
Ann Dean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/745759/publications.pdf Version: 2024-02-01

ΔΝΝ ΠΕΛΝ

#	Article	IF	CITATIONS
1	Hemogen /BRG1 cooperativity modulates promoter and enhancer activation during erythropoiesis. Blood, 2022, , .	1.4	2
2	A Zinc Finger Transcription Factor Faithfully Dedicated to Only a Single Target Gene in Erythroid Cells. Molecular Cell, 2021, 81, 218-219.	9.7	1
3	Enhancers navigate the three-dimensional genome to direct cell fate decisions. Current Opinion in Structural Biology, 2021, 71, 101-109.	5.7	9
4	Crystal structure of human LDB1 in complex with SSBP2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1042-1048.	7.1	18
5	The mRNA-Binding Protein IGF2BP1 Restores Fetal Hemoglobin in Cultured Erythroid Cells from Patients with β-Hemoglobin Disorders. Molecular Therapy - Methods and Clinical Development, 2020, 17, 429-440.	4.1	13
6	Embryonic erythropoiesis and hemoglobin switching require transcriptional repressor ETO2 to modulate chromatin organization. Nucleic Acids Research, 2020, 48, 10226-10240.	14.5	9
7	Enhancer long-range contacts: The multi-adaptor protein LDB1 is the tie that binds. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 625-633.	1.9	26
8	Chromatin Immunoprecipitation (ChIP) with Erythroid Samples. Methods in Molecular Biology, 2018, 1698, 229-236.	0.9	4
9	Chromosome Conformation Capture (3C and Higher) with Erythroid Samples. Methods in Molecular Biology, 2018, 1698, 237-243.	0.9	5
10	CRISPR/Cas9 offers a new tool for studying the role of chromatin architecture in disease pathogenesis. Genome Biology, 2018, 19, 185.	8.8	2
11	Fetal γ-globin genes are regulated by the BGLT3 long noncoding RNA locus. Blood, 2018, 132, 1963-1973.	1.4	49
12	LDB1-mediated enhancer looping can be established independent of mediator and cohesin. Nucleic Acids Research, 2017, 45, 8255-8268.	14.5	47
13	The LDB1 Complex Co-opts CTCF for Erythroid Lineage-Specific Long-Range Enhancer Interactions. Cell Reports, 2017, 19, 2490-2502.	6.4	66
14	CTCF fences make good neighbours. Nature Cell Biology, 2017, 19, 883-885.	10.3	10
15	A tetrad of chromatin interactions for chromosome pairing in X inactivation. Nature Structural and Molecular Biology, 2017, 24, 607-608.	8.2	1
16	Chromatin looping as a target for altering erythroid gene expression. Annals of the New York Academy of Sciences, 2016, 1368, 31-39.	3.8	21
17	Chromosome Togetherness at the Onset of ESC Differentiation. Cell Stem Cell, 2015, 16, 213-214.	11.1	0
18	Reactivation of Developmentally Silenced Globin Genes by Forced Chromatin Looping. Cell, 2014, 158, 849-860.	28.9	370

Ann Dean

#	Article	IF	CITATIONS
19	Enhancer Function: Mechanistic and Genome-Wide Insights Come Together. Molecular Cell, 2014, 55, 5-14.	9.7	199
20	Role of LDB1 in the transition from chromatin looping to transcription activation. Genes and Development, 2014, 28, 1278-1290.	5.9	97
21	Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation. Blood, 2013, 121, 4575-4585.	1.4	78
22	Controlling Long-Range Genomic Interactions at a Native Locus by Targeted Tethering of a Looping Factor. Cell, 2012, 149, 1233-1244.	28.9	615
23	Enhancer and promoter interactions—long distance calls. Current Opinion in Genetics and Development, 2012, 22, 79-85.	3.3	193
24	Chromatin Loop Formation in the \hat{l}^2 -Globin Locus and Its Role in Globin Gene Transcription. Molecules and Cells, 2012, 34, 1-6.	2.6	58
25	Distinct Ldb1/NLI complexes orchestrate γ-globin repression and reactivation through ETO2 in human adult erythroid cells. Blood, 2011, 118, 6200-6208.	1.4	42
26	In the loop: long range chromatin interactions and gene regulation. Briefings in Functional Genomics, 2011, 10, 3-10.	2.7	71
27	Epigenetics of β-globin gene regulation. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 647, 68-76.	1.0	63
28	A Novel Model of Short Chain Fatty Acid (SCFA)- Mediated up-Regulation of Embryonic/Fetal Globin Genes during Definitive Erythropoiesis Blood, 2008, 112, 1878-1878.	1.4	0
29	Endogenous Elevations of Short Chain Fatty Acids (SCFAs) Can Up-Regulate Embryonic Globin Gene Expression Blood, 2007, 110, 1770-1770.	1.4	20
30	On a chromosome far, far away: LCRs and gene expression. Trends in Genetics, 2006, 22, 38-45.	6.7	146
31	Chromatin remodelling and the interaction between enhancers and promoters in the Â-globin locus. Briefings in Functional Genomics & Proteomics, 2004, 2, 344-354.	3.8	10