
## Haidong Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7458509/publications.pdf Version: 2024-02-01



HAIDONCLU

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Mechanical Writing of Ferroelectric Polarization. Science, 2012, 336, 59-61.                                                                                                              | 12.6 | 645       |
| 2  | Elastic properties of 2D Ti <sub>3</sub> C <sub>2</sub> T <sub> <i>x</i> </sub> MXene monolayers and bilayers. Science Advances, 2018, 4, eaat0491.                                       | 10.3 | 637       |
| 3  | Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar<br>cells. Nature Communications, 2018, 9, 1625.                                         | 12.8 | 314       |
| 4  | Electricâ€Fieldâ€Driven Reversible Conversion Between Methylammonium Lead Triiodide Perovskites and<br>Lead Iodide at Elevated Temperatures. Advanced Energy Materials, 2016, 6, 1501803. | 19.5 | 287       |
| 5  | Emergence of room-temperature ferroelectricity at reduced dimensions. Science, 2015, 349, 1314-1317.                                                                                      | 12.6 | 259       |
| 6  | Ultrathin Hf <sub>0.5</sub> Zr <sub>0.5</sub> O <sub>2</sub> Ferroelectric Films on Si. ACS Applied<br>Materials & Interfaces, 2016, 8, 7232-7237.                                        | 8.0  | 186       |
| 7  | Electrical and Elastic Properties of Individual Single‣ayer<br>Nb <sub>4</sub> C <sub>3</sub> T <i><sub>x</sub></i> MXene Flakes. Advanced Electronic Materials,<br>2020, 6, 1901382.     | 5.1  | 134       |
| 8  | Optical control of polarization in ferroelectric heterostructures. Nature Communications, 2018, 9, 3344.                                                                                  | 12.8 | 119       |
| 9  | Enhancement of Ferroelectric Polarization Stability by Interface Engineering. Advanced Materials, 2012, 24, 1209-1216.                                                                    | 21.0 | 118       |
| 10 | Quasi-1D TiS <sub>3</sub> Nanoribbons: Mechanical Exfoliation and Thickness-Dependent Raman<br>Spectroscopy. ACS Nano, 2018, 12, 12713-12720.                                             | 14.6 | 77        |
| 11 | Scaling Behavior of Resistive Switching in Epitaxial Bismuth Ferrite Heterostructures. Advanced<br>Functional Materials, 2014, 24, 3962-3969.                                             | 14.9 | 68        |
| 12 | Electrical Tunability of Domain Wall Conductivity in LiNbO <sub>3</sub> Thin Films. Advanced<br>Materials, 2019, 31, e1902890.                                                            | 21.0 | 61        |
| 13 | Statics and Dynamics of Ferroelectric Domains in Diisopropylammonium Bromide. Advanced Materials, 2015, 27, 7832-7838.                                                                    | 21.0 | 60        |
| 14 | Nanomechanics of flexoelectric switching. Physical Review B, 2015, 92, .                                                                                                                  | 3.2  | 56        |
| 15 | Imprint Control of BaTiO <sub>3</sub> Thin Films via Chemically Induced Surface Polarization Pinning.<br>Nano Letters, 2016, 16, 2400-2406.                                               | 9.1  | 56        |
| 16 | Anisotropic polarization-induced conductance at a ferroelectric–insulator interface. Nature<br>Nanotechnology, 2018, 13, 1132-1136.                                                       | 31.5 | 53        |
| 17 | Nanodomain Engineering in Ferroelectric Capacitors with Graphene Electrodes. Nano Letters, 2016, 16,<br>6460-6466.                                                                        | 9.1  | 41        |
| 18 | Intrinsic Conductance of Domain Walls in BiFeO <sub>3</sub> . Advanced Materials, 2019, 31, e1902099.                                                                                     | 21.0 | 39        |

Haidong Lu

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Piezoelectricity in hafnia. Nature Communications, 2021, 12, 7301.                                                                                                                                  | 12.8 | 37        |
| 20 | Interface control of surface photochemical reactivity in ultrathin epitaxial ferroelectric films.<br>Applied Physics Letters, 2013, 102, .                                                          | 3.3  | 31        |
| 21 | Tunneling Hot Spots in Ferroelectric SrTiO <sub>3</sub> . Nano Letters, 2018, 18, 491-497.                                                                                                          | 9.1  | 30        |
| 22 | Direct observation of ferroelectricity in two-dimensional MoS2. Npj 2D Materials and Applications, 2022, 6, .                                                                                       | 7.9  | 30        |
| 23 | Voltage controlled Néel vector rotation in zero magnetic field. Nature Communications, 2021, 12, 1674.                                                                                              | 12.8 | 29        |
| 24 | Characterization of domain distributions by second harmonic generation in ferroelectrics. Npj<br>Computational Materials, 2018, 4, .                                                                | 8.7  | 25        |
| 25 | Ferroelectric polymer nanopillar arrays on flexible substrates by reverse nanoimprint lithography.<br>Journal of Materials Chemistry C, 2016, 4, 5914-5921.                                         | 5.5  | 23        |
| 26 | Self-Assembly of Organic Ferroelectrics by Evaporative Dewetting: A Case of β-Glycine. ACS Applied<br>Materials & Interfaces, 2017, 9, 20029-20037.                                                 | 8.0  | 23        |
| 27 | Probing Antiferroelectricâ€Ferroelectric Phase Transitions in PbZrO <sub>3</sub> Capacitors by<br>Piezoresponse Force Microscopy. Advanced Functional Materials, 2020, 30, 2003622.                 | 14.9 | 23        |
| 28 | Asymmetry in mechanical polarization switching. Applied Physics Letters, 2017, 110, .                                                                                                               | 3.3  | 20        |
| 29 | In-plane quasi-single-domain BaTiO3 via interfacial symmetry engineering. Nature Communications, 2021, 12, 6784.                                                                                    | 12.8 | 16        |
| 30 | Observation of Unconventional Dynamics of Domain Walls in Uniaxial Ferroelectric Lead Germanate.<br>Advanced Functional Materials, 2020, 30, 2000284.                                               | 14.9 | 14        |
| 31 | Mechanical Stress Modulation of Resistance in MoS <sub>2</sub> Junctions. Nano Letters, 2022, 22, 1047-1052.                                                                                        | 9.1  | 14        |
| 32 | Nanomanufacturing: Direct Fabrication of Arbitrary-Shaped Ferroelectric Nanostructures on Plastic,<br>Glass, and Silicon Substrates (Adv. Mater. 33/2011). Advanced Materials, 2011, 23, 3740-3740. | 21.0 | 13        |
| 33 | Resistive Switching in Individual Co/ZnO Core/Shell Nanoparticles Formed via Inert Gas Condensation and Selective Oxidation. Advanced Electronic Materials, 2020, 6, 2000065.                       | 5.1  | 4         |