

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7459703/publications.pdf Version: 2024-02-01

XIN MANC

#	Article	IF	CITATIONS
1	The Genome Sequence of <i>Drosophila melanogaster</i> . Science, 2000, 287, 2185-2195.	12.6	5,566
2	Comparative Proteomics Reveal Diverse Functions and Dynamic Changes of <i>Bombyx mori</i> Silk Proteins Spun from Different Development Stages. Journal of Proteome Research, 2013, 12, 5213-5222.	3.7	75
3	Structural and Mechanical Properties of Silk from Different Instars of <i>Bombyx mori</i> . Biomacromolecules, 2019, 20, 1203-1216.	5.4	58
4	Modifying the Mechanical Properties of Silk Fiber by Genetically Disrupting the Ionic Environment for Silk Formation. Biomacromolecules, 2015, 16, 3119-3125.	5.4	44
5	In vivo effects of metal ions on conformation and mechanical performance of silkworm silks. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 567-576.	2.4	44
6	Co-occurrence network analyses of rhizosphere soil microbial PLFAs and metabolites over continuous cropping seasons in tobacco. Plant and Soil, 2020, 452, 119-135.	3.7	32
7	Shotgun proteomic analysis of the <i>Bombyx mori</i> anterior silk gland: An insight into the biosynthetic fiber spinning process. Proteomics, 2013, 13, 2657-2663.	2.2	30
8	Ca2+ and endoplasmic reticulum Ca2+-ATPase regulate the formation of silk fibers with favorable mechanical properties. Journal of Insect Physiology, 2015, 73, 53-59.	2.0	26
9	Comparative transcriptome analysis of Bombyx mori spinnerets and Filippi's glands suggests their role in silk fiber formation. Insect Biochemistry and Molecular Biology, 2016, 68, 89-99.	2.7	24
10	A strategy for improving the mechanical properties of silk fiber by directly injection of ferric ions into silkworm. Materials and Design, 2018, 146, 134-141.	7.0	24
11	Integrative Proteomics and Metabolomics Analysis of Insect Larva Brain: Novel Insights into the Molecular Mechanism of Insect Wandering Behavior. Journal of Proteome Research, 2016, 15, 193-204.	3.7	23
12	GC/MS-based metabolomics analysis reveals active fatty acids biosynthesis in the Filippi's gland of the silkworm, Bombyx mori, during silk spinning. Insect Biochemistry and Molecular Biology, 2019, 105, 1-9.	2.7	22
13	Metabolomics Analysis of the Larval Head of the Silkworm, Bombyx mori. International Journal of Molecular Sciences, 2016, 17, 1460.	4.1	19
14	Comparative proteomic analysis of silkworm fat body after knocking out fibroin heavy chain gene: a novel insight into cross-talk between tissues. Functional and Integrative Genomics, 2015, 15, 611-637.	3.5	15
15	Disruption of the Metal Ion Environment by EDTA for Silk Formation Affects the Mechanical Properties of Silkworm Silk. International Journal of Molecular Sciences, 2019, 20, 3026.	4.1	11
16	Chitin and cuticle proteins form the cuticular layer in the spinning duct of silkworm. Acta Biomaterialia, 2022, 145, 260-271.	8.3	11
17	Inhibition of silkworm vacuolarâ€ŧype ATPase activity by its inhibitor Bafilomycin A1 induces caspaseâ€dependent apoptosis in an embryonic cell line of silkworm. Archives of Insect Biochemistry and Physiology, 2018, 99, e21507.	1.5	7
18	Proteome profile of spinneret from the silkworm, <i>Bombyx mori</i> . Proteomics, 2017, 17, 1600301.	2.2	6

#	Article	IF	CITATIONS
19	Genome-Wide Identification, Characterization and Expression Analysis of the Solute Carrier 6 Gene Family in Silkworm (Bombyx mori). International Journal of Molecular Sciences, 2016, 17, 1675.	4.1	5
20	Fiber Formation and Mechanical Properties of <i>Bombyx mori</i> Silk Are Regulated by Vacuolar-Type ATPase. ACS Biomaterials Science and Engineering, 2021, 7, 5532-5540.	5.2	4