
Wayne L Hubbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7457217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 2015, 523, 561-567.	27.8	683
2	Structural Insights into the Dynamic Process of β 2 -Adrenergic Receptor Signaling. Cell, 2015, 161, 1101-1111.	28.9	562
3	High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7439-7444.	7.1	436
4	ldentification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors. Cell, 2017, 170, 457-469.e13.	28.9	344
5	Rhodopsin structure, dynamics, and activation: A perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Advances in Protein Chemistry, 2003, 63, 243-290.	4.4	332
6	Structural Features and Light-Dependent Changes in the Cytoplasmic Interhelical Eâ^'F Loop Region of Rhodopsin:  A Site-Directed Spin-Labeling Study. Biochemistry, 1996, 35, 12470-12478.	2.5	301
7	Molecular Motion of Spin Labeled Side Chains in α-Helices:  Analysis by Variation of Side Chain Structure. Biochemistry, 2001, 40, 3828-3846.	2.5	266
8	Technological advances in site-directed spin labeling of proteins. Current Opinion in Structural Biology, 2013, 23, 725-733.	5.7	262
9	Structural basis for nucleotide exchange in heterotrimeric G proteins. Science, 2015, 348, 1361-1365.	12.6	250
10	Crystal Structures of Spin Labeled T4 Lysozyme Mutants:Â Implications for the Interpretation of EPR Spectra in Terms of Structureâ€. Biochemistry, 2000, 39, 8396-8405.	2.5	242
11	Angiotensin Analogs with Divergent Bias Stabilize Distinct Receptor Conformations. Cell, 2019, 176, 468-478.e11.	28.9	194
12	Tear lipocalins bind a broad array of lipid ligands. Current Eye Research, 1995, 14, 363-372.	1.5	165
13	Structure and dynamics of a conformationally constrained nitroxide side chain and applications in EPR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16241-16246.	7.1	152
14	Continuous and stopped flow EPR spectrometer based on a loop gap resonator. Review of Scientific Instruments, 1987, 58, 1879-1886.	1.3	150
15	Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9420-9424.	7.1	145
16	SPIN LABELED CYSTEINES AS SENSORS FOR PROTEINâ€LIPID INTERACTION AND CONFORMATION IN RHODOPSIN. Photochemistry and Photobiology, 1992, 56, 1019-1033.	2.5	140
17	Mapping Backbone Dynamics in Solution with Site-Directed Spin Labeling:Â GCN4â^'58 bZip Free and Bound to DNAâ€. Biochemistry, 2004, 43, 7273-7287.	2.5	128
18	Quantitative Analysis of the Isolated GAAA Tetraloop/Receptor Interaction in Solution:Â A Site-Directed Spin Labeling Studyâ€. Biochemistry, 2001, 40, 6929-6936.	2.5	125

WAYNE L HUBBELL

#	Article	IF	CITATIONS
19	Accessibility of Nitroxide Side Chains: Absolute Heisenberg Exchange Rates from Power Saturation EPR. Biophysical Journal, 2005, 89, 2103-2112.	0.5	125
20	Structure of the KcsA Potassium Channel fromStreptomyces lividans:Â A Site-Directed Spin Labeling Study of the Second Transmembrane Segmentâ€. Biochemistry, 1999, 38, 10324-10335.	2.5	122
21	Structure and Dynamics of a Helical Hairpin and Loop Region in Annexin 12:  A Site-Directed Spin Labeling Study. Biochemistry, 2002, 41, 1464-1473.	2.5	118
22	Structure and Function in Rhodopsin. Cysteines 65 and 316 Are in Proximity in a Rhodopsin Mutant As Indicated by Disulfide Formation and Interactions between Attached Spin Labelsâ€. Biochemistry, 1996, 35, 14040-14046.	2.5	111
23	Structural determinants of nitroxide motion in spinâ€labeled proteins: Solventâ€exposed sites in helix B of T4 lysozyme. Protein Science, 2008, 17, 228-239.	7.6	111
24	Structure and Function in Rhodopsin:  Mapping Light-Dependent Changes in Distance between Residue 65 in Helix TM1 and Residues in the Sequence 306â^'319 at the Cytoplasmic End of Helix TM7 and in Helix H8. Biochemistry, 2001, 40, 15483-15492.	2.5	107
25	Structural Features and Light-Dependent Changes in the Sequence 59â^'75 Connecting Helices I and II in Rhodopsin: A Site-Directed Spin-Labeling Studyâ€,‡. Biochemistry, 1999, 38, 7945-7949.	2.5	103
26	Structural origin of weakly ordered nitroxide motion in spinâ€labeled proteins. Protein Science, 2009, 18, 893-908.	7.6	103
27	The aggregation state of spin-labeled melittin in solution and bound to phospholipid membranes: Evidence that membrane-bound melittin is monomeric. Proteins: Structure, Function and Bioinformatics, 1988, 3, 230-242.	2.6	101
28	Structural determinants of nitroxide motion in spin-labeled proteins: Tertiary contact and solvent-inaccessible sites in helix G of T4 lysozyme. Protein Science, 2007, 16, 1069-1086.	7.6	101
29	Osmolyte perturbation reveals conformational equilibria in spinâ€labeled proteins. Protein Science, 2009, 18, 1637-1652.	7.6	99
30	Motion of Spin-Labeled Side Chains in T4 Lysozyme:  Effect of Side Chain Structure. Biochemistry, 1999, 38, 2947-2955.	2.5	97
31	High-pressure EPR reveals conformational equilibria and volumetric properties of spin-labeled proteins. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1331-1336.	7.1	88
32	Conformational equilibria of light-activated rhodopsin in nanodiscs. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3268-E3275.	7.1	84
33	Conformational States and Dynamics of Rhodopsin in Micelles and Bilayers. Biochemistry, 2006, 45, 5538-5550.	2.5	83
34	Protein global fold determination using siteâ€directed spin and isotope labeling. Protein Science, 2000, 9, 302-309.	7.6	81
35	Single-Cysteine Substitution Mutants at Amino Acid Positions 306â^'321 in Rhodopsin, the Sequence between the Cytoplasmic End of Helix VII and the Palmitoylation Sites:Â Sulfhydryl Reactivity and Transducin Activation Reveal a Tertiary Structureâ€,‡. Biochemistry, 1999, 38, 7925-7930.	2.5	80
36	Structure and Function in Rhodopsin:Â Effects of Disulfide Cross-Links in the Cytoplasmic Face of Rhodopsin on Transducin Activation and Phosphorylation by Rhodopsin Kinaseâ€,‡. Biochemistry, 1999, 38, 12893-12898.	2.5	78

WAYNE L HUBBELL

#	Article	IF	CITATIONS
37	Structural and energetic determinants of adhesive binding specificity in type I cadherins. Proceedings of the United States of America, 2014, 111, E4175-84.	7.1	78
38	Resolving dynamics and function of transient states in single enzyme molecules. Nature Communications, 2020, 11, 1231.	12.8	71
39	DEER Spectroscopy Measurements Reveal Multiple Conformations of HIV-1 SOSIP Envelopes that Show Similarities with Envelopes on Native Virions. Immunity, 2018, 49, 235-246.e4.	14.3	68
40	Proximity between Glu126 and Arg144 in the Lactose Permease of Escherichia coli. Biochemistry, 1999, 38, 7407-7412.	2.5	67
41	Accessibility and Dynamics of Nitroxide Side Chains in T4 Lysozyme Measured by Saturation Recovery EPR. Biophysical Journal, 2005, 89, 2059-2068.	0.5	65
42	Resolving Conformational and Rotameric Exchange in Spin-Labeled Proteins Using Saturation Recovery EPR. Applied Magnetic Resonance, 2010, 37, 363-390.	1.2	60
43	Mapping Molecular Flexibility of Proteins with Site-Directed Spin Labeling: A Case Study of Myoglobin. Biochemistry, 2012, 51, 6568-6583.	2.5	56
44	A triarylmethyl spin label for long-range distance measurement at physiological temperatures using T 1 relaxation enhancement. Journal of Magnetic Resonance, 2016, 269, 50-54.	2.1	50
45	Site-Directed Spin Labeling Demonstrates That Transmembrane Domain XII in the Lactose Permease ofEscherichia colils an α-Helixâ€. Biochemistry, 1996, 35, 12915-12918.	2.5	47
46	Conformational selection and adaptation to ligand binding in T4 lysozyme cavity mutants. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4306-15.	7.1	46
47	Steric trapping reveals a cooperativity network in the intramembrane protease GlpG. Nature Chemical Biology, 2016, 12, 353-360.	8.0	45
48	Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4714-22.	7.1	44
49	Exploring Structure, Dynamics, and Topology of Nitroxide Spin-Labeled Proteins Using Continuous-Wave Electron Paramagnetic Resonance Spectroscopy. Methods in Enzymology, 2015, 564, 59-100.	1.0	44
50	Mapping protein conformational heterogeneity under pressure with site-directed spin labeling and double electron–electron resonance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1201-10.	7.1	40
51	Site-Directed Spin-Labeling of Transmembrane Domain VII and the 4B1 Antibody Epitope in the Lactose Permease ofEscherichia coliâ€. Biochemistry, 1997, 36, 15055-15061.	2.5	39
52	Structure-relaxation mechanism for the response of T4 lysozyme cavity mutants to hydrostatic pressure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2437-46.	7.1	36
53	Proximity between Periplasmic Loops in the Lactose Permease of Escherichia coli As Determined by Site-Directed Spin Labeling. Biochemistry, 1999, 38, 3100-3105.	2.5	31
54	Viewing rare conformations of the β ₂ adrenergic receptor with pressure-resolved DEER spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31824-31831.	7.1	31

WAYNE L HUBBELL

#	Article	IF	CITATIONS
55	Probing the Dark State Tertiary Structure in the Cytoplasmic Domain of Rhodopsin:Â Proximities between Amino Acids Deduced from Spontaneous Disulfide Bond Formation between Cysteine Pairs Engineered in Cytoplasmic Loops 1, 3, and 4. Biochemistry, 2001, 40, 12479-12485.	2.5	29
56	Helix Packing in the Lactose Permease of Escherichia coli:  Distances between Site-Directed Nitroxides and a Lanthanide. Biochemistry, 2001, 40, 3184-3188.	2.5	27
57	Probing the Dark State Tertiary Structure in the Cytoplasmic Domain of Rhodopsin:Â Proximities between Amino Acids Deduced from Spontaneous Disulfide Bond Formation between Cys316 and Engineered Cysteines in Cytoplasmic Loop 1â€,‡. Biochemistry, 2001, 40, 12472-12478.	2.5	27
58	Conformational Mobility in Cytochrome P450 3A4 Explored by Pressure-Perturbation EPR Spectroscopy. Biophysical Journal, 2016, 110, 1485-1498.	0.5	25
59	Arginine 302 (Helix IX) in the Lactose Permease of Escherichia coli Is in Close Proximity to Glutamate 269 (Helix VIII) as Well as Glutamate 325 (Helix X). Biochemistry, 1997, 36, 13682-13687.	2.5	24
60	Structure in the channel forming domain of colicin E1 bound to membranes: The 402–424 sequence. Protein Science, 1999, 8, 562-572.	7.6	24
61	DEER Analysis of GPCR Conformational Heterogeneity. Biomolecules, 2021, 11, 778.	4.0	24
62	The guanine nucleotide exchange factor Ric-8A induces domain separation and Ras domain plasticity in Gαi1. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1404-1409.	7.1	23
63	A PII-Like Protein Regulated by Bicarbonate: Structural and Biochemical Studies of the Carboxysome-Associated CPII Protein. Journal of Molecular Biology, 2016, 428, 4013-4030.	4.2	20
64	Biophysical and Biochemical Characterization of Avian Secretory Component Provides Structural Insights into the Evolution of the Polymeric Ig Receptor. Journal of Immunology, 2016, 197, 1408-1414.	0.8	17
65	Saturation Recovery EPR and Nitroxide Spin Labeling for Exploring Structure and Dynamics in Proteins. Methods in Enzymology, 2015, 564, 3-27.	1.0	15
66	Conformational heterogeneity of the allosteric drug and metabolite (ADaM) site in AMP-activated protein kinase (AMPK). Journal of Biological Chemistry, 2018, 293, 16994-17007.	3.4	13
67	High-Pressure EPR and Site-Directed Spin Labeling for Mapping Molecular Flexibility in Proteins. Methods in Enzymology, 2015, 564, 29-57.	1.0	11
68	Lipid bilayer induces contraction of the denatured state ensemble of a helical-bundle membrane protein. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
69	Probing Protein Secondary Structure Using EPR: Investigating a Dynamic Region of Visual Arrestin. Applied Magnetic Resonance, 2012, 43, 405-419.	1.2	5
70	Analysis of Saturation Recovery Amplitudes to Characterize Conformational Exchange in Spin-Labeled Proteins. Applied Magnetic Resonance, 2017, 48, 1315-1340.	1.2	3
71	Structural basis of receptorâ€dependent G protein activation. FASEB Journal, 2006, 20, A918.	0.5	0
72	A siteâ€directed spin labeling study of arrestin conformation in solution and bound to activated rhodopsin. FASEB Journal, 2008, 22, 645.6.	0.5	0