Yuan Zong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7456876/publications.pdf Version: 2024-02-01

YUAN ZONC

#	Article	IF	CITATIONS
1	An engineered prime editor with enhanced editing efficiency in plants. Nature Biotechnology, 2022, 40, 1394-1402.	17.5	89
2	High-efficiency prime editing with optimized, paired pegRNAs in plants. Nature Biotechnology, 2021, 39, 923-927.	17.5	189
3	Genetic manipulations of TaARE1 boost nitrogen utilization and grain yield in wheat. Journal of Genetics and Genomics, 2021, 48, 950-953.	3.9	16
4	SWISS: multiplexed orthogonal genome editing in plants with a Cas9 nickase and engineered CRISPR RNA scaffolds. Genome Biology, 2020, 21, 141.	8.8	38
5	Prime genome editing in rice and wheat. Nature Biotechnology, 2020, 38, 582-585.	17.5	544
6	Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC–Cas9. Nature Biotechnology, 2020, 38, 1460-1465.	17.5	49
7	Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nature Biotechnology, 2020, 38, 875-882.	17.5	259
8	Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science, 2019, 364, 292-295.	12.6	491
9	Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nature Plants, 2019, 5, 480-485.	9.3	210
10	Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nature Biotechnology, 2018, 36, 950-953.	17.5	310
11	Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biology, 2018, 19, 59.	8.8	392
12	Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology, 2017, 35, 438-440.	17.5	690
13	Targeted Mutagenesis in Hexaploid Bread Wheat Using the TALEN and CRISPR/Cas Systems. Methods in Molecular Biology, 2017, 1679, 169-185.	0.9	7
14	An Efficient Targeted Mutagenesis System Using CRISPR/Cas in Monocotyledons. Current Protocols in Plant Biology, 2016, 1, 329-344.	2.8	9
15	Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nature Plants, 2016, 2, 16139.	9.3	303
16	Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 2016, 7, 12617.	12.8	710