List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7457916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fruit bats as natural reservoir of highly pathogenic henipaviruses: balance between antiviral defense and viral tolerance. Current Opinion in Virology, 2022, 54, 101228.	5.4	11
2	Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nature Immunology, 2021, 22, 25-31.	14.5	403
3	Human Endogenous Retrovirus Type W Envelope from Multiple Sclerosis Demyelinating Lesions Shows Unique Solubility and Antigenic Characteristics. Virologica Sinica, 2021, 36, 1006-1026.	3.0	16
4	Evidence of the pathogenic HERV-W envelope expression in T lymphocytes in association with the respiratory outcome of COVID-19 patients. EBioMedicine, 2021, 66, 103341.	6.1	57
5	Single-chain variable fragment antibody constructs neutralize measles virus infection in vitro and in vivo. Cellular and Molecular Immunology, 2021, 18, 1835-1837.	10.5	3
6	Molecular Features of the Measles Virus Viral Fusion Complex That Favor Infection and Spread in the Brain. MBio, 2021, 12, e0079921.	4.1	24
7	Activation of cGAS/STING pathway upon paramyxovirus infection. IScience, 2021, 24, 102519.	4.1	25
8	Rapid and Flexible Platform To Assess Anti-SARS-CoV-2 Antibody Neutralization and Spike Protein-Specific Antivirals. MSphere, 2021, 6, e0057121.	2.9	2
9	Identification of a Region in the Common Amino-terminal Domain of Hendra Virus P, V, and W Proteins Responsible for Phase Transition and Amyloid Formation. Biomolecules, 2021, 11, 1324.	4.0	20
10	A Bioluminescent 3CLPro Activity Assay to Monitor SARS-CoV-2 Replication and Identify Inhibitors. Viruses, 2021, 13, 1814.	3.3	12
11	Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection. Nature Communications, 2021, 12, 5809.	12.8	37
12	Highly Potent Host-Specific Small-Molecule Inhibitor of Paramyxovirus and Pneumovirus Replication with High Resistance Barrier. MBio, 2021, 12, e0262121.	4.1	5
13	Nipah virus W protein harnesses nuclear 14-3-3 to inhibit NF-κB-induced proinflammatory response. Communications Biology, 2021, 4, 1292.	4.4	9
14	Reprogrammed Pteropus Bat Stem Cells as A Model to Study Host-Pathogen Interaction during Henipavirus Infection. Microorganisms, 2021, 9, 2567.	3.6	7
15	Control of Nipah Virus Infection in Mice by the Host Adaptors Mitochondrial Antiviral Signaling Protein (MAVS) and Myeloid Differentiation Primary Response 88 (MyD88). Journal of Infectious Diseases, 2020, 221, S401-S406.	4.0	16
16	High Pathogenicity of Nipah Virus from <i>Pteropus lylei</i> Fruit Bats, Cambodia. Emerging Infectious Diseases, 2020, 26, 104-113.	4.3	12
17	Sequencing the Genome of Indian Flying Fox, Natural Reservoir of Nipah Virus, Using Hybrid Assembly and Conservative Secondary Scaffolding. Frontiers in Microbiology, 2020, 11, 1807.	3.5	3
18	Quercetin Blocks Ebola Virus Infection by Counteracting the VP24 Interferon-Inhibitory Function. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	41

#	Article	IF	CITATIONS
19	Measles Encephalitis: Towards New Therapeutics. Viruses, 2019, 11, 1017.	3.3	54
20	Type I Interferon Receptor Signaling Drives Selective Permissiveness of Astrocytes and Microglia to Measles Virus during Brain Infection. Journal of Virology, 2019, 93, .	3.4	22
21	Measles Virus Bearing Measles Inclusion Body Encephalitis-Derived Fusion Protein Is Pathogenic after Infection via the Respiratory Route. Journal of Virology, 2019, 93, .	3.4	24
22	Analysis of a Subacute Sclerosing Panencephalitis Genotype B3 Virus from the 2009-2010 South African Measles Epidemic Shows That Hyperfusogenic F Proteins Contribute to Measles Virus Infection in the Brain. Journal of Virology, 2019, 93, .	3.4	25
23	Recent advances in the understanding of Nipah virus immunopathogenesis and anti-viral approaches. F1000Research, 2019, 8, 1763.	1.6	30
24	Fusion Inhibitory Lipopeptides Engineered for Prophylaxis of Nipah Virus in Primates. Journal of Infectious Diseases, 2018, 218, 218-227.	4.0	45
25	Induction of Proinflammatory Multiple Sclerosis-Associated Retrovirus Envelope Protein by Human Herpesvirus-6A and CD46 Receptor Engagement. Frontiers in Immunology, 2018, 9, 2803.	4.8	43
26	Understanding the interaction between henipaviruses and their natural host, fruit bats: Paving the way toward control of highly lethal infection in humans. International Reviews of Immunology, 2017, 36, 108-121.	3.3	22
27	Measles virus infection of human keratinocytes: Possible link between measles and atopic dermatitis. Journal of Dermatological Science, 2017, 86, 97-105.	1.9	15
28	<i>In Vivo</i> Efficacy of Measles Virus Fusion Protein-Derived Peptides Is Modulated by the Properties of Self-Assembly and Membrane Residence. Journal of Virology, 2017, 91, .	3.4	40
29	Broad spectrum antiviral activity for paramyxoviruses is modulated by biophysical properties of fusion inhibitory peptides. Scientific Reports, 2017, 7, 43610.	3.3	45
30	Organotypic Brain Cultures: A Framework for Studying CNS Infection by Neurotropic Viruses and Screening Antiviral Drugs. Bio-protocol, 2017, 7, e2605.	0.4	10
31	HSP90 Chaperoning in Addition to Phosphoprotein Required for Folding but Not for Supporting Enzymatic Activities of Measles and Nipah Virus L Polymerases. Journal of Virology, 2016, 90, 6642-6656.	3.4	49
32	Protection from Hendra virus infection with Canarypox recombinant vaccine. Npj Vaccines, 2016, 1, 16003.	6.0	15
33	Measles virus hemagglutinin triggers intracellular signaling in CD150-expressing dendritic cells and inhibits immune response. Cellular and Molecular Immunology, 2016, 13, 828-838.	10.5	15
34	Expression of CD150 in Tumors of the Central Nervous System: Identification of a Novel Isoform. PLoS ONE, 2015, 10, e0118302.	2.5	11
35	Heparan Sulfate-Dependent Enhancement of Henipavirus Infection. MBio, 2015, 6, e02427.	4.1	26
36	Henipavirus pathogenesis and antiviral approaches. Expert Review of Anti-Infective Therapy, 2015, 13,	4.4	34

343-354.

#	Article	IF	CITATIONS
37	Measles Fusion Machinery Is Dysregulated in Neuropathogenic Variants. MBio, 2015, 6, .	4.1	45
38	Human Herpesvirus 6A Infection in CD46 Transgenic Mice: Viral Persistence in the Brain and Increased Production of Proinflammatory Chemokines via Toll-Like Receptor 9. Journal of Virology, 2014, 88, 5421-5436.	3.4	60
39	Recent developments in animal models for human herpesvirus 6A and 6B. Current Opinion in Virology, 2014, 9, 97-103.	5.4	15
40	Recent challenges in understanding Henipavirus immunopathogenesis: role of nonstructural viral proteins. Future Virology, 2014, 9, 527-530.	1.8	3
41	Fatal Measles Virus Infection Prevented by Brain-Penetrant Fusion Inhibitors. Journal of Virology, 2013, 87, 13785-13794.	3.4	58
42	Type I Interferon Signaling Protects Mice From Lethal Henipavirus Infection. Journal of Infectious Diseases, 2013, 207, 142-151.	4.0	62
43	Mechanism for Active Membrane Fusion Triggering by Morbillivirus Attachment Protein. Journal of Virology, 2013, 87, 314-326.	3.4	54
44	Protection Against Henipavirus Infection by Use of Recombinant Adeno-Associated Virus–Vector Vaccines. Journal of Infectious Diseases, 2013, 207, 469-478.	4.0	72
45	Animal models for human herpesvirus 6 infection. Frontiers in Microbiology, 2013, 4, 174.	3.5	25
46	Henipavirus Infections: Lessons from Animal Models. Pathogens, 2013, 2, 264-287.	2.8	28
47	The V Protein of Tioman Virus Is Incapable of Blocking Type I Interferon Signaling in Human Cells. PLoS ONE, 2013, 8, e53881.	2.5	21
48	Human Herpesvirus 6 and Neuroinflammation. ISRN Virology, 2013, 2013, 1-11.	0.5	16
49	Nonstructural Nipah Virus C Protein Regulates both the Early Host Proinflammatory Response and Viral Virulence. Journal of Virology, 2012, 86, 10766-10775.	3.4	57
50	Rapid Screening for Entry Inhibitors of Highly Pathogenic Viruses under Low-Level Biocontainment. PLoS ONE, 2012, 7, e30538.	2.5	19
51	Lethal Nipah Virus Infection Induces Rapid Overexpression of CXCL10. PLoS ONE, 2012, 7, e32157.	2.5	49
52	A General Strategy to Endow Natural Fusion-protein-Derived Peptides with Potent Antiviral Activity. PLoS ONE, 2012, 7, e36833.	2.5	67
53	Molecular characterization of measles virus strains causing subactute sclerosing panencephalitis in France in 1977 and 2007. Journal of Medical Virology, 2011, 83, 1614-1623.	5.0	23
54	Nipah Virus Uses Leukocytes for Efficient Dissemination within a Host. Journal of Virology, 2011, 85, 7863-7871.	3.4	86

#	Article	IF	CITATIONS
55	Coâ€circulation of multiple measles virus genotypes during an epidemic in France in 2008. Journal of Medical Virology, 2010, 82, 1033-1043.	5.0	23
56	Experimental Infection of Squirrel Monkeys with Nipah Virus. Emerging Infectious Diseases, 2010, 16, 507-510.	4.3	60
57	Interplay between Virus-Specific Effector Response and Foxp3+ Regulatory T Cells in Measles Virus Immunopathogenesis. PLoS ONE, 2009, 4, e4948.	2.5	35
58	iNKT cell development is orchestrated by different branches of TGF-β signaling. Journal of Experimental Medicine, 2009, 206, 1365-1378.	8.5	81
59	Animal models for the study of emerging zoonotic viruses: Nipah and Hendra. Veterinary Journal, 2009, 181, 207-208.	1.7	3
60	Acute Hendra virus infection: Analysis of the pathogenesis and passive antibody protection in the hamster model. Virology, 2009, 387, 459-465.	2.4	99
61	PolyI:C plus ILâ€2 or ILâ€12 induce IFNâ€Î³ production by human NK cells <i>via</i> autocrine IFNâ€Î². European Journal of Immunology, 2009, 39, 2877-2884.	2.9	31
62	Generation of mice with conditionally activated transforming growth factor beta signaling through the TβRI/ALK5 receptor. Genesis, 2008, 46, 724-731.	1.6	42
63	Wild type measles virus attenuation independent of type I IFN. Virology Journal, 2008, 5, 22.	3.4	28
64	Measles Virus Nucleoprotein Induces a Regulatory Immune Response and Reduces Atherosclerosis in Mice. Circulation, 2007, 116, 1707-1713.	1.6	38
65	Influence of measles vaccination on the progression of atopic dermatitis in infants. Pediatric Allergy and Immunology, 2007, 18, 385-390.	2.6	18
66	Immunosuppression caused by measles virus: role of viral proteins. Reviews in Medical Virology, 2006, 16, 49-63.	8.3	67
67	High Pathogenicity of Wild-Type Measles Virus Infection in CD150 (SLAM) Transgenic Mice. Journal of Virology, 2006, 80, 6420-6429.	3.4	41
68	Immunomodulatory Properties of Morbillivirus Nucleoproteins. Viral Immunology, 2006, 19, 324-334.	1.3	43
69	Evaluation of Adenovirus Vectors Containing Serotype 35 Fibers for Vaccination. Molecular Therapy, 2006, 13, 756-765.	8.2	50
70	Cell Surface Delivery of the Measles Virus Nucleoprotein: a Viral Strategy To Induce Immunosuppression. Journal of Virology, 2004, 78, 11952-11961.	3.4	50
71	Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell–induced inflammation. Nature Immunology, 2002, 3, 659-666.	14.5	159
72	Mechanism of Measles Virus–Induced Suppression of Inflammatory Immune Responses. Immunity, 2001, 14, 69-79.	14.3	128

BRANKA HORVAT

#	Article	IF	CITATIONS
73	Differential permissivity to measles virus infection of human and CD46-transgenic murine lymphocytes. Journal of General Virology, 2001, 82, 2125-2129.	2.9	14
74	Octamerization Enables Soluble CD46 Receptor To Neutralize Measles Virus In Vitro and In Vivo. Journal of Virology, 2000, 74, 4672-4678.	3.4	47
75	Productive Measles Virus Brain Infection and Apoptosis in CD46 Transgenic Mice. Journal of Virology, 2000, 74, 1373-1382.	3.4	41
76	Somatostatin-dependent adenylyl cyclase activity in nonactivated and mitogen-activated human T cells: Evidence for uncoupling of sst3 receptor from adenylyl cyclase. , 1999, 72, 221-231.		5
77	Measles Virus Infection Induces Terminal Differentiation of Human Thymic Epithelial Cells. Journal of Virology, 1999, 73, 2212-2221.	3.4	43
78	Enhanced MHC class II-restricted presentation of measles virus (MV) hemagglutinin in transgenic mice expressing human MV receptor CD46. European Journal of Immunology, 1998, 28, 1301-1314.	2.9	26
79	Somatostatin increases mitogen-induced IL-2 secretion and proliferation of human jurkat T cells via sst3 receptor isotype. , 1998, 68, 62-73.		31
80	Transgenic expression of a CD46 (membrane cofactor protein) minigene: Studies of xenotransplantation and measles virus infection. European Journal of Immunology, 1997, 27, 726-734.	2.9	56
81	Tumour cell proliferation is abolished by inhibitors of and exchange. European Journal of Cancer, 1993, 29, 132-137.	2.8	32
82	Production of interleukin 2 and interleukin 4 by immune CD4â^'CD8+ and their role in the generation of antigen-specific cytotoxic T cells. European Journal of Immunology, 1991, 21, 1863-1871.	2.9	32
83	The role of contrasuppressor T cells in the adoptive transfer of contact sensitivity responses to picryl chloride. Immunologic Research, 1988, 7, 1-11.	2.9	1
84	The role of contrasuppression in tumor regression. Immunologic Research, 1988, 7, 12-22.	2.9	4
85	Contrasuppression and tumor rejection. Immunology Letters, 1987, 16, 297-303.	2.5	3
86	First Evidence of Pathogenic HERV-W Envelope Expression in T Lymphocytes in Association with the Respiratory Outcome of COVID-19 Patients. SSRN Electronic Journal, 0, , .	0.4	0