alcohol and Alcoholism, 2008, 43, 408-415.               | 1.6 | 10        |
| 315 | Synthesis of a New (+)-Catechin-Derived Compound: 8-Vinylcatechin. Letters in Organic Chemistry, 2008, 5, 530-536.                                                                                     | 0.5 | 20        |
| 316 | Absorption of anthocyanins through intestinal epithelial cells. Effect of ethanol FASEB Journal, 2008, 22, 701.10.                                                                                     | 0.5 | 0         |
| 317 | Red wine antioxidants protect hippocampal neurons against ethanol-induced damage: A biochemical, morphological and behavioral study. Neuroscience, 2007, 146, 1581-1592.                               | 2.3 | 55        |
| 318 | Reaction between Hydroxycinnamic Acids and Anthocyaninâ^'Pyruvic Acid Adducts Yielding New Portisins. Journal of Agricultural and Food Chemistry, 2007, 55, 6349-6356.                                 | 5.2 | 76        |
| 319 | Quercetin Increases Oxidative Stress Resistance and Longevity inSaccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2007, 55, 2446-2451.                                             | 5.2 | 122       |
| 320 | Inhibition of Trypsin by Condensed Tannins and Wine. Journal of Agricultural and Food Chemistry, 2007, 55, 7596-7601.                                                                                  | 5.2 | 72        |
| 321 | Interaction of Different Polyphenols with Bovine Serum Albumin (BSA) and Human Salivary α-Amylase<br>(HSA) by Fluorescence Quenching. Journal of Agricultural and Food Chemistry, 2007, 55, 6726-6735. | 5.2 | 451       |
| 322 | A colorimetric study of oenin copigmented by procyanidins. Journal of the Science of Food and Agriculture, 2007, 87, 260-265.                                                                          | 3.5 | 20        |
| 323 | Structural and chromatic characterization of a new Malvidin 3-glucoside–vanillyl–catechin pigment.<br>Food Chemistry, 2007, 102, 1344-1351.                                                            | 8.2 | 33        |
| 324 | Grape seed flavanols, but not Port wine, prevent ethanol-induced neuronal lipofuscin formation.<br>Brain Research, 2007, 1129, 72-80.                                                                  | 2.2 | 19        |

| #   | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Isolation and Structural Characterization of New Anthocyanin-Derived Yellow Pigments in Aged Red<br>Wines. Journal of Agricultural and Food Chemistry, 2006, 54, 9598-9603.                                              | 5.2  | 88        |
| 326 | Procyanidins as Antioxidants and Tumor Cell Growth Modulators. Journal of Agricultural and Food Chemistry, 2006, 54, 2392-2397.                                                                                          | 5.2  | 121       |
| 327 | Color Properties of Four Cyanidinâ^'Pyruvic Acid Adducts. Journal of Agricultural and Food Chemistry, 2006, 54, 6894-6903.                                                                                               | 5.2  | 69        |
| 328 | Chromatic and structural features of blue anthocyanin-derived pigments present in Port wine.<br>Analytica Chimica Acta, 2006, 563, 2-9.                                                                                  | 5.4  | 56        |
| 329 | Fractionation of red wine polyphenols by solid-phase extraction and liquid chromatography. Journal of Chromatography A, 2006, 1128, 27-38.                                                                               | 3.7  | 86        |
| 330 | Isolation and quantification of oligomeric pyranoanthocyanin-flavanol pigments from red wines by combination of column chromatographic techniques. Journal of Chromatography A, 2006, 1134, 215-225.                     | 3.7  | 69        |
| 331 | A new vinylpyranoanthocyanin pigment occurring in aged red wine. Food Chemistry, 2006, 97, 689-695.                                                                                                                      | 8.2  | 63        |
| 332 | Influence of Wine Pectic Polysaccharides on the Interactions between Condensed Tannins and Salivary Proteins. Journal of Agricultural and Food Chemistry, 2006, 54, 8936-8944.                                           | 5.2  | 123       |
| 333 | Chemical transformations of anthocyanins yielding a variety of colours (Review). Environmental<br>Chemistry Letters, 2006, 4, 175-183.                                                                                   | 16.2 | 57        |
| 334 | A 3D structural and conformational study of procyanidin dimers in water and hydro-alcoholic media<br>as viewed by NMR and molecular modeling. Magnetic Resonance in Chemistry, 2006, 44, 868-880.                        | 1.9  | 81        |
| 335 | Application of flow nephelometry to the analysis of the influence of carbohydrates on<br>protein–tannin interactions. Journal of the Science of Food and Agriculture, 2006, 86, 891-896.                                 | 3.5  | 48        |
| 336 | Isolation and structural characterization of new anthocyanin-alkyl-catechin pigments. Food<br>Chemistry, 2005, 90, 81-87.                                                                                                | 8.2  | 32        |
| 337 | Influence of procyanidin structures on their ability to complex with oenin. Food Chemistry, 2005, 90, 453-460.                                                                                                           | 8.2  | 37        |
| 338 | Antioxidant Properties of Prepared Blueberry (Vaccinium myrtillus) Extracts. Journal of Agricultural and Food Chemistry, 2005, 53, 6896-6902.                                                                            | 5.2  | 172       |
| 339 | Contribution and importance of wine spirit to the port wine final quality-initial approach. Journal of the Science of Food and Agriculture, 2005, 85, 1091-1097.                                                         | 3.5  | 23        |
| 340 | Synthesis of a New Catechin-Pyrylium Derived Pigment ChemInform, 2005, 36, no.                                                                                                                                           | 0.0  | 0         |
| 341 | Screening of Portisins (Vinylpyranoanthocyanin Pigments) in Port Wine by LC/DAD-MS. Food Science and Technology International, 2005, 11, 353-358.                                                                        | 2.2  | 19        |
| 342 | Preliminary Study of Oaklins, a New Class of Brick-Red Catechinpyrylium Pigments Resulting from the<br>Reaction between Catechin and Wood Aldehydes. Journal of Agricultural and Food Chemistry, 2005,<br>53, 9249-9256. | 5.2  | 39        |

| #   | Article                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | New Family of Bluish Pyranoanthocyanins. Journal of Biomedicine and Biotechnology, 2004, 2004, 2004, 299-305.                                                                                     | 3.0 | 51        |
| 344 | FLAVONOIDS FROM GRAPE SEEDS PREVENT INCREASED ALCOHOL-INDUCED NEURONAL LIPOFUSCIN FORMATION. Alcohol and Alcoholism, 2004, 39, 303-311.                                                           | 1.6 | 14        |
| 345 | Influence of the addition of grape seed procyanidins to Port wines in the resulting reactivity with human salivary proteins. Food Chemistry, 2004, 84, 195-200.                                   | 8.2 | 37        |
| 346 | NMR structure characterization of a new vinylpyranoanthocyanin–catechin pigment (a portisin).<br>Tetrahedron Letters, 2004, 45, 3455-3457.                                                        | 1.4 | 81        |
| 347 | Synthesis of a new catechin-pyrylium derived pigment. Tetrahedron Letters, 2004, 45, 9349-9352.                                                                                                   | 1.4 | 33        |
| 348 | Influence of the tannin structure on the disruption effect of carbohydrates on protein–tannin<br>aggregates. Analytica Chimica Acta, 2004, 513, 135-140.                                          | 5.4 | 117       |
| 349 | Formation of new anthocyanin-alkyl/aryl-flavanol pigments in model solutions. Analytica Chimica<br>Acta, 2004, 513, 215-221.                                                                      | 5.4 | 35        |
| 350 | Flow nephelometric analysis of protein–tannin interactions. Analytica Chimica Acta, 2004, 513, 97-101.                                                                                            | 5.4 | 43        |
| 351 | Structural Characterization of New Malvidin 3-Glucosideâ^'Catechin Aryl/Alkyl-Linked Pigments.<br>Journal of Agricultural and Food Chemistry, 2004, 52, 5519-5526.                                | 5.2 | 40        |
| 352 | Antioxidant protection of low density lipoprotein by procyanidins: structure/activity relationships.<br>Biochemical Pharmacology, 2003, 66, 947-954.                                              | 4.4 | 101       |
| 353 | Study of carbohydrate influence on protein–tannin aggregation by nephelometry. Food Chemistry, 2003, 81, 503-509.                                                                                 | 8.2 | 190       |
| 354 | Reaction Between Malvidin 3-Glucoside and (+)-Catechin in Model Solutions Containing Different<br>Aldehydes. Journal of Food Science, 2003, 68, 476-481.                                          | 3.1 | 132       |
| 355 | Isolation and Structural Characterization of New Acylated Anthocyaninâ^'Vinylâ^'Flavanol Pigments<br>Occurring in Aging Red Wines. Journal of Agricultural and Food Chemistry, 2003, 51, 277-282. | 5.2 | 102       |
| 356 | A New Class of Blue Anthocyanin-Derived Pigments Isolated from Red Wines. Journal of Agricultural and Food Chemistry, 2003, 51, 1919-1923.                                                        | 5.2 | 175       |
| 357 | Identification of Anthocyanin-Flavanol Pigments in Red Wines by NMR and Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2002, 50, 2110-2116.                                       | 5.2 | 183       |
| 358 | Nephelometric study of salivary protein-tannin aggregates. Journal of the Science of Food and Agriculture, 2002, 82, 113-119.                                                                     | 3.5 | 109       |
| 359 | Development changes of anthocyanins inVitis vinifera grapes grown in the Douro Valley and concentration in respective wines. Journal of the Science of Food and Agriculture, 2002, 82, 1689-1695. | 3.5 | 104       |
| 360 | Structural diversity of anthocyanin-derived pigments in port wines. Food Chemistry, 2002, 76, 335-342.                                                                                            | 8.2 | 131       |

| #   | Article                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Evolution and Stability of Anthocyanin-Derived Pigments during Port Wine Aging. Journal of<br>Agricultural and Food Chemistry, 2001, 49, 5217-5222.                                               | 5.2 | 119       |
| 362 | Structural Features of Procyanidin Interactions with Salivary Proteins. Journal of Agricultural and Food Chemistry, 2001, 49, 940-945.                                                            | 5.2 | 317       |
| 363 | Occurrence of Anthocyanin-Derived Pigments in Red Wines. Journal of Agricultural and Food<br>Chemistry, 2001, 49, 4836-4840.                                                                      | 5.2 | 131       |
| 364 | Electrochemical studies of complexation of Pb in red wines. Analyst, The, 2000, 125, 743-748.                                                                                                     | 3.5 | 16        |
| 365 | The influence of various phenolic compounds on scavenging activity assessed by an enzymatic method.<br>Journal of the Science of Food and Agriculture, 1999, 79, 1081-1090.                       | 3.5 | 74        |
| 366 | Role of Polyphenols in Copper Complexation in Red Wines. Journal of Agricultural and Food<br>Chemistry, 1999, 47, 2791-2796.                                                                      | 5.2 | 65        |
| 367 | Determination of the Composition of Commercial Tannin Extracts by Liquid Secondary Ion Mass Spectrometry (LSIMS). Journal of the Science of Food and Agriculture, 1996, 72, 309-317.              | 3.5 | 41        |
| 368 | Overview of Protein-Tannin Interactions. , 0, , 409-428.                                                                                                                                          |     | 0         |
| 369 | Eat Tasty and Healthy: Role of Polyphenols in Functional Foods. , 0, , .                                                                                                                          |     | 1         |
| 370 | Modulating the thermodynamics, kinetics and photochemistry of<br>7-diethylamino-4′-dimethylaminoflavylium in water/ethanol, SDS and CTAB micelles. Physical Chemistry<br>Chemical Physics, 0, , . | 2.8 | 1         |