
Ashutosh Tiwari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/745833/publications.pdf Version: 2024-02-01

Δεμιτοεμ Τινλα

#	Article	IF	CITATIONS
1	Spin-glass behavior and magnetocaloric properties of high-entropy perovskite oxides. Applied Physics Letters, 2022, 120, .	3.3	10
2	Towards actinide heterostructure synthesis and science. Nature Communications, 2022, 13, 2221.	12.8	6
3	Understanding the effect of thickness on the thermoelectric properties of Ca3Co4O9 thin films. Scientific Reports, 2021, 11, 6324.	3.3	13
4	A Review of Strategies for Developing Promising Thermoelectric Materials by Controlling Thermal Conduction (Phys. Status Solidi A 14â^•2019). Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1970048.	1.8	0
5	Influence of the planar orientation of the substrate on thermoelectric response of SnSe thin films. Journal of Physics and Chemistry of Solids, 2019, 129, 347-353.	4.0	20
6	A Review of Strategies for Developing Promising Thermoelectric Materials by Controlling Thermal Conduction. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800904.	1.8	19
7	CuPt Alloy Thin Films for Application in Spin Thermoelectrics. Scientific Reports, 2019, 9, 3133.	3.3	22
8	Growth of two-dimensional WS2 thin films by pulsed laser deposition technique. Thin Solid Films, 2018, 668, 69-73.	1.8	34
9	Nonenzymatic glucose sensing using metal oxides – Comparison of CuO, Co3O4, and NiO. Vacuum, 2018, 155, 696-701.	3.5	40
10	Growth and characterization of zinc oxide thin films on flexible substrates at low temperature using pulsed laser deposition. Vacuum, 2017, 146, 483-491.	3.5	21
11	Recent Developments in Perpendicular Magnetic Anisotropy Thin Films for Data Storage Applications. Vacuum, 2017, 146, 329-341.	3.5	123
12	Spintronic detection of interfacial magnetic switching in a paramagnetic thin film of tris(8-hydroxyquinoline)iron(III). Physical Review B, 2017, 95, .	3.2	9
13	Recent advances in oxide thermoelectric materials and modules. Vacuum, 2017, 146, 356-374.	3.5	146
14	Thermoelectric response of porous Ca3Co4O9 prepared by an eco-friendly technique. Ceramics International, 2017, 43, 9505-9511.	4.8	17
15	Growth and properties of Cu2ZnSnS4 thin films prepared by multiple metallic layer stacks as a function of sulfurization time. Journal of Materials Science: Materials in Electronics, 2017, 28, 11702-11711.	2.2	15
16	Terbium Ion Doping in Ca3Co4O9: A Step towards High-Performance Thermoelectric Materials. Scientific Reports, 2017, 7, 44621.	3.3	80
17	Low Temperature Magnetotransport Properties of Polycrystalline Ca3Co4O9. MRS Advances, 2017, 2, 1237-1242.	0.9	1
18	A simple and selective colorimetric mercury (II) sensing system based on chitosan stabilized gold nanoparticles and 2,6-pyridinedicarboxylic acid. Materials Science and Engineering C, 2017, 71, 195-199.	7.3	27

#	Article	IF	CITATIONS
19	Effect of Composition and Thickness on the Perpendicular Magnetic Anisotropy of (Co/Pd) Multilayers. Sensors, 2017, 17, 2743.	3.8	19
20	2D Tin Monoxide—An Unexplored pâ€Type van der Waals Semiconductor: Material Characteristics and Field Effect Transistors. Advanced Electronic Materials, 2016, 2, 1500453.	5.1	125
21	Facile preparation of nickel/carbonized wood nanocomposite for environmentally friendly supercapacitor electrodes. Scientific Reports, 2016, 6, 33659.	3.3	37
22	2D Materials: 2D Tin Monoxide-An Unexplored p-Type van der Waals Semiconductor: Material Characteristics and Field Effect Transistors (Adv. Electron. Mater. 4/2016). Advanced Electronic Materials, 2016, 2, .	5.1	2
23	P-type SnO thin films and SnO/ZnO heterostructures for all-oxide electronic and optoelectronic device applications. Thin Solid Films, 2016, 605, 193-201.	1.8	82
24	Growth of centimeter-scale atomically thin MoS ₂ films by pulsed laser deposition. APL Materials, 2015, 3, 056103.	5.1	115
25	Synthesis and characterization of copper-infiltrated carbonized wood monoliths for supercapacitor electrodes. Electrochimica Acta, 2015, 161, 343-350.	5.2	37
26	Spin Current Response in Bi-YIG/Pt Thin Film Heterostructures Induced by Gamma Radiation. IEEE Electron Device Letters, 2015, 36, 853-855.	3.9	2
27	Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode. Materials Science and Engineering C, 2015, 46, 548-552.	7.3	82
28	Electrochemical Performance of Cu Nanoparticle/Carbonized Wood Electrode for Supercapacitor Application. Materials Research Society Symposia Proceedings, 2014, 1678, 19.	0.1	1
29	Novel Low Temperature Molten Salt Synthesis of a Li5La3Nb2O12 Solid State Electrolyte and Its Properties. Materials Research Society Symposia Proceedings, 2014, 1679, 7.	0.1	2
30	A review of recent advances in nonenzymatic glucose sensors. Materials Science and Engineering C, 2014, 41, 100-118.	7.3	469
31	Recent developments in garnet based solid state electrolytes for thin film batteries. Current Opinion in Solid State and Materials Science, 2014, 18, 29-38.	11.5	77
32	Simple and rapid green synthesis of micrometer scale single crystalline gold nanoplates using chitosan as the reducing agent. Journal of Crystal Growth, 2014, 406, 12-17.	1.5	14
33	Robust longitudinal spin-Seebeck effect in Bi-YIG thin films. Scientific Reports, 2014, 4, 4429.	3.3	75
34	Kinetically stable glassy phase formation in neodymium nickelate thin films as evidenced by Hall effect and electrical resistivity measurements. Journal of Materials Research, 2013, 28, 1699-1706.	2.6	1
35	Room-temperature solid-state radiation detectors based on spintronics. , 2012, , .		1
36	Electrical Transport in Ultrathin NdNiO3 Films. Materials Research Society Symposia Proceedings, 2012, 1454, 27-32.	0.1	0

3

#	Article	IF	CITATIONS
37	Characterization of Li ₇ La ₃ Zr ₂ O ₁₂ Thin Films Prepared by Pulsed Laser Deposition. Materials Research Society Symposia Proceedings, 2012, 1471, 37.	0.1	7
38	Modification of High Potential, High Capacity Li2FeP2O7 Cathode Material for Lithium Ion Batteries. Materials Research Society Symposia Proceedings, 2012, 1440, 37.	0.1	0
39	Garnet-type Li7La3Zr2O12 Electrolyte Prepared by a Solution-Based Technique for Lithium ion battery. Materials Research Society Symposia Proceedings, 2012, 1440, 73.	0.1	1
40	Synthesis of Cubic Phase Li7La3Zr2O12 Electrolyte for Solid-State Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2012, 15, A37.	2.2	52
41	Magnetic materials and devices: Research and applications. Jom, 2011, 63, 24-24.	1.9	2
42	Magnetic behavior of CeO2-δ thin films doped with non-magnetic transition metals. Jom, 2011, 63, 25-28.	1.9	2
43	Temperatureâ€dependent study of the Raman A mode of Cu ₂ ZnSnS ₄ thin films. Physica Status Solidi (B): Basic Research, 2011, 248, 2170-2174.	1.5	53
44	A Study of Increased Resistivity of FTO Back Contact for CZTS Based Absorber Material Grown by Electrodeposition-Annealing Route. Materials Research Society Symposia Proceedings, 2011, 1315, 1.	0.1	2
45	A factorial design of experiments approach to synthesize CZTS absorber material from aqueous media. Materials Research Society Symposia Proceedings, 2011, 1288, 1.	0.1	2
46	Antimicrobial properties of silver-doped hydroxyapatite nano-powders and thin films. Jom, 2010, 62, 65-70.	1.9	44
47	Unexpected magnetic behavior of Cu-doped CeO2. Applied Physics Letters, 2010, 96, .	3.3	43
48	Ferromagnetism in Ni-doped ZnO films: Extrinsic or intrinsic?. Applied Physics Letters, 2009, 94, .	3.3	78
49	Spintronic materials and devices: Advances and applications. Jom, 2009, 61, 66-66.	1.9	0
50	Progress in Zno-based diluted magnetic semiconductors. Jom, 2009, 61, 72-75.	1.9	28
51	Controlled synthesis of hydroxyapatite-based coatings for biomedical application. Materials Science and Engineering C, 2009, 29, 1071-1076.	7.3	38
52	Proton conducting BaZr0.8Y0.2O3â^'x thin films by pulsed laser deposition technique. Journal of Crystal Growth, 2008, 310, 3590-3595.	1.5	9
53	Ferromagnetism in Cu-doped ZnO films: Role of charge carriers. Applied Physics Letters, 2008, 92, .	3.3	110
54	Synthesis and Characterization of ZnO Nano-Plant-Like Electrodes. Journal of Nanoscience and Nanotechnology, 2008, 8, 3981-3987.	0.9	26

#	Article	IF	CITATIONS
55	Structural, electrical, and optical characterizations of epitaxial Zn1â^'xGaxO films grown on sapphire (0001) substrate. Journal of Applied Physics, 2007, 101, 124912.	2.5	68
56	Growth and Observation of Low-Field Giant Magnetoresistance in La0.7Sr0.3MnO3/ZnO Superlattice Structures. Journal of Nanoscience and Nanotechnology, 2006, 6, 612-617.	0.9	0
57	Co-doped ZnO dilute magnetic semiconductor. Journal of Electronic Materials, 2006, 35, 852-856.	2.2	27
58	Ferromagnetism in Co doped CeO2: Observation of a giant magnetic moment with a high Curie temperature. Applied Physics Letters, 2006, 88, 142511.	3.3	210
59	Origin of room-temperature ferromagnetism in cobalt-doped ZnO. Journal of Electronic Materials, 2004, 33, 1298-1302.	2.2	17
60	TaN-TiN binary alloys and superlattices as diffusion barriers for copper interconnections. Journal of Electronic Materials, 2004, 33, L5-L5.	2.2	4
61	Zn0.9Co0.1O-based diluted magnetic semiconducting thin films. Applied Physics Letters, 2004, 84, 5255-5257.	3.3	301
62	TaN-TiN binary alloys and superlattices as diffusion barriers for copper interconnects. Journal of Electronic Materials, 2003, 32, 994-999.	2.2	10
63	Rectifying electrical characteristics of La0.7Sr0.3MnO3/ZnO heterostructure. Applied Physics Letters, 2003, 83, 1773-1775.	3.3	91
64	Growth and characteristics of TaN/TiN superlattice structures. Applied Physics Letters, 2003, 83, 3072-3074.	3.3	13
65	Role of Self-assembled Gold Nanodots in Improving the Electrical and Optical Characteristics of Zinc Oxide Films. Journal of Nanoscience and Nanotechnology, 2003, 3, 368-371.	0.9	13
66	Growth of epitaxial NdNiO3 and integration with Si(100). Applied Physics Letters, 2002, 80, 1337-1339.	3.3	12
67	Strain-induced tuning of metal–insulator transition in NdNiO3. Applied Physics Letters, 2002, 80, 4039-4041.	3.3	75
68	Epitaxial growth of TaN thin films on Si(100) and Si(111) using a TiN buffer layer. Applied Physics Letters, 2002, 80, 2323-2325.	3.3	35
69	Copper diffusion characteristics in single-crystal and polycrystalline TaN. Applied Physics Letters, 2002, 81, 1453-1455.	3.3	40
70	Epitaxial growth of ZnO films on Si(111). Journal of Materials Research, 2002, 17, 2480-2483.	2.6	48
71	WEAK-LOCALIZATION EFFECT IN SINGLE CRYSTAL TaN(001) FILMS. Modern Physics Letters B, 2002, 16, 1143-1149.	1.9	5
72	Single Crystal TaN Thin Films on TiN/Si Heterostructure. Materials Research Society Symposia Proceedings, 2002, 716, 881.	0.1	0

#	Article	IF	CITATIONS
73	Copper Diffusion Characteristics in Single Crystal and Polycrystalline TaN. Materials Research Society Symposia Proceedings, 2002, 745, 6111.	0.1	0
74	Growth of TiN/AlN Superlattice by Pulsed Laser Deposition. Materials Research Society Symposia Proceedings, 2002, 750, 1.	0.1	1
75	Growth of epitaxial ZnO films on Si(111). Materials Research Society Symposia Proceedings, 2002, 722, 1071.	0.1	3
76	Low temperature electrical transport in La1â^'xNdxNiO3â^'δ. Solid State Communications, 2002, 121, 357-361.	1.9	24
77	Self-Aligned Passivated Copper Interconnects: A Novel Technique for Making Interconnections in Ultra Large Scale Integration Device Applications. Materials Research Society Symposia Proceedings, 2002, 716, 811.	0.1	Ο
78	Electrical transport in. Journal of Physics Condensed Matter, 1999, 11, 3291-3298.	1.8	21
79	Metal-insulator transition in La0.7Sr0.3Mn1â^'xFexO3. Journal of Applied Physics, 1999, 86, 5175-5178.	2.5	31
80	Anomalous Thermoelectric Power of Sol–Gel Prepared NdNiO3-δ. Modern Physics Letters B, 1997, 11, 1161-1167.	1.9	3