Joy Wolfram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7458492/publications.pdf

Version: 2024-02-01

81839 106281 11,851 68 39 65 citations h-index g-index papers 71 71 71 18840 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
2	Safety of Nanoparticles in Medicine. Current Drug Targets, 2015, 16, 1671-1681.	1.0	384
3	Clinical cancer nanomedicine. Nano Today, 2019, 25, 85-98.	6.2	324
4	Tangential Flow Filtration for Highly Efficient Concentration of Extracellular Vesicles from Large Volumes of Fluid. Cells, 2018, 7, 273.	1.8	262
5	Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics, 2019, 9, 8001-8017.	4.6	252
6	Insights from nanomedicine into chloroquine efficacy against COVID-19. Nature Nanotechnology, 2020, 15, 247-249.	15.6	250
7	Extracellular vesicles versus synthetic nanoparticles for drug delivery. Nature Reviews Materials, 2021, 6, 103-106.	23.3	175
8	Cyclodextrin and Polyethylenimine Functionalized Mesoporous Silica Nanoparticles for Delivery of siRNA Cancer Therapeutics. Theranostics, 2014, 4, 487-497.	4.6	161
9	The nano-plasma interface: Implications of the protein corona. Colloids and Surfaces B: Biointerfaces, 2014, 124, 17-24.	2.5	155
10	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	15.6	149
11	Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. Journal of Controlled Release, 2015, 199, 106-113.	4.8	125
12	Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells. Colloids and Surfaces B: Biointerfaces, 2013, 112, 548-553.	2.5	122
13	High Capacity Nanoporous Silicon Carrier for Systemic Delivery of Gene Silencing Therapeutics. ACS Nano, 2013, 7, 9867-9880.	7.3	110
14	A Liposome Encapsulated Ruthenium Polypyridine Complex as a Theranostic Platform for Triple-Negative Breast Cancer. Nano Letters, 2017, 17, 2913-2920.	4.5	107
15	A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Scientific Reports, 2017, 7, 13738.	1.6	105
16	Hesperetin impairs glucose uptake and inhibits proliferation of breast cancer cells. Cell Biochemistry and Function, 2013, 31, 374-379.	1.4	97
17	Multifunctional Gold Nanorods for siRNA Gene Silencing and Photothermal Therapy. Advanced Healthcare Materials, 2014, 3, 1629-1637.	3.9	97
18	Shrinkage of pegylated and non-pegylated liposomes in serum. Colloids and Surfaces B: Biointerfaces, 2014, 114, 294-300.	2.5	96

#	Article	IF	CITATIONS
19	The solid progress of nanomedicine. Drug Delivery and Translational Research, 2020, 10, 726-729.	3.0	91
20	Targeting the thyroid gland with thyroid-stimulating hormone (TSH)-nanoliposomes. Biomaterials, 2014, 35, 7101-7109.	5.7	88
21	Extracellular vesicle therapeutics for liver disease. Journal of Controlled Release, 2018, 273, 86-98.	4.8	88
22	Extracellular Vesicles in Cancer Detection: Hopes and Hypes. Trends in Cancer, 2021, 7, 122-133.	3.8	86
23	Evaluation of anticancer activity of celastrol liposomes in prostate cancer cells. Journal of Microencapsulation, 2014, 31, 501-507.	1.2	80
24	Contribution of Kupffer cells to liposome accumulation in the liver. Colloids and Surfaces B: Biointerfaces, 2017, 158, 356-362.	2.5	78
25	Adipose-derived cellular and cell-derived regenerative therapies in dermatology and aesthetic rejuvenation. Ageing Research Reviews, 2019, 54, 100933.	5.0	69
26	Polyethylenimine and chitosan carriers for the delivery of RNA interference effectors. Expert Opinion on Drug Delivery, 2013, 10, 1653-1668.	2.4	65
27	Organotropic drug delivery: Synthetic nanoparticles and extracellular vesicles. Biomedical Microdevices, 2019, 21, 46.	1.4	64
28	Liposomal chemotherapeutics. Future Oncology, 2013, 9, 1849-1859.	1.1	61
29	Multi-step encapsulation of chemotherapy and gene silencing agents in functionalized mesoporous silica nanoparticles. Nanoscale, 2017, 9, 5329-5341.	2.8	58
30	Chloroquine and nanoparticle drug delivery: A promising combination., 2018, 191, 43-49.		54
31	Lipoprotein-based drug delivery. Advanced Drug Delivery Reviews, 2020, 159, 377-390.	6.6	54
32	Adiposeâ€Derived Biogenic Nanoparticles for Suppression of Inflammation. Small, 2020, 16, e1904064.	5.2	53
33	Multistage vector (MSV) therapeutics. Journal of Controlled Release, 2015, 219, 406-415.	4.8	52
34	Recent Advances in Discovering the Role of CCL5 in Metastatic Breast Cancer. Mini-Reviews in Medicinal Chemistry, 2015, 15, 1063-1072.	1.1	52
35	Enzyme-responsive multistage vector for drug delivery to tumor tissue. Pharmacological Research, 2016, 113, 92-99.	3.1	47
36	Post-nano strategies for drug delivery: multistage porous silicon microvectors. Journal of Materials Chemistry B, 2017, 5, 207-219.	2.9	47

#	Article	IF	CITATIONS
37	Brain metastases-derived extracellular vesicles induce binding and aggregation of low-density lipoprotein. Journal of Nanobiotechnology, 2020, 18, 162.	4.2	45
38	A Micro/Nano Composite for Combination Treatment of Melanoma Lung Metastasis. Advanced Healthcare Materials, 2016, 5, 936-946.	3.9	44
39	Taking the vehicle out of drug delivery. Materials Today, 2017, 20, 95-97.	8.3	44
40	A Novel DNA Aptamer for Dual Targeting of Polymorphonuclear Myeloid-derived Suppressor Cells and Tumor Cells. Theranostics, 2018, 8, 31-44.	4.6	44
41	Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis. Molecular Medicine Reports, 2015, 12, 1091-1097.	1.1	41
42	Hesperetin: An inhibitor of the transforming growth factor- \hat{l}^2 (TGF- \hat{l}^2) signaling pathway. European Journal of Medicinal Chemistry, 2012, 58, 390-395.	2.6	40
43	Multistage vector delivery of sulindac and silymarin for prevention of colon cancer. Colloids and Surfaces B: Biointerfaces, 2015, 136, 694-703.	2.5	39
44	Hesperetin Liposomes for Cancer Therapy. Current Drug Delivery, 2016, 13, 711-719.	0.8	39
45	Strategies for improving drug delivery: nanocarriers and microenvironmental priming. Expert Opinion on Drug Delivery, 2017, 14, 865-877.	2.4	39
46	Label-Free Isothermal Amplification Assay for Specific and Highly Sensitive Colorimetric miRNA Detection. ACS Omega, 2016, 1, 448-455.	1.6	36
47	Extracellular vesicles for treatment of solid organ ischemia–reperfusion injury. American Journal of Transplantation, 2020, 20, 3294-3307.	2.6	35
48	A Simple and Quick Method for Loading Proteins in Extracellular Vesicles. Pharmaceuticals, 2021, 14, 356.	1.7	35
49	Considerations for extracellular vesicle and lipoprotein interactions in cell culture assays. Journal of Extracellular Vesicles, 2022, 11, e12202.	5.5	33
50	Extracellular vesicle therapeutics from plasma and adipose tissue. Nano Today, 2021, 39, 101159.	6.2	32
51	Porous Silicon Microparticles for Delivery of siRNA Therapeutics. Journal of Visualized Experiments, 2015, , 52075.	0.2	27
52	Chemotherapy Sensitizes Therapy-Resistant Cells to Mild Hyperthermia by Suppressing Heat Shock Protein 27 Expression in Triple-Negative Breast Cancer. Clinical Cancer Research, 2018, 24, 4900-4912.	3.2	24
53	Glycan Node Analysis of Plasma-Derived Extracellular Vesicles. Cells, 2020, 9, 1946.	1.8	22
54	Polyarginine Induces an Antitumor Immune Response through Binding to Toll‣ike Receptor 4. Small, 2014, 10, 1250-1254.	5.2	21

#	Article	IF	CITATIONS
55	Effects of Adipose-Derived Biogenic Nanoparticle-Associated microRNA-451a on Toll-like Receptor 4-Induced Cytokines. Pharmaceutics, 2022, 14, 16.	2.0	15
56	Differences in the Aerobic Capacity of Flight Muscles between Butterfly Populations and Species with Dissimilar Flight Abilities. PLoS ONE, 2014, 9, e78069.	1.1	14
57	Extracellular vesicle glucose transporter-1 and glycan features in monocyte-endothelial inflammatory interactions. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102515.	1.7	13
58	Protective effects of intestinal trefoil factor (ITF) on gastric mucosal epithelium through activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Molecular and Cellular Biochemistry, 2015, 404, 263-270.	1.4	12
59	Liveâ€cell singleâ€molecule imaging reveals clathrin and caveolinâ€1 dependent docking of SMAD4 at the cell membrane. FEBS Letters, 2013, 587, 3912-3920.	1.3	7
60	A pyruvate decarboxylase-mediated therapeutic strategy for mimicking yeast metabolism in cancer cells. Pharmacological Research, 2016, 111, 413-421.	3.1	7
61	Systematic comparison of methods for determining the in vivo biodistribution of porous nanostructured injectable inorganic particles. Acta Biomaterialia, 2019, 97, 501-512.	4.1	7
62	Education and Outreach in Physical Sciences in Oncology. Trends in Cancer, 2021, 7, 3-9.	3.8	4
63	Advances in Nanotechnology-Based Drug Delivery Platforms and Novel Drug Delivery Systems. , 2015, , 41-58.		3
64	Mechanistic Features of Nanodiamonds in the Lapping of Magnetic Heads. Scientific World Journal, The, 2014, 2014, 1-6.	0.8	1
65	The Impact of Lubricants on the Precision Lapping Process. Microscopy and Microanalysis, 2014, 20, 1708-1714.	0.2	1
66	Systemic delivery of human bone-marrow derived extracellular vesicles ameliorates kidney injury and inflammation in an accelerated diabetic kidney disease mouse model. Cytotherapy, 2021, 23, S109-S110.	0.3	0
67	Abstract B04: From modeling to in vivo tracking: a new platform for the design of delivery vectors that exploit tumor microfluidics. , 2017, , .		0
68	Abstract LB-019: Empowering preclinical studies: A systematic and quantitative analysis of biodistribution methods to facilitate clinical translation of new drugs. , 2018, , .		0