
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7457854/publications.pdf Version: 2024-02-01

Ιμαίρο Υίν

#	Article	IF	CITATIONS
1	Electrorheological fluids based on nano-fibrous polyaniline. Polymer, 2008, 49, 4413-4419.	3.8	159
2	Polyaniline decorated graphene sheet suspension with enhanced electrorheology. Soft Matter, 2012, 8, 294-297.	2.7	121
3	Enhanced electrorheology of suspensions containing sea-urchin-like hierarchical Cr-doped titania particles. Soft Matter, 2009, 5, 4687.	2.7	120
4	Coaxial cable-like polyaniline@titania nanofibers: facile synthesis and low power electrorheological fluid application. Journal of Materials Chemistry, 2010, 20, 7096.	6.7	118
5	Conductivity and polarization of carbonaceous nanotubes derived from polyaniline nanotubes and their electrorheology when dispersed in silicone oil. Carbon, 2010, 48, 2958-2967.	10.3	105
6	Microwave-synthesized poly(ionic liquid) particles: a new material with high electrorheological activity. Journal of Materials Chemistry A, 2014, 2, 9812-9819.	10.3	101
7	Titanate nano-whisker electrorheological fluid with high suspended stability and ER activity. Nanotechnology, 2006, 17, 192-196.	2.6	85
8	The electrorheological effect and dielectric properties of suspensions containing polyaniline@titania nanocable-like particles. Soft Matter, 2011, 7, 10978.	2.7	72
9	Electrorheology of nanofiber suspensions. Nanoscale Research Letters, 2011, 6, 256.	5.7	71
10	Preparation and enhanced electro-responsive characteristic of reduced graphene oxide/polypyrrole composite sheet suspensions. Soft Matter, 2013, 9, 7468.	2.7	68
11	The electrorheological effect of polyaniline nanofiber, nanoparticle and microparticle suspensions. Smart Materials and Structures, 2009, 18, 095007.	3.5	66
12	Well-organized 3D urchin-like hierarchical TiO2 microspheres with high photocatalytic activity. Journal of Materials Science, 2012, 47, 1436-1445.	3.7	61
13	Microwave-assisted synthesis and high-performance anhydrous electrorheological characteristic of monodisperse poly(ionic liquid) particles with different size of cation/anion parts. Polymer, 2016, 97, 408-417.	3.8	54
14	Influence of Side Chain Sizes on Dielectric and Electrorheological Responses of Poly(ionic liquid)s. Journal of Physical Chemistry B, 2017, 121, 6226-6237.	2.6	53
15	Enhanced dielectric polarization and electro-responsive characteristic of graphene oxide-wrapped titania microspheres. Nanotechnology, 2014, 25, 045702.	2.6	52
16	Graphene-supported carbonaceous dielectric sheets and their electrorheology. Carbon, 2012, 50, 5247-5255.	10.3	49
17	Pickering emulsion polymerization of poly(ionic liquid)s encapsulated nano-SiO2 composite particles with enhanced electro-responsive characteristic. Polymer, 2018, 146, 109-119.	3.8	46
18	Electrorheological properties of thermo-oxidative polypyrrole nanofibers. Polymer, 2011, 52, 786-792.	3.8	43

#	Article	IF	CITATIONS
19	Au or Ag nanoparticle-decorated 3D urchin-like TiO2 nanostructures: Synthesis, characterization, and enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2013, 403, 22-28.	9.4	43
20	Enhanced temperature effect of electrorheological fluid based on cross-linked poly(ionic liquid) particles: rheological and dielectric relaxation studies. Soft Matter, 2017, 13, 1027-1039.	2.7	43
21	Highly stable and AC electric field-activated electrorheological fluid based on mesoporous silica-coated graphene nanosheets. Soft Matter, 2013, 9, 3910.	2.7	41
22	Manipulating Cherenkov Radiation and Smith–Purcell Radiation by Artificial Structures. Advanced Optical Materials, 2019, 7, 1801666.	7.3	40
23	Preparation and enhanced electro-responsive characteristic of graphene/layered double-hydroxide composite dielectric nanoplates. Journal of Materials Chemistry C, 2014, 2, 10386-10394.	5.5	37
24	Graphene oxide vs. reduced graphene oxide as core substrate for core/shell-structured dielectric nanoplates with different electro-responsive characteristics. Journal of Materials Chemistry C, 2015, 3, 5098-5108.	5.5	37
25	Influence of counterion type on dielectric and electrorheological responses of poly(ionic liquid)s. Polymer, 2017, 132, 273-285.	3.8	34
26	High performance graphene oxide-based humidity sensor integrated on a photonic crystal cavity. Applied Physics Letters, 2017, 110, .	3.3	33
27	Enhancing Electroresponsive Electrorheological Effect and Temperature Dependence of Poly(ionic) Tj ETQq1	1 0.784314 r 3.5	gBT_/Overloc
28	Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption. Scientific Reports, 2015, 5, 16698.	3.3	30
29	Lowâ€Temperature Interfacial Polymerization and Enhanced Electroâ€Responsive Characteristic of Poly(ionic liquid)s@polyaniline Coreâ€shell Microspheres. Macromolecular Rapid Communications, 2019, 40, 1800351.	3.9	29
30	Wormhole-like mesoporous Ce-doped TiO2: a new electrorheological material with high activity. Journal of Materials Chemistry, 2003, 13, 689-695.	6.7	27
31	Interfacial Polarization and Electroresponsive Electrorheological Effect of Anionic and Cationic Poly(ionic liquids). ACS Applied Polymer Materials, 2019, 1, 2862-2874.	4.4	27
32	Influence of alkyl spacer length on ion transport, polarization and electro-responsive electrorheological effect of self-crosslinked poly(ionic liquid)s. Polymer, 2019, 171, 161-172.	3.8	25
33	Nonmonotonic Influence of Size of Quaternary Ammonium Countercations on Micromorphology, Polarization, and Electroresponse of Anionic Poly(ionic liquid)s. Journal of Physical Chemistry B, 2020, 124, 2920-2929.	2.6	25
34	Enhanced Stimuli-Responsive Electrorheological Property of Poly(ionic liquid)s-Capsulated Polyaniline Particles. Polymers, 2017, 9, 385.	4.5	24
35	Distinctly Different Electroresponsive Electrorheological Effect in Low-Molecular-Weight and Polymerized Ionic Liquids: Rheological and Dielectric Relaxation Studies. Journal of Physical Chemistry B, 2018, 122, 12184-12193.	2.6	21
36	Highly stable nanofluid based on polyhedral oligomeric silsesquioxane-decorated graphene oxide nanosheets and its enhanced electro-responsive behavior. Nanotechnology, 2016, 27, 195702.	2.6	20

#	Article	IF	CITATIONS
37	The Effect of Dielectric Polarization Rate Difference of Filler and Matrix on the Electrorheological Responses of Poly(ionic liquid)/Polyaniline Composite Particles. Polymers, 2020, 12, 703.	4.5	18
38	Improved Electrorheological Polishing Property of Poly(Ionic Liquid)/Al ₂ O ₃ Composite Particles Prepared via Pickering Emulsion Polymerization. ACS Applied Polymer Materials, 2021, 3, 5778-5787.	4.4	18
39	Unveiling the Critical Role of Surface Oxidation of Electroresponsive Behaviors in Two-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXenes. Journal of Physical Chemistry C, 2019, 123, 5479-5487.	3.1	17
40	Chirality-Assisted Aharonov–Anandan Geometric-Phase Metasurfaces for Spin-Decoupled Phase Modulation. ACS Photonics, 2021, 8, 1847-1855.	6.6	17
41	Conductivity, polarization and electrorheological activity of polyaniline nanotubes during thermo-oxidative treatment. Polymer Degradation and Stability, 2012, 97, 2356-2363.	5.8	15
42	Enhanced interfacial polarization and electro-responsive characteristic of di-ionic poly(ionic) Tj ETQq0 0 0 rgBT /0	Dverlock 1	0 Tf 50 542 1 15
43	Influence of geometry of mobile countercations on conductivity, polarization and electrorheological effect of polymeric anionic liquids at ice point temperature. Polymer, 2020, 205, 122826.	3.8	15
44	Silicone-grafted carbonaceous nanotubes with enhanced dispersion stability and electrorheological efficiency. Nanotechnology, 2015, 26, 065704.	2.6	14
45	Ion transport, polarization and electro-responsive elelctrorheological effect of self-crosslinked poly(ionic liquid)s with different counterions. Polymer, 2019, 177, 149-159.	3.8	14
46	Influence of Tethered Ions on Electric Polarization and Electrorheological Property of Polymerized Ionic Liquids. Molecules, 2020, 25, 2896.	3.8	13
47	Electrically tunable metasurface based on Mie-type dielectric resonators. Scientific Reports, 2017, 7, 43026.	3.3	12
48	Rheological analysis of titanium dioxide nano-whisker based electrorheological fluids. Journal of Industrial and Engineering Chemistry, 2020, 83, 285-288.	5.8	12
49	Micro/nano-structured montmorillonite/titania particles with high electrorheological activity. Rheologica Acta, 2011, 50, 87-95.	2.4	10
50	Understanding the enhanced electrorheological effect of reduced graphene oxideâ€supported polyaniline dielectric nanoplates by a comparative study with graphene oxide as the support core. IET Nanodielectrics, 2021, 4, 143-154.	4.1	10
51	Influence of molecular weight on electro-responsive electrorheological effect of poly(ionic liquid)s: Rheology and dielectric spectroscopy analysis. Polymer, 2021, 234, 124241.	3.8	9
52	Electrorheological Fluids of GO/Graphene-Based Nanoplates. Materials, 2022, 15, 311.	2.9	9
53	Progress in Preparation of Sea Urchin-like Micro-/Nanoparticles. Materials, 2022, 15, 2846.	2.9	9
54	Electrically tunable negative refraction in core/shell-structured nanorod fluids. Soft Matter, 2014, 10, 7696-7704.	2.7	6

#	Article	IF	CITATIONS
55	Preparation of Poly(Ionic Liquid) Microbeads via Coolingâ€Assisted Phase Separation Method. Macromolecular Rapid Communications, 2021, 42, 2100275.	3.9	6
56	Inorganic Reinforced Poly(ionic liquid) Microcapsules: Confined Coolingâ€Assisted Phase Separation Selfâ€Assembly and Enhanced Electroresponsive Properties. Macromolecular Rapid Communications, 2022, 43, e2100769.	3.9	6
57	Evaporation-assisted phase separation preparation and electrorheological effect of poly(ionic liquid) microspheres with dual and mixed counterions. Polymer, 2022, , 124647.	3.8	6
58	Polyelectrolyte-based electrorheological materials. Polymer, 2022, 254, 125042.	3.8	6
59	Enhanced electrorheological effectiveness and temperature effect of suspensions based on poly(ionic) Tj ETQq1 🛛	L 0.78431 3.8	4 rgBT /Ove
60	Bimetallic core/shell nanoparticle-decorated 3D urchin-like hierarchical TiO2 nanostructures with magneto-responsive and decolorization characteristics. Nanoscale Research Letters, 2015, 10, 84.	5.7	5
61	Preparation of Poly(Ionic Liquid) Microbeads by Evaporationâ€Assisted Phase Separation. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	5
62	Electro-responsive electrorheological effect and dielectric spectra analysis of topological self-crosslinked poly(ionic liquid)s. European Polymer Journal, 2022, 170, 111160.	5.4	5
63	Reply to Comment on "Preparation and Enhanced Electrorheological Activity of TiO2Doped with Chromium Ionâ€: Chemistry of Materials, 2006, 18, 2773-2773.	6.7	4
64	Dielectric Polarization and Electrorheological Response of Poly(ethylaniline)-Coated Reduced Graphene Oxide Nanoflakes with Different Reduction Degrees. Polymers, 2020, 12, 2528.	4.5	4
65	Electrorheology and dielectric polarization of backbone, pendant and cross-linked poly(ionic) Tj ETQq1 1 0.78431	4 ₃ .gBT /O	verlock 10 T
66	Enhancing Electrorheological Properties of Titanate Nanoplates by Intercalating Polyaniline. Current Smart Materials, 2017, 2, .	0.5	0
67	Hydrolysis-resistant yttrium alkoxide rhombic dodecahedra prepared by a facile hydrothermal method. CrystEngComm, 2018, 20, 1189-1192.	2.6	0
68	LARGE ENHANCEMENT IN ELECTRORHEOLOGICAL ACTIVITY OF MESOPOROUS CERIUM-DOPED TIO2 FROM HIGH SURFACE AREA AND ROBUST PORE WALLS. , 2005, , .		0
69	Mechanical property and dielectric spectra analysis of solvent-free poly(ionic liquid)/poly(ethyl) Tj ETQq1 1 0.784	314 rgBT / 3.8	Oyerlock 10