John Robertson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/745655/publications.pdf

Version: 2024-02-01

608 papers 75,401 citations

967 118 h-index 263 g-index

617 all docs

617 docs citations

617 times ranked

57298 citing authors

#	Article	IF	CITATIONS
1	Halide Perovskites: Advanced Photovoltaic Materials Empowered by a Unique Bonding Mechanism. Advanced Functional Materials, 2022, 32, 2110166.	7.8	35
2	p-Type Semiconduction in Oxides with Cation Lone Pairs. Chemistry of Materials, 2022, 34, 643-651.	3.2	12
3	Negative Differential Resistance Effect in "Cold―Metal Heterostructure Diodes. IEEE Electron Device Letters, 2022, 43, 498-501.	2.2	8
4	Reduced Fermi Level Pinning at Physisorptive Sites of Moire-MoS ₂ /Metal Schottky Barriers. ACS Applied Materials & Samp; Interfaces, 2022, 14, 11903-11909.	4.0	17
5	Self-Poisoning by C ₂ Products in CO ₂ Photoreduction Using a Phosphorus-Doped Carbon Nitride with Nitrogen Vacancies. ACS Sustainable Chemistry and Engineering, 2022, 10, 5758-5769.	3.2	14
6	Electronic properties of CaF2 bulk and interfaces. Journal of Applied Physics, 2022, 131, .	1.1	8
7	Defects and Passivation Mechanism of the Suboxide Layers at SiOâ,,/4H-SiC (0001) Interface: A First-Principles Calculation. IEEE Transactions on Electron Devices, 2021, 68, 288-293.	1.6	13
8	Carbon cluster formation and mobility degradation in 4H-SiC MOSFETs. Applied Physics Letters, 2021, 118, .	1.5	18
9	Coupled VO2 Oscillators Circuit as Analog First Layer Filter in Convolutional Neural Networks. Frontiers in Neuroscience, 2021, 15, 628254.	1.4	25
10	Single-Atom Rhodium on Defective g-C ₃ N ₄ : A Promising Bifunctional Oxygen Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 3590-3599.	3.2	136
11	Microstructure scaling of metal–insulator transition properties of VO2 films. Applied Physics Letters, 2021, 118, .	1.5	6
12	Electronic properties and tunability of the hexagonal SiGe alloys. Applied Physics Letters, 2021, 118 , .	1.5	10
13	Schottky barrier heights of defect-free metal/ZnO, CdO, MgO, and SrO interfaces. Journal of Applied Physics, 2021, 129, .	1.1	14
14	Microstructure Scaling in Metal-Insulator-Transitions of Atomic Layer Deposited VO2 Films. Solid-State Electronics, 2021, 183, 108046.	0.8	1
15	The metal–insulator phase change in vanadium dioxide and its applications. Journal of Applied Physics, 2021, 129, .	1.1	25
16	Highâ€Throughput Electronic Structures and Ferroelectric Interfaces of HfO 2 by GGA+ U (d,p) Calculations. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100295.	1.2	5
17	Comparison of hexagonal boron nitride and MgO tunnel barriers in Fe,Co magnetic tunnel junctions. Applied Physics Reviews, 2021, 8, .	5.5	15
18	<i>Ab Initio</i> Study of Hexagonal Boron Nitride as the Tunnel Barrier in Magnetic Tunnel Junctions. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 47226-47235.	4.0	6

#	Article	IF	Citations
19	Doping limits in p-type oxide semiconductors. MRS Bulletin, 2021, 46, 1037-1043.	1.7	13
20	Machineâ€learningâ€based interatomic potentials for advanced manufacturing. International Journal of Mechanical System Dynamics, 2021, 1, 159-172.	1.3	4
21	Scaled resistively-coupled VO2 oscillators for neuromorphic computing. Solid-State Electronics, 2020, 168, 107729.	0.8	37
22	Extending the metal-induced gap state model of Schottky barriers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	0.6	14
23	Origin of Weaker Fermi Level Pinning and Localized Interface States at Metal Silicide Schottky Barriers. Journal of Physical Chemistry C, 2020, 124, 19698-19703.	1.5	11
24	Preparation of atomic layer deposited vanadium dioxide thin films using tetrakis(ethylmethylamino) vanadium as precursor. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 052402.	0.9	6
25	Indium Silicon Oxide TFT Fully Photolithographically Processed for Circuit Integration. IEEE Journal of the Electron Devices Society, 2020, 8, 1162-1167.	1.2	5
26	Ultrahigh drive current and large selectivity in GeS selector. Nature Communications, 2020, 11, 4636.	5.8	83
27	Role of the third metal oxide in In–Ga–Zn–O4 amorphous oxide semiconductors: Alternatives to gallium. Journal of Applied Physics, 2020, 128, 215704.	1.1	6
28	Spin filtering by proximity effects at hybridized interfaces in spin-valves with 2D graphene barriers. Nature Communications, 2020, 11, 5670.	5.8	37
29	Theoretical investigation on graphene-supported single-atom catalysts for electrochemical CO ₂ reduction. Catalysis Science and Technology, 2020, 10, 8465-8472.	2.1	35
30	Influence of precursor dose and residence time on the growth rate and uniformity of vanadium dioxide thin films by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 042401.	0.9	12
31	Modelling the enthalpy change and transition temperature dependence of the metal–insulator transition in pure and doped vanadium dioxide. Physical Chemistry Chemical Physics, 2020, 22, 13474-13478.	1.3	12
32	Tuning the high-κ oxide (HfO2, ZrO2)/4H-SiC interface properties with a SiO2 interlayer for power device applications. Applied Surface Science, 2020, 527, 146843.	3.1	13
33	Self-Selective Resistive Device With Hybrid Switching Mode for Passive Crossbar Memory Application. IEEE Electron Device Letters, 2020, 41, 1009-1012.	2.2	34
34	Band Structure, Band Offsets, and Intrinsic Defect Properties of Few-Layer Arsenic and Antimony. Journal of Physical Chemistry C, 2020, 124, 7441-7448.	1.5	9
35	Semiconducting few-layer PdSe ₂ and Pd ₂ Se ₃ : native point defects and contacts with native metallic Pd ₁₇ Se ₁₅ . Physical Chemistry Chemical Physics, 2020, 22, 7365-7373.	1.3	8
36	Termination-dependence of Fermi level pinning at rare-earth arsenide/GaAs interfaces. Applied Physics Letters, 2020, 116 , .	1.5	6

#	Article	IF	CITATIONS
37	Time-Delay Encoded Image Recognition in a Network of Resistively Coupled VOâ,, on Si Oscillators. IEEE Electron Device Letters, 2020, 41, 629-632.	2.2	31
38	A unified mid-gap defect model for amorphous GeTe phase change material. Applied Physics Letters, 2020, 116, .	1.5	7
39	Hybrid band offset calculation for heterojunction interfaces between disparate semiconductors. Applied Physics Letters, 2020, 116, .	1.5	9
40	Anisotropic Transport Property of Antimonene MOSFETs. ACS Applied Materials & Emp; Interfaces, 2020, 12, 22378-22386.	4.0	30
41	Phase dependence of Schottky barrier heights for Ge–Sb–Te and related phase-change materials. Journal of Applied Physics, 2020, 127, .	1.1	7
42	Electronic structure of amorphous copper iodide: A <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -type transparent semiconductor. Physical Review Materials, 2020, 4, .	0.9	10
43	Schottky barrier height at metal/ZnO interface: A first-principles study. Microelectronic Engineering, 2019, 216, 111056.	1.1	13
44	Density Functional Theory Studies of the Metal–Insulator Transition in Vanadium Dioxide Alloys. Physica Status Solidi (B): Basic Research, 2019, 256, 1900210.	0.7	7
45	Optical band gap of cross-linked, curved, and radical polyaromatic hydrocarbons. Physical Chemistry Chemical Physics, 2019, 21, 16240-16251.	1.3	45
46	Band alignment calculation of dielectric films on VO2. Microelectronic Engineering, 2019, 216, 111057.	1.1	2
47	Structural changes during the switching transition of chalcogenide selector devices. Applied Physics Letters, 2019, 115, .	1.5	13
48	Atomic structure and band alignment at Al2O3/GaN, Sc2O3/GaN and La2O3/GaN interfaces: A first-principles study. Microelectronic Engineering, 2019, 216, 111039.	1.1	12
49	Modeling of surface gap state passivation and Fermi level de-pinning in solar cells. Applied Physics Letters, 2019, 114, .	1.5	20
50	Chalcogenide selector devices and their non-linear conduction process. Microelectronic Engineering, 2019, 216, 111037.	1.1	1
51	Interfacial Properties of Monolayer Antimonene Devices. Physical Review Applied, 2019, 11, .	1.5	22
52	Chemical bonding and band alignment at X2O3/GaN (X = Al, Sc) interfaces. Applied Physics Letters, 201 114, .	9, 1.5	36
53	Atomic structure and electronic structure of disordered graphitic carbon nitride. Carbon, 2019, 147, 483-489.	5.4	12
54	Chalcogenide van der Waals superlattices: a case example of interfacial phase-change memory. Pure and Applied Chemistry, 2019, 91, 1777-1786.	0.9	5

#	Article	IF	CITATIONS
55	Origin of resistivity contrast in interfacial phase-change memory: The crucial role of Ge/Sb intermixing. Applied Physics Letters, 2019, 114, .	1.5	37
56	Insertion of an ultrathin Al ₂ O ₃ interfacial layer for Schottky barrier height reduction in WS ₂ field-effect transistors. Nanoscale, 2019, 11, 4811-4821.	2.8	24
57	Band Offset Models of Three-Dimensionally Bonded Semiconductors and Insulators. Journal of Physical Chemistry C, 2019, 123, 5562-5570.	1.5	14
58	Materials Selection and Mechanism of Non-linear Conduction in Chalcogenide Selector Devices. Scientific Reports, 2019, 9, 1867.	1.6	31
59	Electronic structure of metallic and insulating phases of vanadium dioxide and its oxide alloys. Physical Review Materials, 2019, 3, .	0.9	11
60	Dye-Assisted Transformation of Cu ₂ O Nanocrystals to Amorphous Cu <i></i> O Nanoflakes for Enhanced Photocatalytic Performance. ACS Omega, 2018, 3, 1939-1945.	1.6	13
61	Insulator-to-Metallic Spin-Filtering in 2D-Magnetic Tunnel Junctions Based on Hexagonal Boron Nitride. ACS Nano, 2018, 12, 4712-4718.	7. 3	88
62	Direct transition of a HfGeTe ₄ ternary transition-metal chalcogenide monolayer with a zigzag van der Waals gap. APL Materials, 2018, 6, 046104.	2.2	17
63	Band edge states, intrinsic defects, and dopants in monolayer HfS2 and SnS2. Applied Physics Letters, 2018, 112, .	1.5	22
64	Carbon nanotube isolation layer enhancing in-liquid quality-factors of thin film bulk acoustic wave resonators for gravimetric sensing. Sensors and Actuators B: Chemical, 2018, 261, 398-407.	4.0	10
65	The Over-Reset Phenomenon in Ta ₂ O ₅ RRAM Device Investigated by the RTN-Based Defect Probing Technique. IEEE Electron Device Letters, 2018, 39, 955-958.	2.2	18
66	Dirac-Point Shift by Carrier Injection Barrier in Graphene Field-Effect Transistor Operation at Room Temperature. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10618-10621.	4.0	5
67	Passivating the sulfur vacancy in monolayer MoS2. APL Materials, 2018, 6, .	2.2	53
68	Native point defects of semiconducting layered Bi2O2Se. Scientific Reports, 2018, 8, 10920.	1.6	31
69	Germanium substitution endowing Cr3+-doped zinc aluminate phosphors with bright and super-long near-infrared persistent luminescence. Acta Materialia, 2018, 155, 214-221.	3.8	62
70	Oxygen vacancies and hydrogen in amorphous In-Ga-Zn-O and ZnO. Physical Review Materials, 2018, 2, .	0.9	21
71	Controlling Surface Termination and Facet Orientation in Cu ₂ O Nanoparticles for High Photocatalytic Activity: A Combined Experimental and Density Functional Theory Study. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8100-8106.	4.0	99
72	Yttrium passivation of defects in GeO2 and GeO2/Ge interfaces. Applied Physics Letters, 2017, 110, .	1.5	12

#	Article	IF	CITATIONS
73	Band offsets and metal contacts in monolayer black phosphorus. Microelectronic Engineering, 2017, 178, 108-111.	1.1	5
74	Ultrathin Multifunctional Graphene-PVDF Layers for Multidimensional Touch Interactivity for Flexible Displays. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18410-18416.	4.0	62
75	Adsorptive graphene doping: Effect of a polymer contaminant. Applied Physics Letters, 2017, 110, .	1.5	5
76	The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM. Applied Physics Letters, 2017, 110 , .	1.5	54
77	Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. Science Advances, 2017, 3, e1701661.	4.7	95
78	Low temperature growth of fully covered single-layer graphene using a CoCu catalyst. Nanoscale, 2017, 9, 14467-14475.	2.8	11
79	Enhanced switching stability in Ta2O5 resistive RAM by fluorine doping. Applied Physics Letters, 2017, 111, .	1.5	21
80	Germanium oxidation occurs by diffusion of oxygen network interstitials. Applied Physics Letters, 2017, 110, 222902.	1.5	9
81	From Growth Surface to Device Interface: Preserving Metallic Fe under Monolayer Hexagonal Boron Nitride. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29973-29981.	4.0	16
82	Hydrogen and the Light-Induced Bias Instability Mechanism in Amorphous Oxide Semiconductors. Scientific Reports, 2017, 7, 16858.	1.6	19
83	Charge transfer doping of graphene without degrading carrier mobility. Journal of Applied Physics, 2017, 121, .	1.1	10
84	Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H ₂ Evolution and CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2017, 5, 7260-7268.	3.2	322
85	Defect Emission and Optical Gain in SiC _{<i>x</i>} O _{<i>y</i>} :H Films. ACS Applied Materials & Defect Emission and Optical Gain in SiC _{<i>x</i>} O _{<i>y</i>} H Films. ACS Applied Materials & Defect Emission and Optical Gain in SiC _{<i>y</i>} O	4.0	13
86	Metal-catalyst-free growth of graphene on insulating substrates by ammonia-assisted microwave plasma-enhanced chemical vapor deposition. RSC Advances, 2017, 7, 33185-33193.	1.7	34
87	Face Dependence of Schottky Barriers Heights of Silicides and Germanides on Si and Ge. Scientific Reports, 2017, 7, 16669.	1.6	14
88	Band structure, band offsets, substitutional doping, and Schottky barriers of bulk and monolayer InSe. Physical Review Materials, $2017,1,1$	0.9	39
89	Mott lecture: How bonding concepts can help understand amorphous semiconductor behavior. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1641-1652.	0.8	17
90	Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers. Applied Physics Letters, 2016, 108, .	1.5	118

#	Article	IF	CITATIONS
91	The screening effects of the screened exchange hybrid functional in surface systems: A case study on the CO/Pt(111) problem. AIP Advances, 2016, 6, 065309.	0.6	2
92	Growth of continuous graphene by open roll-to-roll chemical vapor deposition. Applied Physics Letters, 2016, 109, .	1.5	36
93	Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures. Applied Physics Letters, 2016, 108, .	1.5	151
94	AlN and Al oxy-nitride gate dielectrics for reliable gate stacks on Ge and InGaAs channels. Journal of Applied Physics, 2016, 119, .	1.1	7
95	Chemical trends of Schottky barrier behavior on monolayer hexagonal B, Al, and Ga nitrides. Journal of Applied Physics, 2016, 120, .	1.1	13
96	Stabilizing a graphene platform toward discrete components. Applied Physics Letters, 2016, 109, 253110.	1.5	16
97	Atomic Layering, Intermixing and Switching Mechanism in Ge-Sb-Te based Chalcogenide Superlattices. Scientific Reports, 2016, 6, 37325.	1.6	38
98	Thirty Gigahertz Optoelectronic Mixing in Chemical Vapor Deposited Graphene. Nano Letters, 2016, 16, 2988-2993.	4.5	26
99	Improved Calculation of Li and Na Intercalation Properties in Anatase, Rutile, and TiO ₂ (B). Journal of Physical Chemistry C, 2016, 120, 22910-22917.	1.5	69
100	Ultrafast Ge-Te bond dynamics in a phase-change superlattice. Physical Review B, 2016, 94, .	1.1	6
101	Nondestructive optical visualisation of graphene domains and boundaries. Nanoscale, 2016, 8, 16427-16434.	2.8	5
102	Impact of oxygen exchange reaction at the ohmic interface in Ta ₂ O ₅ -based ReRAM devices. Nanoscale, 2016, 8, 17774-17781.	2.8	116
103	Interface Engineering for Atomic Layer Deposited Alumina Gate Dielectric on SiGe Substrates. ACS Applied Materials & Dielectric on SiGe Substrates. ACS Applied Materials & Dielectric on SiGe Substrates. ACS	4.0	34
104	Band offsets of oxide, 3D and 2D semiconductors and their implications. , 2016, , .		0
105	Stable, efficient p-type doping of graphene by nitric acid. RSC Advances, 2016, 6, 113185-113192.	1.7	66
106	Growth of Continuous Monolayer Graphene with Millimeter-sized Domains Using Industrially Safe Conditions. Scientific Reports, 2016, 6, 21152.	1.6	48
107	Revisiting the Local Structure in Ge-Sb-Te based Chalcogenide Superlattices. Scientific Reports, 2016, 6, 22353.	1.6	63
108	Defects and reliability of high K gate stacks on Si, Ge and Ill–Vs. , 2016, , .		1

#	Article	IF	Citations
109	Nature of Cu Interstitials in Al ₂ O ₃ and the Implications for Filament Formation in Conductive Bridge Random Access Memory Devices. Journal of Physical Chemistry C, 2016, 120, 14474-14483.	1.5	13
110	A fast transfer-free synthesis of high-quality monolayer graphene on insulating substrates by a simple rapid thermal treatment. Nanoscale, 2016, 8, 2594-2600.	2.8	20
111	Oxide defects and reliability of high K/Ge and Ill–V based gate stacks. , 2015, , .		0
112	Oxygen Defect-Induced Metastability in Oxide Semiconductors Probed by Gate Pulse Spectroscopy. Scientific Reports, 2015, 5, 14902.	1.6	53
113	Localized Tail States and Electron Mobility in Amorphous ZnON Thin Film Transistors. Scientific Reports, 2015, 5, 13467.	1.6	70
114	Modeling of switching mechanism in GeSbTe chalcogenide superlattices. Scientific Reports, 2015, 5, 12612.	1.6	84
115	Energetics of intrinsic defects in NiO and the consequences for its resistive random access memory performance. Applied Physics Letters, 2015, 107, .	1.5	51
116	Defect state passivation at III-V oxide interfaces for complementary metal–oxide–semiconductor devices. Journal of Applied Physics, 2015, 117, .	1.1	77
117	Spatial variability in large area single and few-layer CVD graphene. , 2015, , .		1
118	Chalcogen vacancies in monolayer transition metal dichalcogenides and Fermi level pinning at contacts. Applied Physics Letters, 2015, 106 , .	1.5	151
119	3D Behavior of Schottky Barriers of 2D Transition-Metal Dichalcogenides. ACS Applied Materials & Interfaces, 2015, 7, 25709-25715.	4.0	134
120	The effects of screening length in the non-local screened-exchange functional. Journal of Physics Condensed Matter, 2015, 27, 025501.	0.7	10
121	Soluble polysulphide sorption using carbon nanotube forest for enhancing cycle performance in a lithium–sulphur battery. Nano Energy, 2015, 12, 538-546.	8.2	95
122	Calculation of TiO ₂ Surface and Subsurface Oxygen Vacancy by the Screened Exchange Functional. Journal of Physical Chemistry C, 2015, 119, 18160-18166.	1.5	136
123	Low-Temperature Growth of Carbon Nanotube Forests Consisting of Tubes with Narrow Inner Spacing Using Co/Al/Mo Catalyst on Conductive Supports. ACS Applied Materials & Diterfaces, 2015, 7, 16819-16827.	4.0	27
124	AlN-GeO2 based gate stack for improved reliability of Ge MOSFETs. Microelectronic Engineering, 2015, 147, 168-170.	1.1	6
125	Ab initio calculations of materials selection of oxides for resistive random access memories. Microelectronic Engineering, 2015, 147, 339-343.	1,1	10
126	Long-Term Passivation of Strongly Interacting Metals with Single-Layer Graphene. Journal of the American Chemical Society, 2015, 137, 14358-14366.	6.6	133

#	Article	IF	CITATIONS
127	Selective Passivation of GeO ₂ /Ge Interface Defects in Atomic Layer Deposited High- <i>k</i> MOS Structures. ACS Applied Materials & Interfaces, 2015, 7, 20499-20506.	4.0	66
128	Efficient Transfer Doping of Carbon Nanotube Forests by MoO ₃ . ACS Nano, 2015, 9, 10422-10430.	7.3	39
129	High-K materials and metal gates for CMOS applications. Materials Science and Engineering Reports, 2015, 88, 1-41.	14.8	542
130	Vacancy and Doping States in Monolayer and bulk Black Phosphorus. Scientific Reports, 2015, 5, 14165.	1.6	55
131	Silicon versus the rest. Canadian Journal of Physics, 2014, 92, 553-560.	0.4	1
132	Materials selection for oxide-based resistive random access memories. Applied Physics Letters, 2014, 105, .	1.5	92
133	Nature of gap states in GeSbTe phase change memory materials. Canadian Journal of Physics, 2014, 92, 671-674.	0.4	8
134	Origin of the high work function and high conductivity of MoO3. Applied Physics Letters, 2014, 105, .	1.5	161
135	Diamond-Like Carbon Films, Properties and Applications. , 2014, , 101-139.		11
136	Increased carbon nanotube area density after catalyst generation from cobalt disilicide using a cyclic reactive ion etching approach. Journal of Applied Physics, 2014, 115, 144302.	1.1	3
137	Light induced instability mechanism in amorphous InGaZn oxide semiconductors. Applied Physics Letters, 2014, 104, .	1.5	60
138	Oxygen vacancy defects in Ta2O5 showing long-range atomic re-arrangements. Applied Physics Letters, 2014, 104 , .	1.5	42
139	Dopant compensation in HfO2 and other high K oxides. Applied Physics Letters, 2014, 104, 192904.	1.5	13
140	Electronic properties of MoS ₂ /hâ€BN heterostructures: Impact of dopants and impurities. Physica Status Solidi (B): Basic Research, 2014, 251, 2620-2625.	0.7	10
141	Thermal stability investigation in highly- uniform and low-voltage tantalum oxide-based RRAM. , 2014, , .		2
142	Amorphous Oxide Semiconductor TFTs for Displays and Imaging. Journal of Display Technology, 2014, 10, 917-927.	1.3	133
143	The role of the sp2:sp3 substrate content in carbon supported nanotube growth. Carbon, 2014, 75, 327-334.	5.4	17
144	Calculation of metallic and insulating phases of V2O3 by hybrid density functionals. Journal of Chemical Physics, 2014, 140, 054702.	1.2	24

#	Article	IF	CITATIONS
145	Carbon nanotube forests growth using catalysts from atomic layer deposition. Journal of Applied Physics, 2014, 115, 144303.	1.1	10
146	Study of CeO ₂ and Its Native Defects by Density Functional Theory with Repulsive Potential. Journal of Physical Chemistry C, 2014, 118, 24248-24256.	1.5	86
147	Effect of Catalyst Pretreatment on Chirality-Selective Growth of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 5773-5781.	1.5	37
148	Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes. Journal of Materials Chemistry C, 2014, 2, 6940.	2.7	59
149	Indirect doping effects from impurities inMoS2/h-BNheterostructures. Physical Review B, 2014, 90, .	1.1	39
150	Sub-nanometer Atomic Layer Deposition for Spintronics in Magnetic Tunnel Junctions Based on Graphene Spin-Filtering Membranes. ACS Nano, 2014, 8, 7890-7895.	7.3	109
151	Behaviour of hydrogen in wide band gap oxides. Journal of Applied Physics, 2014, 115, .	1.1	70
152	Single-step CVD growth of high-density carbon nanotube forests on metallic Ti coatings through catalyst engineering. Carbon, 2014, 67, 680-687.	5 . 4	22
153	Comparison of carbon nanotube forest growth using AlSi, TiSiN, and TiN as conductive catalyst supports. Physica Status Solidi (B): Basic Research, 2014, 251, 2389-2393.	0.7	9
154	Passivation of III–V oxide interfaces for CMOS., 2014,,.		0
154 155	Passivation of III–V oxide interfaces for CMOS., 2014, , . Metal Oxide Induced Charge Transfer Doping and Band Alignment of Graphene Electrodes for Efficient Organic Light Emitting Diodes. Scientific Reports, 2014, 4, 5380.	1.6	0 202
	Metal Oxide Induced Charge Transfer Doping and Band Alignment of Graphene Electrodes for Efficient	1.6	
155	Metal Oxide Induced Charge Transfer Doping and Band Alignment of Graphene Electrodes for Efficient Organic Light Emitting Diodes. Scientific Reports, 2014, 4, 5380. Low temperature growth of ultra-high mass density carbon nanotube forests on conductive		202
155 156	Metal Oxide Induced Charge Transfer Doping and Band Alignment of Graphene Electrodes for Efficient Organic Light Emitting Diodes. Scientific Reports, 2014, 4, 5380. Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports. Applied Physics Letters, 2013, 103, . Defect densities inside the conductive filament of RRAMs. Microelectronic Engineering, 2013, 109,	1.5	202
155 156 157	Metal Oxide Induced Charge Transfer Doping and Band Alignment of Graphene Electrodes for Efficient Organic Light Emitting Diodes. Scientific Reports, 2014, 4, 5380. Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports. Applied Physics Letters, 2013, 103, . Defect densities inside the conductive filament of RRAMs. Microelectronic Engineering, 2013, 109, 208-210. Analysis of metal insulator transitions in VO2 and V2O3 for RRAMs. Microelectronic Engineering,	1.5	202 49 23
155 156 157	Metal Oxide Induced Charge Transfer Doping and Band Alignment of Graphene Electrodes for Efficient Organic Light Emitting Diodes. Scientific Reports, 2014, 4, 5380. Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports. Applied Physics Letters, 2013, 103, . Defect densities inside the conductive filament of RRAMs. Microelectronic Engineering, 2013, 109, 208-210. Analysis of metal insulator transitions in VO2 and V2O3 for RRAMs. Microelectronic Engineering, 2013, 109, 278-281.	1.5 1.1 1.1	202 49 23
155 156 157 158	Metal Oxide Induced Charge Transfer Doping and Band Alignment of Graphene Electrodes for Efficient Organic Light Emitting Diodes. Scientific Reports, 2014, 4, 5380. Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports. Applied Physics Letters, 2013, 103, . Defect densities inside the conductive filament of RRAMs. Microelectronic Engineering, 2013, 109, 208-210. Analysis of metal insulator transitions in VO2 and V2O3 for RRAMs. Microelectronic Engineering, 2013, 109, 278-281. High density carbon nanotube growth using a plasma pretreated catalyst. Carbon, 2013, 53, 339-345.	1.5 1.1 1.1 5.4	202 49 23 11 24

#	Article	IF	Citations
163	Band offsets, Schottky barrier heights, and their effects on electronic devices. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	171
164	First-principles calculations of the electronic structure and defects of Al2O3. Journal of Applied Physics, 2013, 114, .	1.1	28
165	Tantalum-oxide catalysed chemical vapour deposition of single- and multi-walled carbon nanotubes. RSC Advances, 2013, 3, 4086.	1.7	15
166	Chemical trends and passivation of defects at Al2O3:GaAs/InAs/InP/GaSb interfaces. Microelectronic Engineering, 2013, 109, 274-277.	1.1	9
167	Nitrogen passivation at GaAs:Al2O3 interfaces. Applied Physics Letters, 2013, 102, .	1.5	32
168	Nature of the electronic band gap in lanthanide oxides. Physical Review B, 2013, 87, .	1.1	182
169	Measurement of area density of vertically aligned carbon nanotube forests by the weight-gain method. Journal of Applied Physics, 2013, 113, .	1.1	52
170	Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering. Applied Physics Letters, 2013, 102 , .	1.5	60
171	Carbon nanotube growth for through silicon via application. Nanotechnology, 2013, 24, 125603.	1.3	39
172	Doping and compensation in Nb-doped anatase and rutile TiO2. Journal of Applied Physics, 2013, 113, .	1.1	67
173	Defects at Ge:GeO2 and Ge:MeOx interfaces. Microelectronic Engineering, 2013, 109, 244-249.	1.1	7
174	Improved Switching Uniformity and Low-Voltage Operation in \${m TaO}_{x}\$-Based RRAM Using Ge Reactive Layer. IEEE Electron Device Letters, 2013, 34, 1130-1132.	2.2	36
175	A hybrid density functional view of native vacancies in gallium nitride. Journal of Physics Condensed Matter, 2013, 25, 405501.	0.7	22
176	Defect energy levels in La and Hf germanates on Ge. Journal of Applied Physics, 2013, 113, 124101.	1.1	0
177	Electrical conduction of carbon nanotube forests through sub-nanometric films of alumina. Applied Physics Letters, 2013, 102, .	1.5	24
178	Sulfur vacancies in monolayer MoS2 and its electrical contacts. Applied Physics Letters, 2013, 103, .	1.5	327
179	Superhydrophobic Carbon Nanotube Electrode Produces a Nearâ€6ymmetrical Alternating Current from Photosynthetic Proteinâ€Based Photoelectrochemical Cells. Advanced Functional Materials, 2013, 23, 5556-5563.	7.8	31
180	Evaluation of bimetallic catalysts for the growth of carbon nanotube forests. Physica Status Solidi (B): Basic Research, 2013, 250, 2605-2610.	0.7	6

#	Article	IF	CITATIONS
181	Diameter and wall number control of carbon nanotubes by chemical vapor deposition. Journal of Applied Physics, 2013, 114, .	1.1	6
182	Passivation of interfacial defects at III-V oxide interfaces. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	0.6	53
183	Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition. Applied Physics Letters, 2012, 100, .	1.5	78
184	Identifying a suitable passivation route for Ge interfaces. Applied Physics Letters, 2012, 101, 052903.	1.5	20
185	Defect compensation in LaAlO3 perovskite-based high dielectric constant oxides. Journal of Applied Physics, 2012, 112, 034108.	1.1	6
186	Electron spin resonance signature of the oxygen vacancy in HfO ₂ . Applied Physics Letters, 2012, 101, 102904.	1.5	19
187	How to achieve ultra high photoconductive gain for transparent oxide semiconductor image sensors. , 2012, , .		8
188	Plasma stabilisation of metallic nanoparticles on silicon for the growth of carbon nanotubes. Journal of Applied Physics, 2012, 112, 034303.	1.1	13
189	Metal silicide Schottky barriers on Si and Ge show weaker Fermi level pinning. Applied Physics Letters, 2012, 101, 052110.	1.5	23
190	Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nature Materials, 2012, 11, 301-305.	13.3	434
191	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow><mml:mi mathvariant="normal">SrTiO</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub> and <mml display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">LaAlO</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub>.</mml>	l:math	146
192	Physical Review B, 2012, 86, . Graphene-Passivated Nickel as an Oxidation-Resistant Electrode for Spintronics. ACS Nano, 2012, 6, 10930-10934.	7.3	138
193	The Phase of Iron Catalyst Nanoparticles during Carbon Nanotube Growth. Chemistry of Materials, 2012, 24, 4633-4640.	3.2	180
194	Chemical vapor deposition of carbon nanotube forests. Physica Status Solidi (B): Basic Research, 2012, 249, 2315-2322.	0.7	22
195	A framework for assessing amorphous oxide semiconductor thinâ€film transistor passivation. Journal of the Society for Information Display, 2012, 20, 589-595.	0.8	5
196	Catalyst design by cyclic deposition: Nanoparticle formation and growth of highâ€density nanotube forests. Physica Status Solidi (B): Basic Research, 2012, 249, 2428-2431.	0.7	2
197	Investigation of resistive switching in bipolar TaOx-based resistive random access memory. , 2012, , .		1
198	Stretched Contact Printing of One-Dimensional Nanostructures for Hybrid Inorganic–Organic Field Effect Transistors. Journal of Physical Chemistry C, 2012, 116, 7118-7125.	1.5	25

#	Article	IF	CITATIONS
199	Optimized Vertical Carbon Nanotube Forests for Multiplex Surface-Enhanced Raman Scattering Detection. Journal of Physical Chemistry Letters, 2012, 3, 3486-3492.	2.1	24
200	Co-Catalytic Solid-State Reduction Applied to Carbon Nanotube Growth. Journal of Physical Chemistry C, 2012, 116, 1107-1113.	1.5	23
201	Calculation of point defects in rutile TiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> by the screened-exchange hybrid functional. Physical Review B. 2012. 86	1.1	88
202	Bonding and optical contrast in phase change memory materials. Physica Status Solidi (B): Basic Research, 2012, 249, 1867-1873.	0.7	6
203	Applications of Carbon Nanotubes Grown by Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 01AH01.	0.8	25
204	Heterogeneous catalysis model of growth mechanisms of carbon nanotubes, graphene and silicon nanowires. Journal of Materials Chemistry, 2012, 22, 19858.	6.7	53
205	Hybrid functional calculations of the Al impurity in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math> quartz: Hole localization and electron paramagnetic resonance parameters. Physical Review B. 2012, 85	1.1	16
206	Growth of Ultrahigh Density Single-Walled Carbon Nanotube Forests by Improved Catalyst Design. ACS Nano, 2012, 6, 2893-2903.	7.3	184
207	Defect models and electrical storage mechanism in GeSbTe phase change materials. Journal of Non-Crystalline Solids, 2012, 358, 2393-2397.	1.5	18
208	Properties and doping limits of amorphous oxide semiconductors. Journal of Non-Crystalline Solids, 2012, 358, 2437-2442.	1.5	37
209	Adhesive Properties of Gecko-Inspired Mimetic via Micropatterned Carbon Nanotube Forests. Journal of Physical Chemistry C, 2012, 116, 20047-20053.	1.5	46
210	Electronic and magnetic properties of Ti ₂ O ₃ , Cr ₂ O ₃ , and Fe ₂ O ₃ calculated by the screened exchange hybrid density functional. Journal of Physics Condensed Matter, 2012, 24, 325504.	0.7	82
211	Control of Schottky barrier heights by inserting thin dielectric layers. Applied Physics Letters, 2012, 101, .	1.5	13
212	Complementary metal-oxide-semiconductor-compatible and self-aligned catalyst formation for carbon nanotube synthesis and interconnect fabrication. Journal of Applied Physics, 2012, 111, .	1.1	13
213	Electronic structure of epitaxial germanium—Metal germanate interfaces. Journal of Applied Physics, 2012, 112, .	1.1	2
214	Nature of defects and gap states in GeTe model phase change materials. Physical Review B, 2012, 85, .	1.1	35
215	Highly chiral-selective growth of single-walled carbon nanotubes with a simple monometallic Co catalyst. Physical Review B, 2012, 85, .	1.1	68
216	Metalâ€Free Growth of Nanographene on Silicon Oxides for Transparent Conducting Applications. Advanced Functional Materials, 2012, 22, 2123-2128.	7.8	150

#	Article	IF	CITATIONS
217	Advances in understanding of transparent conducting oxides. Thin Solid Films, 2012, 520, 3714-3720.	0.8	53
218	Applications of Carbon Nanotubes Grown by Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 01AH01.	0.8	23
219	Plasma Deposition of Diamond-Like Carbon. Japanese Journal of Applied Physics, 2011, 50, 01AF01.	0.8	43
220	Temperature dependent electron transport in amorphous oxide semiconductor thin film transistors. , 2011, , .		37
221	New High-K Materials for CMOS Applications. , 2011, , 132-176.		16
222	Integration for All Configurations. IEEE Microwave Magazine, 2011, 12, 42-50.	0.7	4
223	Supportâ^'Catalystâ^'Gas Interactions during Carbon Nanotube Growth on Metallic Ta Films. Journal of Physical Chemistry C, 2011, 115, 4359-4369.	1.5	60
224	Dual gate photo-thin film transistor with high photoconductive gain for high reliability, and low noise flat panel transparent imager. , $2011,\ldots$		4
225	Fabrication and bio-functionalization of tetrahedral amorphous carbon thin films for bio sensor applications. Diamond and Related Materials, 2011, 20, 1020-1025.	1.8	23
226	Limits to doping in oxides. Physical Review B, 2011, 83, .	1.1	248
227	Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors. Applied Physics Letters, $2011, 98, \ldots$	1.5	249
228	Defect states at III-V semiconductor oxide interfaces. Applied Physics Letters, 2011, 98, .	1.5	122
229	Electronic Structure of Transparent Conducting Oxides. , 2011, , 27-50.		26
230	Use of plasma treatment to grow carbon nanotube forests on TiN substrate. Journal of Applied Physics, $2011, 109, \ldots$	1.1	37
231	Pâ€16: Lightâ€Bias Induced Instability and Persistent Photoconductivity in Inâ€Znâ€O/Gaâ€Inâ€Znâ€O Thin Film Transistors. Digest of Technical Papers SID International Symposium, 2011, 42, 1154-1157.	0.1	15
232	Calculation of semiconductor band structures and defects by the screened exchange density functional. Physica Status Solidi (B): Basic Research, 2011, 248, 537-546.	0.7	26
233	Catalyst design for the growth of highly packed nanotube forests. Physica Status Solidi (B): Basic Research, 2011, 248, 2528-2531.	0.7	8
234	Bonding and gap states at GaAs-oxide interfaces. Microelectronic Engineering, 2011, 88, 373-376.	1.1	7

#	Article	IF	CITATIONS
235	Shifting Schottky barrier heights with ultra-thin dielectric layers. Microelectronic Engineering, 2011, 88, 1461-1463.	1.1	32
236	On the identification of the oxygen vacancy in HfO2. Microelectronic Engineering, 2011, 88, 1464-1466.	1.1	23
237	Defect gap states on IIIâ€"V semiconductorâ€"oxide interfaces (invited). Microelectronic Engineering, 2011 88 1440-1443 Band structure calculations of CuAlO <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.1</td><td>16</td></mml:math>	1.1	16
238	display="inline"> <mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub> , CuGaO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> , CulnO <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.1</td><td>95</td></mml:math>	1.1	95
239	display="inline"> <mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub> , and CuCrO Energetics of hydrogen in GeO2, Ge, and their interfaces. Applied Physics Letters, 2011, 99, 032902.	1.5	9
240	Atomic mechanism of electric dipole formed at high-K: SiO2 interface. Journal of Applied Physics, 2011 , 109 , .	1.1	79
241	Metal-induced gap states modeling of metal-Ge contacts with and without a silicon nitride ultrathin interfacial layer. Journal of Applied Physics, 2011, 109, .	1.1	45
242	First-principles study of Oxygen deficiency in rutile Titanium Dioxide. Materials Research Society Symposia Proceedings, 2011, 1352, 3.	0.1	2
243	In-situ study of growth of carbon nanotube forests on conductive CoSi2 support. Journal of Applied Physics, 2011, 109, .	1.1	33
244	Plasma Deposition of Diamond-Like Carbon. Japanese Journal of Applied Physics, 2011, 50, 01AF01.	0.8	38
245	Band alignment at metal–semiconductor and metal–oxide interfaces. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 261-269.	0.8	24
246	Carbon nanotubes growth: From entanglement to vertical alignment. Physica Status Solidi (B): Basic Research, 2010, 247, 2656-2659.	0.7	4
247	Analysis of carbon nanotube chiralities obtained from a bimetallic Coâ€Mo catalyst. Physica Status Solidi (B): Basic Research, 2010, 247, 2660-2663.	0.7	2
248	Highâ€density growth of horizontally aligned carbon nanotubes for interconnects. Physica Status Solidi (B): Basic Research, 2010, 247, 2669-2672.	0.7	22
249	The screenedâ€exchange approximation as alternative method for DFT calculations on graphene structures. Physica Status Solidi (B): Basic Research, 2010, 247, 2945-2948.	0.7	8
250	Capacitive nanoelectromechanical switch based on suspended carbon nanotube array. Applied Physics Letters, 2010, 97, .	1.5	32
251	Oxygen vacancy levels and electron transport in Al2O3. Applied Physics Letters, 2010, 96, 032905.	1.5	119
252	Bonding and gap states at GaAs- oxide interfaces. , 2010, , .		0

#	Article	IF	CITATIONS
253	GaAs: Gap state passivation at interfaces and surfaces. , 2010, , .		3
254	Instability in threshold voltage and subthreshold behavior in Hf–In–Zn–O thin film transistors induced by bias-and light-stress. Applied Physics Letters, 2010, 97, .	1.5	108
255	Persistent photoconductivity in Hf–In–Zn–O thin film transistors. Applied Physics Letters, 2010, 97, .	1.5	139
256	Electronic and atomic structure of metal- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>HfO</mml:mtext></mml:mrow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml< td=""><td>>2¹/mml:</td><td>mn>²³/mml:m</td></mml<></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:msub></mml:mrow></mml:math>	>2 ¹ /mml:	mn>²³/mml:m
257	Bonding origin of optical contrast in phase-change memory materials. Physical Review B, 2010, 81, .	1.1	209
258	Observation of excitonic effects in metallic single-walled carbon nanotubes. Physical Review B, 2010, 82, .	1.1	20
259	Growth of vertically-aligned carbon nanotube forests on conductive cobalt disilicide support. Journal of Applied Physics, 2010, 108, .	1.1	53
260	Growth of Ultrahigh Density Vertically Aligned Carbon Nanotube Forests for Interconnects. ACS Nano, 2010, 4, 7431-7436.	7.3	136
261	Screened exchange density functional applied to solids. Physical Review B, 2010, 82, .	1.1	189
262	Intrinsic defects in ZnO calculated by screened exchange and hybrid density functionals. Physical Review B, 2010, 81 , .	1.1	244
263	Photo-Induced Instability of Nanocrystalline Silicon TFTs. Journal of Display Technology, 2010, 6, 589-591.	1.3	9
264	Ultra-high density carbon nanotubes on Al-Cu for advanced vias. , 2010, , .		38
265	Atomic structure, electronic structure, and band offsets at Ge:GeO:GeO2 interfaces. Applied Physics Letters, 2010, 97, .	1.5	44
266	Second-Stage Actuation for Hard Disc Drives Through MEMS Technology. IEEE Transactions on Magnetics, 2010, 46, 782-789.	1.2	3
267	Extended Frenkel pairs and band alignment at metal-oxide interfaces. Physical Review B, 2009, 79, .	1.1	31
268	Passivation of oxygen vacancy states and suppression of Fermi pinning in HfO2 by La addition. Applied Physics Letters, 2009, 94, .	1.5	51
269	Atomic mechanism of flat-band voltage shifts by La2O3 and Al2O3 in gate stacks. Applied Physics Letters, 2009, 95, .	1.5	38
270	Plasma restructuring of catalysts for chemical vapor deposition of carbon nanotubes. Journal of Applied Physics, 2009, 105, 064304.	1.1	22

#	Article	IF	CITATIONS
271	Carbon nanotube based photocathodes for high frequency amplifiers. , 2009, , .		1
272	Confined palladium colloids in mesoporous frameworks for carbon nanotube growth. Journal of Materials Science, 2009, 44, 6563-6570.	1.7	9
273	Stable colloidal Co–Pd nanocatalysts for carbon nanotube growth. Physica Status Solidi (B): Basic Research, 2009, 246, 2436-2439.	0.7	6
274	Electronic structure of oxygen vacancies in La2O3, Lu2O3 and LaLuO3. Microelectronic Engineering, 2009, 86, 1672-1675.	1.1	26
275	Oxygen vacancy levels and interfaces of Al2O3. Microelectronic Engineering, 2009, 86, 1668-1671.	1.1	40
276	Atomic mechanism of flat-band voltage shifts at La2O3, Al2O3 and Nb2O5 capping layers. Microelectronic Engineering, 2009, 86, 1743-1746.	1.1	22
277	Carbon nanotube based cathodes for microwave amplifiers. , 2009, , .		6
278	Acetylene: A Key Growth Precursor for Single-Walled Carbon Nanotube Forests. Journal of Physical Chemistry C, 2009, 113, 17321-17325.	1.5	120
279	Model of interface states at III-V oxide interfaces. Applied Physics Letters, 2009, 94, .	1.5	139
280	Diffusion- and Reaction-Limited Growth of Carbon Nanotube Forests. ACS Nano, 2009, 3, 3560-3566.	7.3	127
281	Oxygen vacancies in high dielectric constant oxides La2O3, Lu2O3, and LaLuO3. Applied Physics Letters, 2009, 95, .	1.5	34
282	Energy levels of oxygen vacancies in BiFeO3 by screened exchange. Applied Physics Letters, 2009, 94, .	1.5	108
283	State of the catalyst during carbon nanotube growth. Diamond and Related Materials, 2009, 18, 940-945.	1.8	80
284	Growth of high-density vertically aligned arrays of carbon nanotubes by plasma-assisted catalyst pretreatment. Applied Physics Letters, 2009, 95, .	1.5	43
285	Fermi level pinning in Si, Ge and GaAs systems - MIGS or defects?. , 2009, , .		9
286	State of Transition Metal Catalysts During Carbon Nanotube Growth. Journal of Physical Chemistry C, 2009, 113, 1648-1656.	1.5	166
287	Use of carbon nanotubes for VLSI interconnects. Diamond and Related Materials, 2009, 18, 957-962.	1.8	54
288	Electronic defects in LaAlO3. Microelectronic Engineering, 2008, 85, 65-69.	1.1	26

#	Article	lF	CITATIONS
289	Comparison of diamondâ€like carbon to diamond for applications. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2233-2244.	0.8	91
290	Disorder and instability processes in amorphous conducting oxides. Physica Status Solidi (B): Basic Research, 2008, 245, 1026-1032.	0.7	82
291	Carbon nanotubes for interconnects in VLSI integrated circuits. Physica Status Solidi (B): Basic Research, 2008, 245, 2303-2307.	0.7	11
292	Growth of carbon nanotubes as horizontal interconnects. Physica Status Solidi (B): Basic Research, 2008, 245, 2308-2310.	0.7	14
293	Work function control at metal high-dielectric-constant gate oxide interfaces. Microelectronic Engineering, 2008, 85, 9-14.	1.1	5
294	Disorder, band offsets and dopability of transparent conducting oxides. Thin Solid Films, 2008, 516, 1419-1425.	0.8	24
295	display="inline"> <mmi:mi>i²</mmi:mi> phase and <mmi:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>iî³</mml:mi><mml:mi><mml:mtext>âî³</mml:mtext><mml:mi>i²</mml:mi><mml:mi><mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/math/MathML"><td>mrtuu><td>nm&onath>me</td></td></mml:math></mml:mi></mml:mi></mmi:math>	mr tuu > <td>nm&onath>me</td>	nm&onath>me
296	display="inline"> <mml.mrow><mml.mri mathvariant="normal">Dis/mml.mri><mml.mri mathvariant="norm Resonant bonding in crystalline phase-change materials. Nature Materials, 2008, 7, 653-658.</mml.mri </mml.mri></mml.mrow>	13.3	959
297	Growth of aligned millimeter-long carbon nanotube by chemical vapor deposition. Diamond and Related Materials, 2008, 17, 1447-1451.	1.8	44
298	Impact of incorporated Al on the TiN/HfO2 interface effective work function. Journal of Applied Physics, 2008, 104 , .	1.1	29
299	Te-induced modulation of the Moâ^•HfO2 interface effective work function. Applied Physics Letters, 2008, 92, .	1.5	13
300	In-situ X-ray Photoelectron Spectroscopy Study of Catalystâ^'Support Interactions and Growth of Carbon Nanotube Forests. Journal of Physical Chemistry C, 2008, 112, 12207-12213.	1.5	240
301	Physics of amorphous conducting oxides. Journal of Non-Crystalline Solids, 2008, 354, 2791-2795.	1.5	33
302	Enhanced Subthreshold Slopes in Large Diameter Single Wall Carbon Nanotube Field Effect Transistors. IEEE Nanotechnology Magazine, 2008, 7, 458-462.	1.1	16
303	Electron field emission from nanostructured cubic boron nitride islands. Applied Physics Letters, 2008, 92, 013115.	1.5	34
304	CMOS Compatibility of Carbon Nanotubes?., 2008, , .		0
305	Maximizing performance for higher K gate dielectrics. Journal of Applied Physics, 2008, 104, 124111.	1.1	116
306	A Slider With an Integrated Microactuator (SLIM) for Second Stage Actuation in Hard Disc Drives. IEEE Transactions on Magnetics, 2008, 44, 3726-3729.	1.2	10

#	Article	IF	CITATIONS
307	p -type Fermi level pinning at a Si:Al2O3 model interface. Applied Physics Letters, 2008, 93, .	1.5	28
308	Growth and characterization of high-density mats of single-walled carbon nanotubes for interconnects. Applied Physics Letters, 2008, 93, 163111.	1.5	55
309	Controlling the Catalyst During Carbon Nanotube Growth. Journal of Nanoscience and Nanotechnology, 2008, 8, 6105-6111.	0.9	12
310	Time resolved in-situ TEM observations of Carbon Nanotube growth., 2008, , 165-166.		1
311	Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties. Journal of Applied Physics, 2007, 102, .	1.1	80
312	Fermi level pinning by defects in HfO2-metal gate stacks. Applied Physics Letters, 2007, 91, .	1.5	144
313	Defect states in the high-dielectric-constant gate oxide HfSiO4. Journal of Applied Physics, 2007, 101, 024101.	1.1	62
314	Control of Schottky Barrier Heights on High- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>K</mml:mi></mml:math> Gate Dielectrics for Future Complementary Metal-Oxide Semiconductor Devices. Physical Review Letters, 2007, 99, 086805.	2.9	51
315	Electronic structure and defects of high dielectric constant gate oxide La2Hf2O7. Applied Physics Letters, 2007, 90, 062901.	1.5	26
316	Growth Kinetics of 0.5 cm Vertically Aligned Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2007, 111, 1907-1910.	1.2	165
317	Importance of Oxygen Vacancies in High K Gate Dielectrics. , 2007, , .		3
318	Three-dimensional carbon nanowall structures. Applied Physics Letters, 2007, 90, 123107.	1.5	92
319	Carbon nanotube cathodes as electron sources for microwave amplifiers. , 2007, , .		9
320	Electronic structures and doping of SnO2, CuAlO2, and CuInO2. Journal of Applied Physics, 2007, 102, 123703.	1.1	47
321	In situ Observations of Catalyst Dynamics during Surface-Bound Carbon Nanotube Nucleation. Nano Letters, 2007, 7, 602-608.	4.5	662
322	Band gap and Schottky barrier heights of multiferroic BiFeO3. Applied Physics Letters, 2007, 90, 132903.	1.5	364
323	Dispersion relations and optical properties of amorphous carbons. Diamond and Related Materials, 2007, 16, 1813-1822.	1.8	35
324	Ink-jet printing of carbon nanotube thin film transistors. Journal of Applied Physics, 2007, 102, .	1.1	189

#	Article	IF	CITATIONS
325	Electronic and atomic structure of Ge2Sb2Te5 phase change memory material. Thin Solid Films, 2007, 515, 7538-7541.	0.8	55
326	Defects and their passivation in high K gate oxides. Microelectronic Engineering, 2007, 84, 663-668.	1.1	28
327	Oxygen vacancies in high-k oxides. Microelectronic Engineering, 2007, 84, 2028-2031.	1.1	82
328	The role of precursor gases on the surface restructuring of catalyst films during carbon nanotube growth. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 1-5.	1.3	76
329	Growth of nanotubes for electronics. Materials Today, 2007, 10, 36-43.	8.3	133
330	Diamond-like carbon for data and beer storage. Materials Today, 2007, 10, 44-53.	8.3	222
331	Electronic transport in ambipolar silicon nanowires. Physica Status Solidi (B): Basic Research, 2007, 244, 4161-4164.	0.7	32
332	Behavior of hydrogen in wide band gap oxides. Journal of Applied Physics, 2007, 102, .	1.1	99
333	DEFECT ENERGY LEVELS IN HIGH-K GATE OXIDES. , 2006, , 175-187.		6
334	Roughness evolution during growth of hydrogenated tetrahedral amorphous carbon. Diamond and Related Materials, 2006, 15, 898-903.	1.8	27
335	Band offsets of high K gate oxides on III-V semiconductors. Journal of Applied Physics, 2006, 100, 014111.	1.1	607
336	Ion transport and electrochemical tuning of Fermi level in single-wall carbon nanotube probed by in situ Raman scattering. Journal of Applied Physics, 2006, 100, 083711.	1.1	13
337	Hydrogenated amorphous carbon film coating of PET bottles for gas diffusion barriers. Diamond and Related Materials, 2006, 15, 921-927.	1.8	93
338	Surface atomic properties of tetrahedral amorphous carbon. Diamond and Related Materials, 2006, 15, 936-938.	1.8	20
339	Phonon linewidths and electron-phonon coupling in graphite and nanotubes. Physical Review B, 2006, 73, .	1.1	335
340	Defect energy levels in HfO <inf>2</inf> ., 2006,,.		0
341	High dielectric constant gate oxides for metal oxide Si transistors. Reports on Progress in Physics, 2006, 69, 327-396.	8.1	1,490
342	Catalytic Chemical Vapor Deposition of Single-Wall Carbon Nanotubes at Low Temperatures. Nano Letters, 2006, 6, 1107-1112.	4.5	297

#	Article	IF	CITATIONS
343	Interfacial atomic structures, energetics and band offsets of Ge:ZrO2 interfaces. Journal of Applied Physics, 2006, 100, 093713.	1.1	14
344	Band structure of functional oxides by screened exchange and the weighted density approximation. Physica Status Solidi (B): Basic Research, 2006, 243, 2054-2070.	0.7	88
345	Defect energy states in high-K gate oxides. Physica Status Solidi (B): Basic Research, 2006, 243, 2071-2080.	0.7	45
346	Shape-selective synthesis of Il–VI semiconductor nanowires. Physica Status Solidi (B): Basic Research, 2006, 243, 3301-3305.	0.7	9
347	Epitaxial growth of carbon caps on Ni for chiral selectivity. Physica Status Solidi (B): Basic Research, 2006, 243, 3494-3499.	0.7	27
348	Control the chirality of carbon nanotubes by epitaxial growth. Chemical Physics Letters, 2006, 421, 469-472.	1.2	173
349	Band offsets of high K gate oxides on high mobility semiconductors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 135, 267-271.	1.7	76
350	Work function control at metal–oxide interfaces in CMOS. Materials Science in Semiconductor Processing, 2006, 9, 964-968.	1.9	5
351	Synthesis and optical properties of silicon nanowires grown by different methods. Applied Physics A: Materials Science and Processing, 2006, 85, 247-253.	1.1	45
352	Band gaps and defect levels in functional oxides. Thin Solid Films, 2006, 496, 1-7.	0.8	218
353	Backplane Requirements for Active Matrix Organic Light Emitting Diode Displays. Materials Research Society Symposia Proceedings, 2006, 910, 1.	0.1	7
354	Defect states in the high-dielectric-constant gate oxide LaAlO3. Applied Physics Letters, 2006, 89, 022907.	1.5	116
355	How to Achieve High Mobility Thin Film Transistors by Direct Deposition of Silicon Using 13.56 MHz RF PECVD?., 2006,,.		1
356	Defect passivation in HfO2 gate oxide by fluorine. Applied Physics Letters, 2006, 89, 142914.	1.5	69
357	Passivation of oxygen vacancy states in HfO2 by nitrogen. Journal of Applied Physics, 2006, 99, 044105.	1.1	137
358	Bonding and interface states of Si: HfO2 and Si: ZrO2 interfaces. Physical Review B, 2006, 73, .	1.1	70
359	Point defects in HfO2 high K gate oxide. Microelectronic Engineering, 2005, 80, 408-411.	1.1	83
360	Interfaces and defects of high-K oxides on silicon. Solid-State Electronics, 2005, 49, 283-293.	0.8	201

#	Article	IF	Citations
361	Surface Diffusion: The Low Activation Energy Path for Nanotube Growth. Physical Review Letters, 2005, 95, 036101.	2.9	362
362	Atomic Structure, Interfaces and Defects of High Dielectric Constant Gate Oxides. , 2005, , 179-214.		2
363	Catalyst patterning methods for surface-bound chemical vapor deposition of carbon nanotubes. Applied Physics A: Materials Science and Processing, 2005, 81, 1559-1567.	1.1	23
364	Kohn Anomalies and Electron-Phonon Coupling in Carbon Nanotubes. AIP Conference Proceedings, 2005, , .	0.3	2
365	Submicron patterning of Co colloid catalyst for growth of vertically aligned carbon nanotubes. Nanotechnology, 2005, 16, 1636-1640.	1.3	27
366	Structure and formation energy of carbon nanotube caps. Physical Review B, 2005, 72, .	1.1	110
367	Fermi level pinning and Hf–Si bonds at HfO2: Polycrystalline silicon gate electrode interfaces. Applied Physics Letters, 2005, 86, 012904.	1.5	38
368	Low-temperature synthesis of ZnSe nanowires and nanosaws by catalyst-assisted molecular-beam epitaxy. Applied Physics Letters, 2005, 86, 153103.	1.5	87
369	Instability measurements in amorphous hydrogenated silicon using capacitance-voltage techniques. Applied Physics Letters, 2005, 86, 202110.	1.5	7
370	The Ultrasmoothness of Diamond-like Carbon Surfaces. Science, 2005, 309, 1545-1548.	6.0	286
371	Point defects in ZrO/sub 2/ high-/spl kappa/ gate oxide. IEEE Transactions on Device and Materials Reliability, 2005, 5, 84-89.	1.5	46
372	Raman spectroscopy of hydrogenated amorphous carbons. Physical Review B, 2005, 72, .	1.1	1,037
373	Protective diamond-like carbon coatings for future optical storage disks. Diamond and Related Materials, 2005, 14, 994-999.	1.8	93
374	Wet catalyst assisted growth of carbon nanofibers on complex three-dimensional substrates. Diamond and Related Materials, 2005, 14, 733-738.	1.8	22
375	Defect energy levels in HfO2 high-dielectric-constant gate oxide. Applied Physics Letters, 2005, 87, 183505.	1.5	459
376	Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth. Journal of Applied Physics, 2005, 98, 034308.	1.1	123
377	The smoothness of tetrahedral amorphous carbon. Diamond and Related Materials, 2005, 14, 913-920.	1.8	37
378	Bonding in hydrogenated diamond-like carbon by Raman spectroscopy. Diamond and Related Materials, 2005, 14, 1098-1102.	1.8	353

#	Article	IF	CITATIONS
379	Ab initio resonant Raman spectra of diamond-like carbons. Diamond and Related Materials, 2005, 14, 1078-1083.	1.8	49
380	Mechanism of sp3 bond formation in the growth of diamond-like carbon. Diamond and Related Materials, 2005, 14, 942-948.	1.8	61
381	Direct Growth of Carbon Nanofibers on Plastic Substrates. AIP Conference Proceedings, 2004, , .	0.3	0
382	Bonding, Energies, and Band Offsets of Siâ^2rO2 and HfO2 Gate Oxide Interfaces. Physical Review Letters, 2004, 92, 057601.	2.9	154
383	Growth of aligned carbon nanofibres over large areas using colloidal catalysts at low temperatures. Chemical Communications, 2004, , 1416.	2.2	28
384	Electrochemical Tuning of Single-Wall Carbon Nanotube Mat and Investigations on Actuator Mechanism. Materials Research Society Symposia Proceedings, 2004, 855, 72.	0.1	0
385	Defect Energy Levels in HfO ₂ , ZrO ₂ , La ₂ O ₃ and SrTiO ₃ . Materials Research Society Symposia Proceedings, 2004, 811, 307.	0.1	5
386	Matchstick Nanotubes: Structure Control and Properties. Materials Research Society Symposia Proceedings, 2004, 858, 164.	0.1	0
387	Kohn Anomalies in Graphite and Nanotubes. Materials Research Society Symposia Proceedings, 2004, 858, 283.	0.1	4
388	Low Temperature Growth of Carbon Nanotubes and Nanofibres. Materials Research Society Symposia Proceedings, 2004, 858, 138.	0.1	0
389	Detection of carbon nitride by resonant Raman spectroscopy. Diamond and Related Materials, 2004, 13, 1558-1560.	1.8	10
390	Self-assembly of novel nanowires by thermolysis of fullerene and transition metal thin films. Nanotechnology, 2004, 15, 601-608.	1.3	7
391	High dielectric constant oxides. EPJ Applied Physics, 2004, 28, 265-291.	0.3	1,350
392	Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2477-2512.	1.6	2,129
393	The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2004, 95, 6387-6391.	1.1	105
394	Atomic structure, band offsets, growth and defects at high-K oxide:Si interfaces. Microelectronic Engineering, 2004, 72, 112-120.	1.1	30
395	Realistic applications of CNTs. Materials Today, 2004, 7, 46-52.	8.3	263
396	Bonding and structure of some high-k oxide:Si interfaces. Physica Status Solidi (B): Basic Research, 2004, 241, 2236-2245.	0.7	27

#	Article	IF	CITATIONS
397	Charge transfer in carbon nanotube actuators investigated usingin situRaman spectroscopy. Journal of Applied Physics, 2004, 95, 2038-2048.	1.1	77
398	Large area deposition of hydrogenated amorphous carbon films for optical storage disks. Diamond and Related Materials, 2004, 13, 1505-1510.	1.8	16
399	Stability and band offsets of nitrogenated high-dielectric-constant gate oxides. Applied Physics Letters, 2004, 84, 106-108.	1.5	120
400	Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology. Diamond and Related Materials, 2004, 13, 1416-1421.	1.8	72
401	Hydrogen content estimation of hydrogenated amorphous carbon by visible Raman spectroscopy. Journal of Applied Physics, 2004, 96, 6348-6352.	1.1	81
402	Electrical conduction in nanostructured carbon and carbon-metal films grown by supersonic cluster beam deposition. European Physical Journal B, 2003, 36, 3-13.	0.6	21
403	Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Physical Review B, 2003, 67, .	1.1	659
404	Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2003, 94, 6005-6012.	1.1	247
405	Flyable media for slider based ultra-high density optical recording. IET Science, Measurement and Technology, 2003, 150, 203-206.	0.7	7
406	Doping and hydrogen in wide gap oxides. Thin Solid Films, 2003, 445, 155-160.	0.8	63
407	Requirements of ultrathin carbon coatings for magnetic storage technology. Tribology International, 2003, 36, 405-415.	3.0	104
408	Surface diffusion of SiH3 radicals and growth mechanism of a-Si:H and microcrystalline Si. Thin Solid Films, 2003, 427, 11-15.	0.8	19
409	Paramagnetic defects in hydrogenated amorphous carbon powders. Journal of Physics Condensed Matter, 2003, 15, 7463-7468.	0.7	8
410	Dynamic Roughening of Tetrahedral Amorphous Carbon. Physical Review Letters, 2003, 91, 226104.	2.9	94
411	Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Applied Physics Letters, 2003, 83, 135-137.	1.5	364
412	Raman spectroscopy of silicon nanowires. Physical Review B, 2003, 68, .	1.1	326
413	Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Applied Physics Letters, 2003, 83, 4661-4663.	1.5	164
414	Improving the properties of diamond-like carbon. Diamond and Related Materials, 2003, 12, 79-84.	1.8	70

#	Article	IF	CITATIONS
415	Structure, bonding, and band offsets of (100)SrTiO3–silicon interfaces. Applied Physics Letters, 2003, 83, 5497-5499.	1.5	46
416	Charge Transfer Dynamics in Single-Wall Carbon Nanotubes Mat: In Situ Raman Spectroscopy. Materials Research Society Symposia Proceedings, 2003, 785, 931.	0.1	0
417	Bonding and Epitaxial Relationships at High-K Oxide:Si interfaces. Materials Research Society Symposia Proceedings, 2003, 786, 551.	0.1	0
418	Physical and electrical properties of low temperature (<100 °C) SiO2 films deposited by electron cyclotron resonance plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 728-739.	0.9	13
419	Binding and surface diffusion of SiH3 radicals and the roughness of hydrogenated amorphous silicon. Applied Physics Letters, 2003, 82, 883-885.	1.5	18
420	Thermodynamic model of nucleation and growth of plasma deposited microcrystalline silicon. Journal of Applied Physics, 2003, 93, 731-735.	1.1	22
421	Energy levels of point defects in SrTiO3 and related oxides. Journal of Applied Physics, 2003, 93, 1054-1059.	1.1	27
422	Behavior of hydrogen in high dielectric constant oxide gate insulators. Applied Physics Letters, 2003, 83, 2025-2027.	1.5	168
423	Calculations of SiH3 Diffusion and Growth Processes on a-Si:H Surfaces. Materials Research Society Symposia Proceedings, 2003, 762, 921.	0.1	2
424	Influence of cluster-assembly parameters on the field emission properties of nanostructured carbon films. Journal of Applied Physics, 2002, 92, 5482-5489.	1.1	32
425	Bonding and mechanical properties of ultrathin diamond-like carbon films. Applied Physics Letters, 2002, 81, 3804-3806.	1.5	85
426	EFFECT OF FOCUSSED VACUUM ARC PLASMA DEPOSITION ON THE PROPERTIES OF TETRAHEDRAL AMORPHOUS CARBON FILMS. International Journal of Modern Physics B, 2002, 16, 830-835.	1.0	1
427	Electronic Structure and Band Offsets of High-Dielectric-Constant Gate Oxides. MRS Bulletin, 2002, 27, 217-221.	1.7	103
428	Field emission from chemical vapor deposition diamond surface with graphitic patches. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 238.	1.6	14
429	Control of field emission current of individual sites by a local resistor. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 19.	1.6	5
430	Atomic Structure, Band Offsets and Hydrogen in High K oxide:Silicon interfaces. Materials Research Society Symposia Proceedings, 2002, 745, 751/T5.5.1.	0.1	2
431	Atomic Structure, Band Offsets and Hydrogen in High K oxide:Silicon interfaces. Materials Research Society Symposia Proceedings, 2002, 747, 1.	0.1	4
432	The Use of C-V Techniques To Investigate Instability Mechanisms in M-I-S Structures. Materials Research Society Symposia Proceedings, 2002, 716, 1141.	0.1	0

#	Article	IF	Citations
433	Temperature selective growth of carbon nanotubes by chemical vapor deposition. Journal of Applied Physics, 2002, 92, 3299-3303.	1.1	178
434	Band offsets and Schottky barrier heights of high dielectric constant oxides. Journal of Applied Physics, 2002, 92, 4712-4721.	1.1	361
435	Negatively curved spongy carbon. Applied Physics Letters, 2002, 81, 3359-3361.	1.5	76
436	Highest optical gap tetrahedral amorphous carbon. Diamond and Related Materials, 2002, 11, 1086-1090.	1.8	37
437	Properties and prospects for non-crystalline carbons. Journal of Non-Crystalline Solids, 2002, 299-302, 798-804.	1.5	32
438	Binding and surface diffusion of SiH3 radicals on a growing a-Si:H surface. Journal of Non-Crystalline Solids, 2002, 299-302, 48-52.	1.5	5
439	Band offsets of high dielectric constant gate oxides on silicon. Journal of Non-Crystalline Solids, 2002, 303, 94-100.	1.5	139
440	Elastic constants and structural properties of nanometre-thick diamond-like carbon films. Diamond and Related Materials, 2002, 11, 1062-1067.	1.8	19
441	ls stress necessary to stabilise sp3 bonding in diamond-like carbon?. Diamond and Related Materials, 2002, 11, 994-999.	1.8	117
442	Surface Diffusion of SiH3 Radicals and Growth Mechanism of a-Si:H and $\hat{l}\frac{1}{4}$ c-Si. Materials Research Society Symposia Proceedings, 2002, 715, 1531.	0.1	0
443	Acoustic phonon propagation and elastic properties of nano-sized carbon films investigated by Brillouin light scattering. Thin Solid Films, 2002, 420-421, 300-305.	0.8	5
444	Low-Temperature Self-Assembly of Novel Encapsulated Compound Nanowires. Advanced Materials, 2002, 14, 1821-1824.	11.1	15
445	Diamond-like amorphous carbon. Materials Science and Engineering Reports, 2002, 37, 129-281.	14.8	5,220
446	Band structures and band offsets of high K dielectrics on Si. Applied Surface Science, 2002, 190, 2-10.	3.1	101
447	Electronic structure of p-type conducting transparent oxides. Thin Solid Films, 2002, 411, 96-100.	0.8	111
448	Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2001, 90, 5308-5317.	1,1	1,034
449	Effect of graphitic inclusions on the optical gap of tetrahedral amorphous carbon films. Journal of Applied Physics, 2001, 89, 3706-3710.	1,1	50
450	Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B, 2001, 64, .	1.1	2,435

#	Article	IF	CITATIONS
451	Chemical sputtering of ta-C: Implications for the deposition of carbon nitride. Journal of Applied Physics, 2001, 89, 5754-5759.	1.1	28
452	Electronic structure studies of undoped and nitrogen-doped tetrahedral amorphous carbon using high-resolution electron energy-loss spectroscopy. Journal of Applied Physics, 2001, 89, 3783-3792.	1.1	78
453	Carbon, Amorphous. , 2001, , 900-902.		1
454	High Quality Growth of SiO2 at 80° C by Electron Cyclotron Resonance (ECR) for Thin Film Transistors. Materials Research Society Symposia Proceedings, 2001, 685, 1.	0.1	1
455	Thermodynamic Model of the Role of Hydrogen Dilution in Plasma Deposition of Microcrystalline Silicon. Materials Research Society Symposia Proceedings, 2001, 664, 151.	0.1	1
456	Elastic Constants of Nanometer Thick Diamond-like Carbon Films. Materials Research Society Symposia Proceedings, 2001, 675, 1.	0.1	0
457	Field Emission Site Densities of Nanostructured Carbon. Materials Research Society Symposia Proceedings, 2001, 675, 1.	0.1	0
458	Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films, 2001, 383, 81-88.	0.8	201
459	Defects in Diamond-Like Carbon. Physica Status Solidi A, 2001, 186, 177-185.	1.7	19
460	Schottky barrier heights and band offsets of high-K dielectrics. Integrated Ferroelectrics, 2001, 32, 251-258.	0.3	6
461	X-Ray Reflectivity of Ultra-Thin Diamond-Like Carbon Films. Materials Research Society Symposia Proceedings, 2001, 675, 1.	0.1	3
462	Properties of amorphous carbon–silicon alloys deposited by a high plasma density source. Journal of Applied Physics, 2001, 90, 5002-5012.	1.1	97
463	Field emission site densities of nanostructured carbon films deposited by a cathodic arc. Journal of Applied Physics, 2001, 89, 5707-5711.	1.1	33
464	Raman and infrared modes of hydrogenated amorphous carbon nitride. Journal of Applied Physics, 2001, 89, 5425-5430.	1.1	190
465	Improved electron emission from carbon film using a resistive layer. Journal of Applied Physics, 2001, 89, 3490-3493.	1.1	15
466	Field emission from nanostructured carbon. AIP Conference Proceedings, 2000, , .	0.3	0
467	FIELD EMISSION FROM CARBON FILMS GROWN BY THE CATHODIC ARC PROCESS. International Journal of Modern Physics B, 2000, 14, 301-307.	1.0	7
468	Growth Processes of Hydrogenated Amorphous Silicon. Materials Research Society Symposia Proceedings, 2000, 609, 141.	0.1	12

#	Article	IF	CITATIONS
469	Hydrogenated Amorphous Silicon and Silicon Nitride Deposited at less than 100° C by ECR-PECVD for Thin Film Transistors. Materials Research Society Symposia Proceedings, 2000, 609, 2821.	0.1	O
470	Very low field electron emission from Hot Filament CVD grown microcrystalline diamond. Materials Research Society Symposia Proceedings, 2000, 621, 531.	0.1	7
471	Electron emission from amorphous and nanocluster carbon films grown by the cathodic arc process. Applied Surface Science, 2000, 159-160, 561-566.	3.1	3
472	Density,sp3fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy. Physical Review B, 2000, 62, 11089-11103.	1.1	506
473	Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 2000, 61, 14095-14107.	1.1	12,419
474	The role of dc current limitations in Fowler–Nordheim electron emission from carbon films. Applied Physics Letters, 2000, 77, 1831.	1.5	33
475	Effect of sp2-phase nanostructure on field emission from amorphous carbons. Applied Physics Letters, 2000, 76, 2627-2629.	1.5	175
476	Influence of nitrogen and temperature on the deposition of tetrahedrally bonded amorphous carbon. Journal of Applied Physics, 2000, 88, 1149-1157.	1.1	123
477	Field Emission from Carbon Systems. Materials Research Society Symposia Proceedings, 2000, 621, 111.	0.1	9
478	Growth mechanism of hydrogenated amorphous silicon. Journal of Non-Crystalline Solids, 2000, 266-269, 79-83.	1.5	22
479	Relative importance of the Si–Si bond and Si–H bond for the stability of amorphous silicon thin film transistors. Journal of Applied Physics, 2000, 87, 144-154.	1.1	136
480	Band offsets of wide-band-gap oxides and implications for future electronic devices. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 1785.	1.6	1,843
481	Low threshold field emission from nanoclustered carbon grown by cathodic arc. Journal of Applied Physics, 2000, 87, 3126-3131.	1.1	75
482	Density, sp 3 content and internal layering of DLC films by X-ray reflectivity and electron energy loss spectroscopy. Diamond and Related Materials, 2000, 9, 771-776.	1.8	94
483	Preparation of tetrahedral amorphous carbon films by filtered cathodic vacuum arc deposition. Diamond and Related Materials, 2000, 9, 663-667.	1.8	154
484	Photoconductivity of nitrogen-modified hydrogenated tetrahedral amorphous carbon. Journal of Applied Physics, 2000, 87, 789-794.	1.1	33
485	Deposition mechanism of hydrogenated amorphous silicon. Journal of Applied Physics, 2000, 87, 2608-2617.	1.1	112
486	Low field electron emission from nanoclustered carbon grown by cathodic arc. Diamond and Related Materials, 2000, 9, 1213-1217.	1.8	2

#	Article	IF	Citations
487	Elastic constants of ultrathin diamond-like carbon films. Diamond and Related Materials, 2000, 9, 825-830.	1.8	45
488	Tetrahedrally bonded amorphous carbon for field-emission displays. Journal of the Society for Information Display, 2000, 8, 57.	0.8	0
489	Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy. Applied Physics Letters, 2000, 76, 1419-1421.	1.5	250
490	Direct quantitative detection of the sp3 bonding in diamond-like carbon films using ultraviolet and visible Raman spectroscopy. Journal of Applied Physics, 2000, 87, 7283-7289.	1.1	172
491	Effect of work function and surface microstructure on field emission of tetrahedral amorphous carbon. Journal of Applied Physics, 2000, 88, 6002-6010.	1.1	111
492	Electron field emission from carbon. , 1999, , .		0
493	Growth mechanism of hydrogenated amorphous silicon studied by in situ scanning tunneling microscopy. Journal of Applied Physics, 1999, 85, 8032-8039.	1.1	58
494	Elastic constants of tetrahedral amorphous carbon films by surface Brillouin scattering. Applied Physics Letters, 1999, 75, 1893-1895.	1.5	172
495	Field emission from tetrahedral amorphous carbon as a function of surface treatment and substrate material. Applied Physics Letters, 1999, 74, 1594-1596.	1.5	99
496	Surface characterisation of strontium-bismuth tantalate (SBT) thin films. Integrated Ferroelectrics, 1999, 23, 113-126.	0.3	3
497	Deposition, defect and weak bond formation processes in a-Si:H. Thin Solid Films, 1999, 337, 32-36.	0.8	20
498	High rate deposition of ta-C:H using an electron cyclotron wave resonance plasma source. Thin Solid Films, 1999, 337, 71-73.	0.8	49
499	Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon. Journal of Applied Physics, 1999, 85, 7191-7197.	1.1	390
500	The Preparation, Characterization and Tribological Properties of TA-C:H Deposited Using an Electron Cyclotron Wave Resonance Plasma Beam Source. Physica Status Solidi A, 1999, 172, 79-90.	1.7	49
501	Nitrogen Incorporation into Tetrahedral Hydrogenated Amorphous Carbon. Physica Status Solidi A, 1999, 174, 25-37.	1.7	68
502	Electron field emission from cluster-assembled carbon thin films. Europhysics Letters, 1999, 46, 245-250.	0.7	51
503	Mechanisms of electron field emission from diamond, diamond-like carbon, and nanostructured carbon. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 659.	1.6	197
504	Ultraviolet Raman characterisation of diamond-like carbon films. Diamond and Related Materials, 1999, 8, 541-544.	1.8	43

#	Article	IF	Citations
505	Electronic properties of tetrahedral amorphous carbon investigated by scanning tunneling microscopy. Journal of Applied Physics, 1999, 85, 1609-1615.	1.1	77
506	Effect of surface treatment and back contact material on field emission from tetrahedral amorphous carbon. Diamond and Related Materials, 1999, 8, 809-813.	1.8	22
507	Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate. Applied Physics Letters, 1999, 74, 1168-1170.	1.5	355
508	Band Alignments of High-K Dielectrics on Si and Pt. Materials Research Society Symposia Proceedings, 1999, 592, 107.	0.1	5
509	Low Threshold Field Emission From Nanocluster Carbon Films. Materials Research Society Symposia Proceedings, 1999, 593, 207.	0.1	0
510	Density and sp3 Content in Diamond-Like Carbon Films by X-ray Reflectivity and Electron Energy Loss Spectroscopy. Materials Research Society Symposia Proceedings, 1999, 593, 293.	0.1	9
511	Raman Signature of Bonding and Disorder in Carbons. Materials Research Society Symposia Proceedings, 1999, 593, 299.	0.1	18
512	Elastic Constants of Diamond-Like Carbon Films by Surface Brillouin Scattering. Materials Research Society Symposia Proceedings, 1999, 593, 311.	0.1	6
513	Amorphous Carbon-Silicon Alloys Prepared by a High Plasma Density Source. Materials Research Society Symposia Proceedings, 1999, 593, 523.	0.1	1
514	Elastic Constants of Diamond Like Carbon Films by Surface Brillouin Scattering. Materials Research Society Symposia Proceedings, 1999, 594, 289.	0.1	2
515	Analysis of amorphous carbon thin films by spectroscopic ellipsometry. Journal of Non-Crystalline Solids, 1998, 227-230, 617-621.	1.5	18
516	Local hydrogen reactions of H2* in a-Si:H. Journal of Non-Crystalline Solids, 1998, 227-230, 138-142.	1.5	7
517	Nature of disorder and localization in amorphous carbon. Journal of Non-Crystalline Solids, 1998, 227-230, 602-606.	1.5	126
518	Band diagram of diamond and diamond-like carbon surfaces. Diamond and Related Materials, 1998, 7, 620-625.	1.8	92
519	Field emission from tetrahedral amorphous carbon. Diamond and Related Materials, 1998, 7, 656-659.	1.8	54
520	Photoconductivity and electronic transport in tetrahedral amorphous carbon and hydrogenated tetrahedral amorphous carbon. Journal of Applied Physics, 1998, 84, 5575-5582.	1.1	35
521	Deposition of tetrahedral hydrogenated amorphous carbon using a novel electron cyclotron wave resonance reactor. Applied Physics Letters, 1998, 72, 1314-1316.	1.5	79
522	Ab initiocalculation of electron affinities of diamond surfaces. Physical Review B, 1998, 57, 9241-9245.	1.1	151

#	Article	IF	Citations
523	Scanning Tunnelling Microscopy Study of the Growth Mechanism for Hydrogenated Amorphous Silicon Produced by Plasma Enhanced Chemical Vapour Deposition. Materials Research Society Symposia Proceedings, 1998, 507, 571.	0.1	0
524	Deposition, Defect and Weak Bond Formation Processes in a-Si:H. Materials Research Society Symposia Proceedings, 1998, 507, 897.	0.1	3
525	Mechanism of Field Emission in Diamond and Diamond-Like Carbon. Materials Research Society Symposia Proceedings, 1998, 508, 185.	0.1	3
526	Mechanism of Field Emission in Diamond and Diamondlike Carbon. Materials Research Society Symposia Proceedings, 1998, 509, 83.	0.1	14
527	Schottky Barrier Heights of Tantalum Oxide, Barium Strontium Titanate, Lead Zirconate Titanate and Strontium Bismuth Tantalate. Materials Research Society Symposia Proceedings, 1998, 541, 443.	0.1	6
528	Deposition and Properties of Diamond-Like Carbons. Materials Research Society Symposia Proceedings, 1998, 555, 291.	0.1	7
529	Electronic Structure and Surface Properties of SrBi ₂ Ta ₂ O ₉ and Related Oxides. Materials Research Society Symposia Proceedings, 1997, 493, 249.	0.1	4
530	High Rate Deposition of Ta-C:H Using an Electron Cyclotron Wave Resonance Plasma Source. Materials Research Society Symposia Proceedings, 1997, 498, 147.	0.1	1
531	Photoconductivity of Diamond-Like Carbon. Materials Research Society Symposia Proceedings, 1997, 498, 103.	0.1	1
532	Theory of Electron Field Emission From Diamond And Diamond-Ldxe Carbon. Materials Research Society Symposia Proceedings, 1997, 498, 197.	0.1	21
533	Field Emission From Tetrahedrally Bonded Amorphous Carbon as a Function of Surface Treatment and Contact Material. Materials Research Society Symposia Proceedings, 1997, 498, 209.	0.1	4
534	Doping Mechanism in Tetrahedral Amorphous Carbon. Materials Research Society Symposia Proceedings, 1997, 498, 31.	0.1	4
535	Band Model for Electron Emission from Diamond and Diamond-Like Carbon. Materials Research Society Symposia Proceedings, 1997, 471, 217.	0.1	14
536	Deposition mechanism of diamond-like carbon and cubic boron nitride. Radiation Effects and Defects in Solids, 1997, 142, 63-90.	0.4	10
537	Direct observation of sp3 bonding in tetrahedral amorphous carbon using ultraviolet Raman spectroscopy. Applied Physics Letters, 1997, 70, 1980-1982.	1.5	235
538	Nitrogen modification of hydrogenated amorphous carbon films. Journal of Applied Physics, 1997, 81, 2626-2634.	1.1	333
539	Electronic structure of diamond-like carbon. Diamond and Related Materials, 1997, 6, 212-218.	1.8	100
540	Field emission from tetrahedral amorphous carbon. Applied Physics Letters, 1997, 71, 1430-1432.	1.5	312

#	Article	IF	Citations
541	Photoluminescence and Raman spectroscopy in hydrogenated carbon films. IEEE Transactions on Magnetics, 1997, 33, 3148-3150.	1.2	180
542	Influence of ion energy and substrate temperature on the optical and electronic properties of tetrahedral amorphous carbon (ta-C) films. Journal of Applied Physics, 1997, 81, 139-145.	1.1	344
543	Effects of deposition temperature on the properties of hydrogenated tetrahedral amorphous carbon. Journal of Applied Physics, 1997, 82, 4566-4576.	1.1	146
544	Gap states in diamond-like amorphous carbon. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76, 335-350.	0.6	124
545	Electron affinity of carbon systems. Diamond and Related Materials, 1996, 5, 797-801.	1.8	82
546	Hardness, elastic modulus, and structure of very hard carbon films produced by cathodicâ€erc deposition with substrate pulse biasing. Applied Physics Letters, 1996, 68, 779-781.	1.5	255
547	Defectâ€dipole alignment and tetragonal strain in ferroelectrics. Journal of Applied Physics, 1996, 79, 9250-9257.	1.1	181
548	Recombination and photoluminescence mechanism in hydrogenated amorphous carbon. Physical Review B, 1996, 53, 16302-16305.	1.1	302
549	Amorphous carbon. Current Opinion in Solid State and Materials Science, 1996, 1, 557-561.	5.6	52
550	Deposition mechanism of cubic boron nitride. Diamond and Related Materials, 1996, 5, 519-524.	1.8	87
551	Pb displacements in Pb(Zr,Ti)O3perovskites. Physical Review B, 1996, 53, 3080-3087.	1.1	51
552	Preparation and properties of highly tetrahedral hydrogenated amorphous carbon. Physical Review B, 1996, 53, 1594-1608.	1.1	345
553	Electronic structure of the ferroelectric layered perovskite SrBi2Ta2O9. Applied Physics Letters, 1996, 69, 1704-1706.	1.5	144
554	Hydrogen Density of States and Defects Densities in a-Si:H. Materials Research Society Symposia Proceedings, 1996, 420, 515.	0.1	2
555	Properties of Tetrahedral Amorphous Carbon Deposited by A Filtered Cathodic Vacuum ARC. Materials Research Society Symposia Proceedings, 1996, 423, 299.	0.1	5
556	Electron Field Emission From Diamond-Like Carbon. Materials Research Society Symposia Proceedings, 1996, 423, 777.	0.1	6
557	Properties of Diamond-Like Carbon for Thin Film Microcathodes for Field Emission Displays. Materials Research Society Symposia Proceedings, 1996, 424, 381.	0.1	5
558	Electronic Structure of the Layered Ferroelectric Perovskite SrBi2Ta2O9. Materials Research Society Symposia Proceedings, 1996, 433, 279.	0.1	0

#	Article	IF	CITATIONS
559	Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating. Journal of Applied Physics, 1996, 79, 1416-1422.	1.1	195
560	Structure and luminescence properties of an amorphous hydrogenated carbon. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1996, 74, 369-386.	0.6	89
561	Tetrahedrally bonded amorphous carbon (ta-C) thin film transistors. Electronics Letters, 1996, 32, 498.	0.5	70
562	Mechanism of biasâ€enhanced nucleation of diamond on Si. Applied Physics Letters, 1995, 66, 3287-3289.	1.5	126
563	Band states and shallow hole traps in Pb(Zr,Ti)O3ferroelectrics. Journal of Applied Physics, 1995, 77, 3975-3980.	1.1	96
564	Nitrogen doping of tetrahedral amorphous carbon. Diamond and Related Materials, 1995, 4, 441-444.	1.8	233
565	Comparison of neutron-scattering data for tetrahedral amorphous carbon with structural models. Physical Review B, 1995, 51, 12303-12312.	1.1	108
566	Structural models of a-C and a-C:H. Diamond and Related Materials, 1995, 4, 297-301.	1.8	201
567	Nucleation during deposition of hydrocarbon ions as a function of substrate temperature. Diamond and Related Materials, 1995, 4, 333-336.	1.8	31
568	Diamond-like carbon. Pure and Applied Chemistry, 1994, 66, 1789-1796.	0.9	216
569	Highly tetrahedral, diamondâ€like amorphous hydrogenated carbon prepared from a plasma beam source. Applied Physics Letters, 1994, 64, 2797-2799.	1.5	169
570	The deposition mechanism of diamond-like a-C and a-C: H. Diamond and Related Materials, 1994, 3, 361-368.	1.8	373
571	Energy Levels of Point Defects in Perovskite Oxides. Materials Research Society Symposia Proceedings, 1994, 361, 123.	0.1	10
572	Deposition mechanisms for promoting sp3 bonding in diamond-like carbon. Diamond and Related Materials, 1993, 2, 984-989.	1.8	487
573	Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy. Physical Review B, 1993, 48, 4777-4782.	1.1	842
574	Shallow Pb3+hole traps in lead zirconate titanate ferroelectrics. Applied Physics Letters, 1993, 63, 1519-1521.	1.5	100
575	Ï€-bonded clusters in amorphous carbon materials. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1992, 66, 199-209.	0.6	78
576	Mechanical properties and coordinations of amorphous carbons. Physical Review Letters, 1992, 68, 220-223.	2.9	243

#	Article	IF	Citations
577	Properties of diamond-like carbon. Surface and Coatings Technology, 1992, 50, 185-203.	2.2	714
578	Hard amorphous (diamond-like) carbons. Progress in Solid State Chemistry, 1991, 21, 199-333.	3.9	746
579	Limits to adherence of oxide scales. Materials Science and Technology, 1990, 6, 81-92.	0.8	190
580	Creep and oxygen diffusion in magnetite. Acta Metallurgica Et Materialia, 1990, 38, 2567-2572.	1.9	34
581	Clustering and gap states in amorphous carbon. Philosophical Magazine Letters, 1988, 57, 143-148.	0.5	65
582	Criteria for formation of single layer, duplex, and breakaway scales on steels. Materials Science and Technology, 1988, 4, 1064-1071.	0.8	78
583	The growth mechanism of thin oxide films on Si. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1987, 55, 673-684.	0.6	17
584	Electronic and atomic structure of amorphous carbon. Physical Review B, 1987, 35, 2946-2957.	1.1	1,274
585	Amorphous carbon. Advances in Physics, 1986, 35, 317-374.	35.9	1,374
586	Electronic structure of amorphous III-V and II-VI compound semiconductors and their defects. Physical Review B, 1986, 34, 8684-8695.	1.1	103
587	Defect mechanisms in a-SiO ₂ . The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1985, 52, 371-377.	0.6	27
587	Defect mechanisms in a-SiO ₂ . The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1985, 52, 371-377. Unified theory of bonding at defects and dopants in amorphous semiconductors. AIP Conference Proceedings, 1984, , .	0.6	27
	Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1985, 52, 371-377. Unified theory of bonding at defects and dopants in amorphous semiconductors. AIP Conference		
588	Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1985, 52, 371-377. Unified theory of bonding at defects and dopants in amorphous semiconductors. AIP Conference Proceedings, 1984, , . The electronic structure of defects in amorphous GaAs. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1984, 50,	0.3	1
588 589	Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1985, 52, 371-377. Unified theory of bonding at defects and dopants in amorphous semiconductors. AIP Conference Proceedings, 1984, , . The electronic structure of defects in amorphous GaAs. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1984, 50, L9-L12.	0.3	1 11
588 589 590	Unified theory of bonding at defects and dopants in amorphous semiconductors. AIP Conference Proceedings, 1984, , . The electronic structure of defects in amorphous GaAs. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1984, 50, L9-L12. Defect levels of SnO2. Physical Review B, 1984, 30, 3520-3522. Electronic structure and core exciton of hexagonal boron nitride. Physical Review B, 1984, 29,	0.3 0.6 1.1	1 11 74
588 589 590	Unified theory of bonding at defects and dopants in amorphous semiconductors. AIP Conference Proceedings, 1984, , . The electronic structure of defects in amorphous GaAs. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1984, 50, L9-L12. Defect levels of SnO2. Physical Review B, 1984, 30, 3520-3522. Electronic structure and core exciton of hexagonal boron nitride. Physical Review B, 1984, 29, 2131-2137. Doping and gap states in amorphous silicon. Journal of Physics C: Solid State Physics, 1984, 17,	0.3 0.6 1.1	1 11 74 106

#	Article	IF	CITATIONS
595	The detection of chemical order in non-crystalline alloys from their valence s bands. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1983, 47, 621-626.	0.6	21
596	Bonding in liquid and amorphous binary semiconductor alloys. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1981, 44, 239-263.	0.6	18
597	The electronic structure of model lead glasses. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1981, 43, 497-516.	0.6	17
598	The electronic properties of silicon nitride. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1981, 44, 215-237.	0.6	89
599	Ionicity dependence of defect reactions and negative- <i>U</i> states in glasses, I. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1980, 41, 643-660.	0.6	5
600	lonicity dependence of defect reactions and negative- $\langle i \rangle U \langle i \rangle$ states in glasses, II. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1980, 41, 661-676.	0.6	15
601	Ionicity and coordination in glasses. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1980, 41, 177-190.	0.6	7
602	Electronic structure of SnS2, SnSe2, Cdl2and Pbl2. Journal of Physics C: Solid State Physics, 1979, 12, 4753-4766.	1.5	121
603	Electronic structure of SnO2, GeO2, PbO2, TeO2and MgF2. Journal of Physics C: Solid State Physics, 1979, 12, 4767-4776.	1.5	237
604	A new model for the structure of amorphous selenium. Philosophical Magazine and Journal, 1976, 34, 13-31.	1.8	51
605	Amorphous carbon for use in thin film transistors. , 0, , .		1
606	Electronic structure and band offsets in high K oxides. , 0, , .		3
607	Electronic behavior of high K oxides. , 0, , .		0
608	Electronic Structure and Band Offsetsof Lanthanide Oxides. , 0, , 313-329.		11