Ido Hadar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7457008/publications.pdf Version: 2024-02-01

Ισο Ηλολβ

#	Article	IF	CITATIONS
1	Film formation mechanisms in mixed-dimensional 2D/3D halide perovskite films revealed by in situ grazing-incidence wide-angle X-ray scattering. CheM, 2022, 8, 1067-1082.	11.7	16
2	Sensitivity and Detection Limit of Spectroscopicâ€Grade Perovskite CsPbBr ₃ Crystal for Hard Xâ€Ray Detection. Advanced Functional Materials, 2022, 32, .	14.9	32
3	Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nature Photonics, 2022, 16, 14-26.	31.4	122
4	CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy Î ³ -rays. Nature Photonics, 2021, 15, 36-42.	31.4	210
5	Demonstration of Energy-Resolved γ-Ray Detection at Room Temperature by the CsPbCl ₃ Perovskite Semiconductor. Journal of the American Chemical Society, 2021, 143, 2068-2077.	13.7	62
6	Inorganic Halide Perovskitoid TIPbI ₃ for Ionizing Radiation Detection. Advanced Functional Materials, 2021, 31, 2006635.	14.9	16
7	Insight on the Stability of Thick Layers in 2D Ruddlesden–Popper and Dion–Jacobson Lead Iodide Perovskites. Journal of the American Chemical Society, 2021, 143, 2523-2536.	13.7	79
8	Tunable Broad Light Emission from 3D "Hollow―Bromide Perovskites through Defect Engineering. Journal of the American Chemical Society, 2021, 143, 7069-7080.	13.7	37
9	Shedding Light on the Stability and Structure–Property Relationships of Two-Dimensional Hybrid Lead Bromide Perovskites. Chemistry of Materials, 2021, 33, 5085-5107.	6.7	29
10	High-phase purity two-dimensional perovskites with 17.3% efficiency enabled by interface engineering of hole transport layer. Cell Reports Physical Science, 2021, 2, 100601.	5.6	17
11	Discordant nature of Cd in PbSe: off-centering and core–shell nanoscale CdSe precipitates lead to high thermoelectric performance. Energy and Environmental Science, 2020, 13, 200-211.	30.8	57
12	lr ₆ In ₃₂ S ₂₁ , a polar, metal-rich semiconducting subchalcogenide. Chemical Science, 2020, 11, 870-878.	7.4	7
13	High-Performance Thermoelectrics from Cellular Nanostructured Sb2Si2Te6. Joule, 2020, 4, 159-175.	24.0	103
14	Long periodic ripple in a 2D hybrid halide perovskite structure using branched organic spacers. Chemical Science, 2020, 11, 12139-12148.	7.4	22
15	Narrow-Bandgap Mixed Lead/Tin-Based 2D Dion–Jacobson Perovskites Boost the Performance of Solar Cells. Journal of the American Chemical Society, 2020, 142, 15049-15057.	13.7	103
16	Negative Pressure Engineering with Large Cage Cations in 2D Halide Perovskites Causes Lattice Softening. Journal of the American Chemical Society, 2020, 142, 11486-11496.	13.7	84
17	In Situ Grazingâ€Incidence Wideâ€Angle Scattering Reveals Mechanisms for Phase Distribution and Disorientation in 2D Halide Perovskite Films. Advanced Materials, 2020, 32, e2002812.	21.0	86
18	Water-Stable 1D Hybrid Tin(II) lodide Emits Broad Light with 36% Photoluminescence Quantum Efficiency. Journal of the American Chemical Society, 2020, 142, 9028-9038.	13.7	57

Ido Hadar

#	Article	IF	CITATIONS
19	Nonlinear Band Gap Tunability in Selenium–Tellurium Alloys and Its Utilization in Solar Cells. ACS Energy Letters, 2019, 4, 2137-2143.	17.4	49
20	Two-Dimensional Dion–Jacobson Hybrid Lead Iodide Perovskites with Aromatic Diammonium Cations. Journal of the American Chemical Society, 2019, 141, 12880-12890.	13.7	241
21	High Thermoelectric Performance in PbSe–NaSbSe ₂ Alloys from Valence Band Convergence and Low Thermal Conductivity. Advanced Energy Materials, 2019, 9, 1901377.	19.5	54
22	High Figure of Merit in Gallium-Doped Nanostructured n-Type PbTe- <i>x</i> GeTe with Midgap States. Journal of the American Chemical Society, 2019, 141, 16169-16177.	13.7	76
23	K _{<i>x</i>} [Bi _{4–<i>x</i>} Mn _{<i>x</i>} S ₆], Design of a Highly Selective Ion Exchange Material and Direct Gap 2D Semiconductor. Journal of the American Chemical Society, 2019, 141, 16903-16914.	13.7	22
24	Antiferromagnetic Semiconductor BaFMn _{0.5} Te with Unique Mn Ordering and Red Photoluminescence. Journal of the American Chemical Society, 2019, 141, 17421-17430.	13.7	10
25	Improved Environmental Stability and Solar Cell Efficiency of (MA,FA)PbI ₃ Perovskite Using a Wide-Band-Gap 1D Thiazolium Lead Iodide Capping Layer Strategy. ACS Energy Letters, 2019, 4, 1763-1769.	17.4	118
26	From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer. Journal of the American Chemical Society, 2019, 141, 10661-10676.	13.7	66
27	Purification and Improved Nuclear Radiation Detection of Tl ₆ Sl ₄ Semiconductor. Crystal Growth and Design, 2019, 19, 4738-4744.	3.0	4
28	Ethylenediammonium-Based "Hollow―Pb/Sn Perovskites with Ideal Band Gap Yield Solar Cells with Higher Efficiency and Stability. Journal of the American Chemical Society, 2019, 141, 8627-8637.	13.7	93
29	Small Cyclic Diammonium Cation Templated (110)-Oriented 2D Halide (X = I, Br, Cl) Perovskites with White-Light Emission. Chemistry of Materials, 2019, 31, 3582-3590.	6.7	101
30	Controlling the Vapor Transport Crystal Growth of Hg ₃ Se ₂ I ₂ Hard Radiation Detector Using Organic Polymer. Crystal Growth and Design, 2019, 19, 2074-2080.	3.0	7
31	Uniaxial Expansion of the 2D Ruddlesden–Popper Perovskite Family for Improved Environmental Stability. Journal of the American Chemical Society, 2019, 141, 5518-5534.	13.7	193
32	Modern Processing and Insights on Selenium Solar Cells: The World's First Photovoltaic Device. Advanced Energy Materials, 2019, 9, 1802766.	19.5	53
33	All-Scale Hierarchically Structured p-Type PbSe Alloys with High Thermoelectric Performance Enabled by Improved Band Degeneracy. Journal of the American Chemical Society, 2019, 141, 4480-4486.	13.7	87
34	Chemically reversible isomerization of inorganic clusters. Science, 2019, 363, 731-735.	12.6	72
35	Zero-Dimensional Cs ₂ Tel ₆ Perovskite: Solution-Processed Thick Films with High X-ray Sensitivity. ACS Photonics, 2019, 6, 196-203.	6.6	70
36	Mesophase Formation Stabilizes High-Purity Magic-Sized Clusters. Journal of the American Chemical Society, 2018, 140, 3652-3662.	13.7	71

Ido Hadar

#	Article	IF	CITATIONS
37	Resolving the Energy of γ-Ray Photons with MAPbl ₃ Single Crystals. ACS Photonics, 2018, 5, 4132-4138.	6.6	100
38	Structural Diversity in White-Light-Emitting Hybrid Lead Bromide Perovskites. Journal of the American Chemical Society, 2018, 140, 13078-13088.	13.7	351
39	Weak Electron Phonon Coupling and Deep Level Impurity for High Thermoelectric Performance Pb _{1â^'} <i>_x</i> Ga <i>_x</i> Te. Advanced Energy Materials, 2018, 8, 1800659.	19.5	111
40	α-Particle Detection and Charge Transport Characteristics in the A ₃ M ₂ I ₉ Defect Perovskites (A = Cs, Rb; M = Bi, Sb). ACS Photonics, 2018, 5, 3748-3762.	6.6	88
41	Semiconductor Seeded Nanorods with Graded Composition Exhibiting High Quantum-Yield, High Polarization, and Minimal Blinking. Nano Letters, 2017, 17, 2524-2531.	9.1	51
42	Sizeâ€Dependent Ligand Layer Dynamics in Semiconductor Nanocrystals Probed by Anisotropy Measurements. Angewandte Chemie, 2015, 127, 12640-12644.	2.0	0
43	Sizeâ€Dependent Ligand Layer Dynamics in Semiconductor Nanocrystals Probed by Anisotropy Measurements. Angewandte Chemie - International Edition, 2015, 54, 12463-12467.	13.8	12
44	Innenrücktitelbild: Size-Dependent Ligand Layer Dynamics in Semiconductor Nanocrystals Probed by Anisotropy Measurements (Angew. Chem. 42/2015). Angewandte Chemie, 2015, 127, 12697-12697.	2.0	0
45	Dimensionality Effects on Fluorescence Resonance Energy Transfer between Single Semiconductor Nanocrystals and Multiple Dye Acceptors. Journal of Physical Chemistry C, 2015, 119, 3849-3856.	3.1	19
46	Couples of colloidal semiconductor nanorods formed by self-limited assembly. Nature Materials, 2014, 13, 301-307.	27.5	104
47	Thermal Doping by Vacancy Formation in Copper Sulfide Nanocrystal Arrays. Nano Letters, 2014, 14, 1349-1353.	9.1	52
48	Band-gap engineering, optoelectronic properties and applications of colloidal heterostructured semiconductor nanorods. Nano Today, 2013, 8, 494-513.	11.9	140
49	Polarization Properties of Semiconductor Nanorod Heterostructures: From Single Particles to the Ensemble. Journal of Physical Chemistry Letters, 2013, 4, 502-507.	4.6	93
50	Effect of Nanoparticle Dimensionality on Fluorescence Resonance Energy Transfer in Nanoparticle–Dye Conjugated Systems. ACS Nano, 2012, 6, 2758-2765.	14.6	82
51	Interplay of Quenching and Enhancement Effects in Apertureless Near-Field Fluorescence Imaging of Single Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 15834-15844.	3.1	11