
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7456464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon, 1995, 33, 1641-1653.	10.3	1,815
2	Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2015, 14, 48-55.	27.5	1,780
3	Cobalt Particle Size Effects in the Fischerâ^'Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts. Journal of the American Chemical Society, 2006, 128, 3956-3964.	13.7	1,318
4	Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO ₂ Hydrogenation Processes. Chemical Reviews, 2017, 117, 9804-9838.	47.7	1,058
5	An Amine-Functionalized MIL-53 Metalâ~Organic Framework with Large Separation Power for CO ₂ and CH ₄ . Journal of the American Chemical Society, 2009, 131, 6326-6327.	13.7	926
6	Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 2017, 46, 3134-3184.	38.1	861
7	Metal Organic Framework Catalysis: <i>Quo vadis</i> ?. ACS Catalysis, 2014, 4, 361-378.	11.2	859
8	Heterogeneous catalytic decomposition of nitrous oxide. Applied Catalysis B: Environmental, 1996, 9, 25-64.	20.2	834
9	Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO ₂ capture?. Chemical Society Reviews, 2015, 44, 2421-2454.	38.1	732
10	Catalyst deactivation: is it predictable?. Applied Catalysis A: General, 2001, 212, 3-16.	4.3	668
11	Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 1994, 3, 173-189.	20.2	662
12	Ethane/Ethene Separation Turned on Its Head: Selective Ethane Adsorption on the Metalâ^'Organic Framework ZIF-7 through a Gate-Opening Mechanism. Journal of the American Chemical Society, 2010, 132, 17704-17706.	13.7	650
13	Direct Demonstration of Enhanced Diffusion in Mesoporous ZSM-5 Zeolite Obtained via Controlled Desilication. Journal of the American Chemical Society, 2007, 129, 355-360.	13.7	616
14	Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 2009, 261, 75-87.	6.2	600
15	Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels. Chemical Engineering Science, 2005, 60, 5895-5916.	3.8	540
16	Formation and control of N2O in nitric acid production. Applied Catalysis B: Environmental, 2003, 44, 117-151.	20.2	509
17	Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties. Chemistry of Materials, 2011, 23, 2565-2572.	6.7	479
18	Preparation of monolithic catalysts. Catalysis Reviews - Science and Engineering, 2001, 43, 345-380.	12.9	474

#	Article	IF	CITATIONS
19	Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 2016, 499, 65-79.	8.2	435
20	Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Microporous and Mesoporous Materials, 2013, 166, 67-78.	4.4	434
21	Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm, 2014, 16, 4919-4926.	2.6	413
22	Zeolite based films, membranes and membrane reactors: Progress and prospects. Microporous and Mesoporous Materials, 2006, 90, 198-220.	4.4	410
23	Adsorption-Driven Heat Pumps: The Potential of Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 12205-12250.	47.7	410
24	Electrochemical Synthesis of Some Archetypical Zn ²⁺ , Cu ²⁺ , and Al ³⁺ Metal Organic Frameworks. Crystal Growth and Design, 2012, 12, 3489-3498.	3.0	406
25	Alumina-Supported Manganese Oxide Catalysts. Journal of Catalysis, 1994, 150, 94-104.	6.2	403
26	Inertial and interfacial effects on pressure drop of Taylor flow in capillaries. AICHE Journal, 2005, 51, 2428-2440.	3.6	365
27	Co@NH ₂ -MIL-125(Ti): cobaloxime-derived metal–organic framework-based composite for light-driven H ₂ production. Energy and Environmental Science, 2015, 8, 364-375.	30.8	362
28	The development of nitrogen functionality in model chars during gasification in CO2 and O2. Carbon, 1999, 37, 1143-1150.	10.3	352
29	Metal–organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. Journal of Materials Chemistry, 2012, 22, 10102.	6.7	352
30	Electronic Metal–Support Interactions in Singleâ€Atom Catalysts. Angewandte Chemie - International Edition, 2014, 53, 3418-3421.	13.8	347
31	Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chemical Communications, 2011, 47, 9522.	4.1	340
32	Practical Approach to Zeolitic Membranes and Coatings: State of the Art, Opportunities, Barriers, and Future Perspectives. Chemistry of Materials, 2012, 24, 2829-2844.	6.7	332
33	Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nature Communications, 2015, 6, 6451.	12.8	325
34	Agglomeration in fluidized beds at high temperatures: Mechanisms, detection and prevention. Progress in Energy and Combustion Science, 2008, 34, 633-666.	31.2	314
35	Building MOF bottles around phosphotungstic acid ships: One-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts. Journal of Catalysis, 2010, 269, 229-241.	6.2	311
36	Water and Metal–Organic Frameworks: From Interaction toward Utilization. Chemical Reviews, 2020, 120, 8303-8377.	47.7	303

#	Article	IF	CITATIONS
37	Permeation characteristics of a metal-supported silicalite-1 zeolite membrane. Journal of Membrane Science, 1996, 117, 57-78.	8.2	299
38	Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous and Mesoporous Materials, 2008, 113, 132-138.	4.4	298
39	Complexity behind CO ₂ Capture on NH ₂ -MIL-53(Al). Langmuir, 2011, 27, 3970-3976.	3.5	274
40	Understanding the Anomalous Alkane Selectivity of ZIFâ€7 in the Separation of Light Alkane/Alkene Mixtures. Chemistry - A European Journal, 2011, 17, 8832-8840.	3.3	274
41	Sulfation of metal–organic frameworks: Opportunities for acid catalysis and proton conductivity. Journal of Catalysis, 2011, 281, 177-187.	6.2	269
42	Temperature dependence of one-component permeation through a silicalite-1 membrane. AICHE Journal, 1997, 43, 2203-2214.	3.6	267
43	Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structureâ€Performance Relationships in CO ₂ /CH ₄ Separation Over NH ₂ â€MILâ€53(AI)@PI. Advanced Functional Materials, 2014, 24, 249-256.	14.9	262
44	Design of Hydrophilic Metal Organic Framework Water Adsorbents for Heat Reallocation. Advanced Materials, 2015, 27, 4775-4780.	21.0	253
45	Metalâ€Organic Framework Membranes—High Potential, Bright Future?. Angewandte Chemie - International Edition, 2010, 49, 1530-1532.	13.8	252
46	Metal organic frameworks as precursors for the manufacture of advanced catalytic materials. Materials Chemistry Frontiers, 2017, 1, 1709-1745.	5.9	252
47	Isoreticular MOFs as Efficient Photocatalysts with Tunable Band Gap: An Operando FTIR Study of the Photoinduced Oxidation of Propylene. ChemSusChem, 2008, 1, 981-983.	6.8	246
48	Separation and permeation characteristics of a DD3R zeolite membrane. Journal of Membrane Science, 2008, 316, 35-45.	8.2	244
49	Multi-scale crystal engineering of metal organic frameworks. Coordination Chemistry Reviews, 2016, 307, 147-187.	18.8	239
50	Kinetic Analysis of the Decomposition of Nitrous Oxide over ZSM-5 Catalysts. Journal of Catalysis, 1997, 167, 256-265.	6.2	237
51	Mass transfer characteristics of three-phase monolith reactors. Chemical Engineering Science, 2001, 56, 6015-6023.	3.8	237
52	Enhancing optical absorption of metal–organic frameworks for improved visible light photocatalysis. Chemical Communications, 2013, 49, 10575-10577.	4.1	237
53	Metal Organic Framework Crystals in Mixedâ€Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance. Advanced Functional Materials, 2016, 26, 3154-3163.	14.9	225
54	Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nature Chemistry, 2018, 10, 804-812.	13.6	221

#	Article	IF	CITATIONS
55	Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 1992, 1, 297-316.	20.2	218
56	InÂsitu investigation of the thermal decomposition of Co–Al hydrotalcite in different atmospheres. Journal of Materials Chemistry, 2001, 11, 821-830.	6.7	218
57	Towards a unified theory of reactions of carbon with oxygen-containing molecules. Carbon, 1995, 33, 1155-1165.	10.3	216
58	The generalized Maxwell–Stefan model for diffusion in zeolites:. Chemical Engineering Science, 2000, 55, 2923-2930.	3.8	216
59	Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes. Journal of Catalysis, 2018, 357, 20-28.	6.2	208
60	Physicochemical Characterization of Isomorphously Substituted FeZSM-5 during Activation. Journal of Catalysis, 2002, 207, 113-126.	6.2	197
61	Electronic origins of photocatalytic activity in d0 metal organic frameworks. Scientific Reports, 2016, 6, 23676.	3.3	196
62	Mechanism of formation of polychlorinated dibenzo-p-dioxins and dibenzofurans in the catalyzed combustion of carbon. Environmental Science & amp; Technology, 1994, 28, 312-321.	10.0	194
63	The six-flow reactor technology A review on fast catalyst screening and kinetic studies. Catalysis Today, 2000, 60, 93-109.	4.4	194
64	Hierarchical H-ZSM-5-supported cobalt for the direct synthesis of gasoline-range hydrocarbons from syngas: Advantages, limitations, and mechanistic insight. Journal of Catalysis, 2013, 305, 179-190.	6.2	192
65	Modeling permeation of binary mixtures through zeolite membranes. AICHE Journal, 1999, 45, 497-511.	3.6	188
66	Kinetic Control of Metal–Organic Framework Crystallization Investigated by Timeâ€Resolved Inâ€Situ Xâ€Ray Scattering. Angewandte Chemie - International Edition, 2011, 50, 9624-9628.	13.8	182
67	Synergy of FexCe1â^'xO2 mixed oxides for N2O decomposition. Journal of Catalysis, 2006, 239, 340-346.	6.2	177
68	Tuning the catalytic performance of metal–organic frameworks in fine chemistry by active site engineering. Journal of Materials Chemistry, 2012, 22, 10313.	6.7	176
69	Elucidating the Nature of Fe Species during Pyrolysis of the Fe-BTC MOF into Highly Active and Stable Fischer–Tropsch Catalysts. ACS Catalysis, 2016, 6, 3236-3247.	11.2	176
70	Steam-activated FeMFI zeolites. Evolution of iron species and activity in direct N2O decomposition. Journal of Catalysis, 2003, 214, 33-45.	6.2	167
71	New non-traditional multiphase catalytic reactors based on monolithic structures. Catalysis Today, 2001, 66, 133-144.	4.4	166
72	Structural and chemical disorder of cryptomelane promoted by alkali doping: Influence on catalytic properties. Journal of Catalysis, 2012, 293, 165-174.	6.2	165

#	Article	IF	CITATIONS
73	TEOM:Â A Unique Technique for Measuring Adsorption Properties. Light Alkanes in Silicalite-1. Industrial & Engineering Chemistry Research, 1998, 37, 1934-1942.	3.7	164
74	Adsorption of Linear and Branched Alkanes in the Zeolite Silicalite-1. Journal of the American Chemical Society, 1998, 120, 5599-5600.	13.7	163
75	Zeolitic coatings and their potential use in catalysis. Microporous and Mesoporous Materials, 1998, 21, 213-226.	4.4	162
76	Azineâ€Linked Covalent Organic Framework (COF)â€Based Mixedâ€Matrix Membranes for CO ₂ /CH ₄ Separation. Chemistry - A European Journal, 2016, 22, 14467-14470.	3.3	161
77	Three-phase hydrogenation of ?-glucose over a carbon supported ruthenium catalyst—mass transfer and kinetics. Applied Catalysis A: General, 2003, 251, 1-17.	4.3	160
78	Structured Packings for Multiphase Catalytic Reactors. Industrial & Engineering Chemistry Research, 2008, 47, 3720-3751.	3.7	160
79	NO-Assisted N2O Decomposition over Fe-Based Catalysts: Effects of Gas-Phase Composition and Catalyst Constitution. Journal of Catalysis, 2002, 208, 211-223.	6.2	156
80	Monolithic catalysts as efficient three-phase reactors. Chemical Engineering Science, 2001, 56, 823-829.	3.8	155
81	Effect of Operating Conditions and Membrane Quality on the Separation Performance of Composite Silicalite-1 Membranes. Industrial & Engineering Chemistry Research, 1998, 37, 4071-4083.	3.7	152
82	Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: a review. Catalysis Science and Technology, 2014, 4, 893-907.	4.1	148
83	Highly dispersed platinum in metal organic framework NH2-MIL-101(Al) containing phosphotungstic acid – Characterization and catalytic performance. Journal of Catalysis, 2012, 289, 42-52.	6.2	147
84	Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. Journal of Membrane Science, 2016, 515, 45-53.	8.2	145
85	NH ₂ -MIL-53(Al): A High-Contrast Reversible Solid-State Nonlinear Optical Switch. Journal of the American Chemical Society, 2012, 134, 8314-8317.	13.7	144
86	Alumina-Supported Manganese Oxide Catalysts. Journal of Catalysis, 1994, 150, 105-116.	6.2	143
87	High flux high-silica SSZ-13 membrane for CO ₂ separation. Journal of Materials Chemistry A, 2014, 2, 13083-13092.	10.3	142
88	Towards acid MOFs – catalytic performance of sulfonic acid functionalized architectures. Catalysis Science and Technology, 2013, 3, 2311.	4.1	141
89	A new surface oxygen complex on carbon: toward a unified mechanism for carbon gasification reactions. Industrial & amp; Engineering Chemistry Research, 1993, 32, 2835-2840.	3.7	137
90	Adsorptive characterization of porous solids: Error analysis guides the way. Microporous and Mesoporous Materials, 2014, 200, 199-215.	4.4	134

#	Article	IF	CITATIONS
91	Fischer–Tropsch synthesis with in situ H2O removal – Directions of membrane development. Microporous and Mesoporous Materials, 2008, 115, 123-136.	4.4	133
92	Soot oxidation catalyzed by a Cu/K/Mo/Cl catalyst: evaluation of the chemistry and performance of the catalyst. Applied Catalysis B: Environmental, 1995, 6, 339-352.	20.2	131
93	Active site structure sensitivity in N2O conversion over FeMFI zeolites. Journal of Catalysis, 2003, 218, 234-238.	6.2	131
94	Highly Selective Chemical Sensing in a Luminescent Nanoporous Magnet. Advanced Materials, 2012, 24, 5625-5629.	21.0	131
95	Water vapour separation from permanent gases by a zeolite-4A membrane. Journal of Membrane Science, 2005, 253, 57-66.	8.2	130
96	Manufacture of highly loaded silica-supported cobalt Fischer–Tropsch catalysts from a metal organic framework. Nature Communications, 2017, 8, 1680.	12.8	128
97	Hydrodynamic aspects of the monolith loop reactor. Chemical Engineering Science, 2001, 56, 805-812.	3.8	127
98	Eurokin. Chemical Reaction Kinetics in Practice. Cattech, 2001, 5, 36-60.	2.2	127
99	The role of the active phase of Raney-type Ni catalysts in the selective hydrogenation of ?-glucose to ?-sorbitol. Applied Catalysis A: General, 2003, 253, 437-452.	4.3	126
100	MOFs meet monoliths: Hierarchical structuring metal organic framework catalysts. Applied Catalysis A: General, 2011, 391, 261-267.	4.3	126
101	Mechanism of the potassium catalysed gasification of carbon in CO2. Fuel, 1984, 63, 1043-1047.	6.4	125
102	Carbon supported Ru catalysts as promising alternative for Raney-type Ni in the selective hydrogenation of d-glucose. Catalysis Today, 2003, 79-80, 35-41.	4.4	125
103	Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: Influence of structural and operational parameters on the CO2/CH4 separation performance. Microporous and Mesoporous Materials, 2014, 192, 35-42.	4.4	123
104	Metal–Organic Frameworks in Adsorption-Driven Heat Pumps: The Potential of Alcohols as Working Fluids. Langmuir, 2015, 31, 12783-12796.	3.5	123
105	Insights into the Activity and Deactivation of the Methanol-to-Olefins Process over Different Small-Pore Zeolites As Studied with Operando UV–vis Spectroscopy. ACS Catalysis, 2017, 7, 4033-4046.	11.2	122
106	Methodological and operational aspects of permeation measurements on silicalite-1 membranes. Journal of Membrane Science, 1998, 144, 87-104.	8.2	121
107	Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis. Chemical Engineering Journal, 2019, 360, 75-88.	12.7	121
108	Experimental evidence of negative linear compressibility in the MIL-53 metal–organic framework family. CrystEngComm, 2015, 17, 276-280.	2.6	119

#	Article	IF	CITATIONS
109	Photoswitchable metal organic frameworks: turn on the lights and close the windows. CrystEngComm, 2016, 18, 4006-4012.	2.6	118
110	Role of Adsorption in the Permeation of CH4and CO2through a Silicalite-1 Membrane. Industrial & Engineering Chemistry Research, 2006, 45, 767-776.	3.7	117
111	Structuring catalyst and reactor – an inviting avenue to process intensification. Catalysis Science and Technology, 2015, 5, 807-817.	4.1	117
112	Nanosheets of Nonlayered Aluminum Metal–Organic Frameworks through a Surfactantâ€Assisted Method. Advanced Materials, 2018, 30, e1707234.	21.0	117
113	Shape Selectivity in Adsorption on the All-Silica DD3R. Langmuir, 2000, 16, 3322-3329.	3.5	116
114	Visualizing the Crystal Structure and Locating the Catalytic Activity of Micro―and Mesoporous ZSMâ€5 Zeolite Crystals by Using In Situ Optical and Fluorescence Microscopy. Chemistry - A European Journal, 2008, 14, 1718-1725.	3.3	116
115	Adsorption and Separation of Light Gases on an Aminoâ€Functionalized Metal–Organic Framework: An Adsorption and Inâ€Situ XRD Study. ChemSusChem, 2012, 5, 740-750.	6.8	115
116	Breaking the Fischer–Tropsch synthesis selectivity: direct conversion of syngas to gasoline over hierarchical Co/H-ZSM-5 catalysts. Catalysis Science and Technology, 2013, 3, 572-575.	4.1	114
117	Adsorptive Separation of Light Olefin/Paraffin Mixtures. Chemical Engineering Research and Design, 2006, 84, 350-354.	5.6	113
118	Mechanistic Insight into the Synthesis of Higher Alcohols from Syngas: The Role of K Promotion on MoS ₂ Catalysts. ACS Catalysis, 2013, 3, 1634-1637.	11.2	113
119	Stability of Oriented Silicalite-1 Films in View of Zeolite Membrane Preparation. Zeolites, 1997, 19, 13-20.	0.5	112
120	Weakly bound capping agents on gold nanoparticles in catalysis: Surface poison?. Journal of Catalysis, 2010, 271, 104-114.	6.2	111
121	A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production. Chemical Engineering Journal, 2003, 96, 223-235.	12.7	110
122	Selective Gas and Vapor Sorption and Magnetic Sensing by an Isoreticular Mixed-Metal–Organic Framework. Journal of the American Chemical Society, 2012, 134, 15301-15304.	13.7	109
123	Utilizing full-exchange capacity of zeolites by alkaline leaching: Preparation of Fe-ZSM5 and application in N2O decomposition. Journal of Catalysis, 2006, 238, 250-259.	6.2	108
124	Fischer–Tropsch reaction–diffusion in a cobalt catalyst particle: aspects of activity and selectivity for a variable chain growth probability. Catalysis Science and Technology, 2012, 2, 1221.	4.1	108
125	Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis. Journal of Catalysis, 2018, 362, 106-117.	6.2	108
126	Superior performance of ex-framework FeZSM-5 in direct N2O decomposition in tail-gases from nitric acid plants. Chemical Communications, 2001, , 693-694.	4.1	107

#	Article	IF	CITATIONS
127	Fascinating chemistry or frustrating unpredictability: observations in crystal engineering of metal–organic frameworks. CrystEngComm, 2013, 15, 9249.	2.6	105
128	Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO ₂ Electrochemical Reduction. ACS Applied Materials & Interfaces, 2018, 10, 14751-14758.	8.0	105
129	Ex-framework FeZSM-5 for control of N2O in tail-gases. Catalysis Today, 2002, 76, 55-74.	4.4	104
130	Heterogeneous metathesis of unsaturated fatty acid esters. Journal of the Chemical Society Chemical Communications, 1977, , 198.	2.0	102
131	Permeation and separation behaviour of a silicalite-1 membrane. Catalysis Today, 1995, 25, 213-218.	4.4	102
132	High temperature permeation and separation characteristics of an all-silica DDR zeolite membrane. Microporous and Mesoporous Materials, 2010, 132, 137-147.	4.4	102
133	Optimization of zeolite Beta by steaming and acid leaching for the acylation of anisole with octanoic acid: a structure–activity relation. Journal of Catalysis, 2003, 218, 239-248.	6.2	101
134	Fischer–Tropsch synthesis using monolithic catalysts. Catalysis Today, 2005, 105, 350-356.	4.4	100
135	Dynamic methods for catalytic kinetics. Applied Catalysis A: General, 2008, 342, 3-28.	4.3	99
136	CO2 gasification of carbon catalysed by alkali metals. Fuel, 1984, 63, 1036-1042.	6.4	98
137	Catalytic oxidation of model soot by metal chlorides. Applied Catalysis B: Environmental, 1997, 12, 33-47.	20.2	98
138	The formation of carbon surface oxygen complexes by oxygen and ozone. The effect of transition metal oxides. Carbon, 1998, 36, 1269-1276.	10.3	98
139	Identification of Adsorption Sites in Cu-BTC by Experimentation and Molecular Simulation. Langmuir, 2009, 25, 1725-1731.	3.5	98
140	Unraveling the Optoelectronic and Photochemical Behavior of Zn ₄ O-Based Metal Organic Frameworks. Journal of Physical Chemistry C, 2011, 115, 12487-12493.	3.1	98
141	Interplay of Metal Node and Amine Functionality in NH ₂ -MIL-53: Modulating Breathing Behavior through Intra-framework Interactions. Langmuir, 2012, 28, 12916-12922.	3.5	98
142	Facile manufacture of porous organic framework membranes for precombustion CO ₂ capture. Science Advances, 2018, 4, eaau1698.	10.3	98
143	NO Adsorption on Ex-Framework [Fe,X]MFI Catalysts: Novel IR Bands and Evaluation of Assignments. Catalysis Letters, 2002, 80, 129-138.	2.6	97
144	Shouldn't catalysts shape up?. Catalysis Today, 2006, 111, 111-118.	4.4	97

#	Article	IF	CITATIONS
145	Efficient production of hydrogen from formic acid using a Covalent Triazine Framework supported molecular catalyst. ChemSusChem, 2015, 8, 809-812.	6.8	97
146	Highly active SO2-resistant ex-framework FeMFI catalysts for direct N2O decomposition. Applied Catalysis B: Environmental, 2002, 35, 227-234.	20.2	96
147	Transition Metal Oxide Catalyzed Carbon Black Oxidation: A Study with18O2. Journal of Catalysis, 1998, 179, 258-266.	6.2	95
148	High performance mixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer. Journal of Membrane Science, 2018, 550, 198-207.	8.2	95
149	Monolithic catalysts — non-uniform active phase distribution by impregnation. Applied Catalysis A: General, 2001, 213, 179-187.	4.3	94
150	Selective Coke Combustion by Oxygen Pulsing During Mo/ZSMâ€5â€Catalyzed Methane Dehydroaromatization. Angewandte Chemie - International Edition, 2016, 55, 15086-15090.	13.8	94
151	Accelerated synthesis of all-silica DD3R and its performance in the separation of propylene/propane mixtures. Microporous and Mesoporous Materials, 2008, 115, 585-593.	4.4	93
152	Toward bifunctional catalysts for the direct conversion of syngas to gasoline range hydrocarbons: H-ZSM-5 coated Co versus H-ZSM-5 supported Co. Applied Catalysis A: General, 2013, 456, 11-22.	4.3	93
153	NO and N2O decomposition over coal char at fluidized-bed combustion conditions. Combustion and Flame, 1994, 99, 499-507.	5.2	91
154	Modified activated carbons for the selective catalytic reduction of NO with NH3. Carbon, 1993, 31, 213-222.	10.3	90
155	Structural Effects in Visibleâ€Lightâ€Responsive Metal–Organic Frameworks Incorporating <i>ortho</i> â€Fluoroazobenzenes. Chemistry - A European Journal, 2016, 22, 746-752.	3.3	90
156	Gas–liquid mass transfer of aqueous Taylor flow in monoliths. Catalysis Today, 2001, 69, 51-55.	4.4	89
157	Shape and Transition State Selective Hydrogenations Using Egg-Shell Pt-MIL-101(Cr) Catalyst. ACS Catalysis, 2013, 3, 2617-2626.	11.2	89
158	Structural promotion and stabilizing effect of Mg in the catalytic decomposition of nitrous oxide over calcined hydrotalcite-like compounds. Applied Catalysis B: Environmental, 1999, 23, 59-72.	20.2	88
159	The oxamate route, a versatile post-functionalization for metal incorporation in MIL-101(Cr): Catalytic applications of Cu, Pd, and Au. Journal of Catalysis, 2013, 307, 295-304.	6.2	86
160	A "Smart―Hollandite DeNO _{<i>x</i>} Catalyst: Selfâ€Protection against Alkali Poisoning. Angewandte Chemie - International Edition, 2013, 52, 660-664.	13.8	85
161	Maximizing Ag Utilization in High-Rate CO ₂ Electrochemical Reduction with a Coordination Polymer-Mediated Gas Diffusion Electrode. ACS Energy Letters, 2019, 4, 2024-2031.	17.4	85
162	Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation. Journal of Membrane Science, 2007, 299, 63-72.	8.2	84

#	Article	IF	CITATIONS
163	Organic Linker Defines the Excitedâ€State Decay of Photocatalytic MILâ€125(Ti)â€Type Materials. ChemSusChem, 2016, 9, 388-395.	6.8	84
164	Propane/propylene separation with Li-exchanged zeolite 13X. Chemical Engineering Journal, 2010, 160, 207-214.	12.7	83
165	Stabilized gold on cerium-modified cryptomelane: Highly active in low-temperature CO oxidation. Journal of Catalysis, 2014, 309, 58-65.	6.2	83
166	Metal–Organic Framework Mediated Cobalt/Nitrogenâ€Doped Carbon Hybrids as Efficient and Chemoselective Catalysts for the Hydrogenation of Nitroarenes. ChemCatChem, 2017, 9, 1854-1862.	3.7	83
167	Self-Diffusion Studies in CuBTC by PFG NMR and MD Simulations. Journal of Physical Chemistry C, 2010, 114, 10527-10534.	3.1	82
168	Binary permeation through a silicalite-1 membrane. AICHE Journal, 1999, 45, 976-985.	3.6	81
169	Influence of the support layer on the flux limitation in pervaporation. Journal of Membrane Science, 2003, 223, 141-156.	8.2	81
170	CARBON-BASED MONOLITHIC STRUCTURES. Catalysis Reviews - Science and Engineering, 2001, 43, 291-314.	12.9	79
171	Understanding Adsorption of Highly Polar Vapors on Mesoporous MIL-100(Cr) and MIL-101(Cr): Experiments and Molecular Simulations. Journal of Physical Chemistry C, 2013, 117, 7613-7622.	3.1	79
172	Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption. Microporous and Mesoporous Materials, 2011, 140, 108-113.	4.4	78
173	Metal organic framework synthesis in the presence of surfactants: towards hierarchical MOFs?. CrystEngComm, 2015, 17, 1693-1700.	2.6	78
174	Understanding metal–organic frameworks for photocatalytic solar fuel production. CrystEngComm, 2017, 19, 4118-4125.	2.6	78
175	Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO ₂ Capture. Chemistry of Materials, 2017, 29, 10326-10338.	6.7	78
176	Selective catalytic reduction of NO with NH3 over carbon supported copper catalysts Catalysis Today, 1990, 7, 157-165.	4.4	76
177	Pt/Al ₂ O ₃ Catalyzed 1,3â€Propanediol Formation from Glycerol using Tungsten Additives. ChemCatChem, 2013, 5, 497-505.	3.7	76
178	BEA coating of structured supports—performance in acylation. Applied Catalysis A: General, 2003, 243, 237-250.	4.3	75
179	Kinetics of the potassium carbonate-catalysed CO2 gasification of activated carbon. Fuel, 1983, 62, 221-225.	6.4	74
180	Raman spectra of chromium oxide species in CrO3/Al2O3 catalysts. Journal of Molecular Catalysis, 1990, 60, 83-98.	1.2	74

#	Article	IF	CITATIONS
181	Kinetics of the selective catalytic reduction of nitrogen oxide (NO) with ammonia over manganese oxide (Mn2O3)-tungsten oxide (WO3)/.gammaalumina. Industrial & Engineering Chemistry Research, 1993, 32, 445-452.	3.7	74
182	Permeation of weakly adsorbing components through a silicalite-1 membrane. Chemical Engineering Science, 1999, 54, 1081-1092.	3.8	74
183	Comparative study of Pt-based catalysts on different supports in the low-temperature de-NOx-SCR with propene. Applied Catalysis B: Environmental, 2001, 30, 399-408.	20.2	74
184	Application of a sodalite membrane reactor in esterification—Coupling reaction and separation. Catalysis Today, 2010, 156, 132-139.	4.4	74
185	Progress in Developing a Structureâ€Activity Relationship for the Direct Aromatization of Methane. ChemCatChem, 2019, 11, 39-52.	3.7	74
186	Highly Water-Permeable Metal–Organic Framework MOF-303 Membranes for Desalination. Journal of the American Chemical Society, 2021, 143, 20055-20058.	13.7	74
187	Alternatives to Noble Metal Catalysts for Automotive Exhaust Purification. Catalysis Today, 1993, 16, 273-287.	4.4	72
188	Transport and separation properties of a silicalite-1 membrane—I. Operating conditions. Chemical Engineering Science, 1999, 54, 245-258.	3.8	72
189	Shape selectivity in the adsorption of propane/propene on the all-silica DD3R. Chemical Communications, 1999, , 2453-2454.	4.1	72
190	Adsorption of light alkanes on silicalite-1: Reconciliation of experimental data and molecular simulations. Physical Chemistry Chemical Physics, 2000, 2, 1989-1995.	2.8	72
191	Scaling-up Multiphase Monolith Reactors:Â Linking Residence Time Distribution and Feed Maldistribution. Industrial & Engineering Chemistry Research, 2005, 44, 4898-4913.	3.7	72
192	Investigating the Case of Titanium(IV) Carboxyphenolate Photoactive Coordination Polymers. Inorganic Chemistry, 2016, 55, 7192-7199.	4.0	72
193	Temperature- and occupancy-dependent diffusion of n-butane through a silicalite-1 membrane. Microporous Materials, 1994, 3, 227-234.	1.6	71
194	Analysis of mass and heat transfer in transient experiments over heterogeneous catalysts. Chemical Engineering Science, 1995, 50, 3573-3580.	3.8	71
195	Equilibrium adsorption of linear and branched C6 alkanes on silicalite-1 studied by the tapered element oscillating microbalance. Physical Chemistry Chemical Physics, 2001, 3, 1755-1761.	2.8	71
196	Monolithic catalysts as more efficient three-phase reactors. Catalysis Today, 2001, 66, 157-165.	4.4	71
197	Application of hydroxy sodalite films as novel water selective membranes. Journal of Membrane Science, 2009, 326, 153-160.	8.2	71
198	Suppression of the Aromatic Cycle in Methanolâ€toâ€Olefins Reaction over ZSMâ€5 by Postâ€Synthetic Modification Using Calcium. ChemCatChem, 2016, 8, 3057-3063.	3.7	71

#	Article	IF	CITATIONS
199	PBI mixed matrix hollow fiber membrane: Influence of ZIF-8 filler over H2/CO2 separation performance at high temperature and pressure. Separation and Purification Technology, 2020, 237, 116347.	7.9	71
200	CO2 gasification of activated carbon catalyzed by earth alkaline elements. AICHE Journal, 1986, 32, 691-695.	3.6	70
201	Production of ultra pure water by desalination of seawater using a hydroxy sodalite membrane. Journal of Membrane Science, 2010, 356, 52-57.	8.2	70
202	SBA-15 based catalysts in catalytic N2O decomposition in a model tail-gas from nitric acid plants. Applied Catalysis B: Environmental, 2004, 53, 265-274.	20.2	69
203	Dehydration performance of a hydrophobic DD3R zeolite membrane. Journal of Membrane Science, 2008, 321, 344-349.	8.2	69
204	Adsorption and Diffusion of Water, Methanol, and Ethanol in All-Silica DD3R: Experiments and Simulation. Journal of Physical Chemistry C, 2009, 113, 14290-14301.	3.1	69
205	A pulse chromatographic study of the adsorption properties of the amino-MIL-53 (Al) metal–organic framework. Physical Chemistry Chemical Physics, 2010, 12, 9413.	2.8	69
206	Reactant-Selective Hydrogenation over Composite Silicalite-1-Coated Pt/TiO2Particles. Industrial & Engineering Chemistry Research, 2004, 43, 1211-1215.	3.7	68
207	New V ^{IV} -Based Metal–Organic Framework Having Framework Flexibility and High CO ₂ Adsorption Capacity. Inorganic Chemistry, 2013, 52, 113-120.	4.0	68
208	Enhancing the catalytic performance of Pt/ZnO in the selective hydrogenation of cinnamaldehyde by Cr addition to the support. Journal of Catalysis, 2008, 258, 52-60.	6.2	67
209	Zeolite coated structures for the acylation of aromatics. Microporous and Mesoporous Materials, 2001, 48, 279-284.	4.4	66
210	Palladium and platinum catalysts supported on carbon nanofiber coated monoliths for low-temperature combustion of BTX. Applied Catalysis B: Environmental, 2009, 89, 411-419.	20.2	66
211	General aspects of catalyst testing. Catalysis Today, 1991, 11, 1-12.	4.4	65
212	Measurement and modeling of the transient adsorption, desorption and diffusion processes in microporous materials. Chemical Engineering Science, 1999, 54, 4423-4436.	3.8	65
213	Catalyst performance testing: bed dilution revisited. Chemical Engineering Science, 2002, 57, 4921-4932.	3.8	65
214	Trends in Fischer–Tropsch Reactor Technology—Opportunities for Structured Reactors. Topics in Catalysis, 2003, 26, 29-39.	2.8	65
215	Shaping Covalent Triazine Frameworks for the Hydrogenation of Carbon Dioxide to Formic Acid. ChemCatChem, 2016, 8, 2217-2221.	3.7	65
216	On the dynamic nature of Mo sites for methane dehydroaromatization. Chemical Science, 2018, 9, 4801-4807.	7.4	65

#	Article	IF	CITATIONS
217	Towards Liquid Fuels from Biosyngas: Effect of Zeolite Structure in Hierarchicalâ€Zeoliteâ€Supported Cobalt Catalysts. ChemSusChem, 2013, 6, 1646-1650.	6.8	64
218	Revisiting the Incorporation of Ti(IV) in UiO-type Metal–Organic Frameworks: Metal Exchange versus Grafting and Their Implications on Photocatalysis. Chemistry of Materials, 2017, 29, 8963-8967.	6.7	64
219	Mathematical treatment of transient kinetic data: Combination of parameter estimation with solving the related partial differential equations. Applied Catalysis A: General, 1997, 151, 27-57.	4.3	63
220	Towards efficient polyoxometalate encapsulation in MIL-100(Cr): influence of synthesis conditions. New Journal of Chemistry, 2012, 36, 977.	2.8	63
221	Mixed-matrix membranes containing an azine-linked covalent organic framework: Influence of the polymeric matrix on post-combustion CO2-capture. Journal of Membrane Science, 2018, 549, 377-384.	8.2	63
222	Kinetics of the metathesis of propene over dirhenium heptaoxide/.gammaaluminum oxide. Industrial & Engineering Chemistry Product Research and Development, 1981, 20, 457-466.	0.5	62
223	Propylene/propane mixture adsorption on faujasite sorbents. Adsorption, 2008, 14, 309-321.	3.0	62
224	Tuning selectivity of Pt/CaCO3 in glycerol hydrogenolysis — A Design of Experiments approach. Catalysis Communications, 2011, 13, 1-5.	3.3	62
225	Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UVâ€ ⁴ vis Spectroscopy. ACS Catalysis, 2018, 8, 2060-2070.	11.2	62
226	Nitric oxide reduction and carbon monoxide oxidation over carbon-supported copper-chromium catalysts. Applied Catalysis B: Environmental, 1993, 2, 257-275.	20.2	61
227	Transport and separation properties of a silicalite-1 membrane—II. Variable separation factor. Chemical Engineering Science, 1999, 54, 259-269.	3.8	61
228	Preparation of carbon-coated monolithic supports. Carbon, 2002, 40, 1891-1902.	10.3	61
229	Live encapsulation of a Keggin polyanion in NH2-MIL-101(Al) observed by in situ time resolved X-ray scattering. Chemical Communications, 2011, 47, 8578.	4.1	61
230	High compressibility of a flexible metal–organic framework. RSC Advances, 2012, 2, 5051.	3.6	61
231	Title is missing!. Catalysis Letters, 1999, 60, 133-138.	2.6	60
232	NO-Assisted N2O Decomposition over ex-Framework FeZSM-5: Mechanistic Aspects. Catalysis Letters, 2001, 77, 7-13.	2.6	60
233	Effect of oxygen functional groups on synthetic carbons on liquid phase oxidation of cyclohexanone. Carbon, 2002, 40, 1267-1278.	10.3	60
234	Is a monolithic loop reactor a viable option for Fischer–Tropsch synthesis?. Chemical Engineering Science, 2003, 58, 583-591.	3.8	60

#	Article	IF	CITATIONS
235	ZIF-67 as silver-bullet in adsorptive propane/propylene separation. Chemical Engineering Journal, 2019, 360, 10-14.	12.7	60
236	Structured catalysts and reactors – Perspectives for demanding applications. Catalysis Today, 2022, 383, 5-14.	4.4	60
237	Diffusion of linear and branched C6 alkanes in silicalite-1 studied by the tapered element oscillating microbalance. Microporous and Mesoporous Materials, 2001, 47, 157-171.	4.4	59
238	Monolithic Catalysts as an Alternative to Slurry Systems:Â Hydrogenation of Edible Oil. Industrial & Engineering Chemistry Research, 2004, 43, 2337-2344.	3.7	59
239	Methane hydrates: Nucleation in microporous materials. Chemical Engineering Journal, 2019, 360, 569-576.	12.7	59
240	High performance monolithic catalysts for hydrogenation reactions. Catalysis Today, 2005, 105, 623-628.	4.4	58
241	On the stability of the thermally decomposed Co-Al hydrotalcite against retrotopotactic transformation. Materials Research Bulletin, 2001, 36, 1767-1775.	5.2	57
242	Facile synthesis of the DD3R zeolite: performance in the adsorptive separation of buta-1,3-diene and but-2-ene isomers. Journal of Materials Chemistry, 2011, 21, 18386.	6.7	57
243	Selective adsorption of unsaturated linear C4 molecules on the all-silica DD3R. Physical Chemistry Chemical Physics, 2000, 2, 1773-1779.	2.8	56
244	A novel structured bioreactor: Development of a monolithic stirrer reactor with immobilized lipase. Catalysis Today, 2005, 105, 443-447.	4.4	56
245	Small-angle X-ray scattering documents the growth of metal-organic frameworks. Catalysis Today, 2013, 205, 120-127.	4.4	56
246	Metal-doped carbon xerogels for the electro-catalytic conversion of CO2 to hydrocarbons. Carbon, 2013, 56, 324-331.	10.3	56
247	Insights into the Catalytic Performance of Mesoporous Hâ€ZSMâ€5â€Supported Cobalt in Fischer–Tropsch Synthesis. ChemCatChem, 2014, 6, 142-151.	3.7	56
248	Kinetics of the alkali carbonate catalysed gasification of carbon. Fuel, 1986, 65, 1371-1376.	6.4	55
249	Bridging the gap between macroscopic and NMR diffusivities. Chemical Engineering Science, 1997, 52, 3401-3404.	3.8	55
250	Gas and liquid phase distribution and their effect on reactor performance in the monolith film flow reactor. Chemical Engineering Science, 2001, 56, 5935-5944.	3.8	55
251	Catalyst performance changes induced by palladium phase transformation in the hydrogenation of benzonitrile. Journal of Catalysis, 2010, 274, 176-191.	6.2	55
252	Methanol-to-olefins process over zeolite catalysts with DDR topology: effect of composition and structural defects on catalytic performance. Catalysis Science and Technology, 2016, 6, 2663-2678.	4.1	55

#	Article	IF	CITATIONS
253	Molecular-Scale Hybrid Membranes Derived from Metal-Organic Polyhedra for Gas Separation. ACS Applied Materials & Interfaces, 2018, 10, 21381-21389.	8.0	55
254	Using monolithic catalysts for highly selective Fischer–Tropsch synthesis. Catalysis Today, 2003, 79-80, 495-501.	4.4	54
255	Adsorption and breakthrough performance of carbon-coated ceramic monoliths at low concentration of n-butane. Chemical Engineering Science, 2004, 59, 2791-2800.	3.8	54
256	Shape selective methanol to olefins over highly thermostable DDR catalysts. Applied Catalysis A: General, 2011, 391, 234-243.	4.3	54
257	Catalyst performance testing. Applied Catalysis A: General, 2002, 227, 321-333.	4.3	53
258	Water removal by reactive stripping for a solid-acid catalyzed esterification in a monolithic reactor. Chemical Engineering Science, 2002, 57, 1627-1632.	3.8	52
259	Experimental and numerical comparison of structured packings with a randomly packed bed reactor for Fischer–Tropsch synthesis. Catalysis Today, 2009, 147, S2-S9.	4.4	52
260	Effects of Substrate and Polymer Encapsulation on CO ₂ Electroreduction by Immobilized Indium(III) Protoporphyrin. ACS Catalysis, 2018, 8, 4420-4428.	11.2	52
261	Activity Descriptors Derived from Comparison of Mo and Fe as Active Metal for Methane Conversion to Aromatics. Journal of the American Chemical Society, 2019, 141, 18814-18824.	13.7	52
262	Engineering Metal–Organic Frameworks for the Electrochemical Reduction of CO ₂ : A Minireview. Chemistry - an Asian Journal, 2019, 14, 3452-3461.	3.3	52
263	Thin mixed matrix and dual layer membranes containing metal-organic framework nanosheets and Polyactiveâ,,¢ for CO2 capture. Journal of Membrane Science, 2019, 570-571, 226-235.	8.2	52
264	A numerical comparison of alternative three-phase reactors with a conventional trickle-bed reactor. The advantages of countercurrent flow for hydrodesulfurization. Chemical Engineering Science, 1999, 54, 4791-4799.	3.8	51
265	Gas and liquid distribution in the monolith film flow reactor. AICHE Journal, 2003, 49, 3007-3017.	3.6	51
266	Separation of CO2 and CH4 by a DDR membrane. Research on Chemical Intermediates, 2008, 34, 467-474.	2.7	51
267	Thermostability of hydroxy sodalite in view of membrane applications. Microporous and Mesoporous Materials, 2010, 132, 510-517.	4.4	51
268	Gas Phase Sensing of Alcohols by Metal Organic Framework–Polymer Composite Materials. ACS Applied Materials & Interfaces, 2017, 9, 24926-24935.	8.0	51
269	Application of a zeolite membrane reactor in the metathesis of propene. Chemical Engineering Science, 1999, 54, 1441-1445.	3.8	50
270	Optimization of Geometric Properties of a Monolithic Catalyst for the Selective Hydrogenation of Phenylacetylene. Industrial & amp; Engineering Chemistry Research, 2001, 40, 2801-2809.	3.7	50

#	Article	IF	CITATIONS
271	Application of a silicalite-1 membrane reactor in metathesis reactions. Applied Catalysis A: General, 1999, 178, 225-241.	4.3	49
272	Comparison of adsorption behaviour of light alkanes and alkenes on Kureha activated carbon. Carbon, 2005, 43, 1416-1423.	10.3	49
273	Highly active and stable ion-exchanged Fe–Ferrierite catalyst for N2O decomposition under nitric acid tail gas conditions. Catalysis Communications, 2005, 6, 301-305.	3.3	49
274	Performance and stability of multi-channel MFI zeolite membranes detemplated by calcination and ozonication in ethanol/water pervaporation. Journal of Membrane Science, 2009, 339, 261-274.	8.2	49
275	Molecular Promoting of Aluminum Metal–Organic Framework Topology MIL-101 by <i>N</i> , <i>N</i> -Dimethylformamide. Inorganic Chemistry, 2014, 53, 882-887.	4.0	49
276	Kinetics of the Hydrodenitrogenation ofortho-Propylaniline over NiMo(P)/Al2O3Catalysts. Journal of Catalysis, 1997, 168, 491-500.	6.2	48
277	Pd and Pt catalysts supported on carbon-coated monoliths for low-temperature combustion of xylenes. Carbon, 2006, 44, 2463-2468.	10.3	48
278	Continuous synthesis of NaA zeolite membranes. Microporous and Mesoporous Materials, 2009, 120, 170-176.	4.4	48
279	Adsorption properties of carbon molecular sieves prepared from an activated carbon by pitch pyrolysis. Carbon, 2005, 43, 1643-1651.	10.3	47
280	Selective hydrogenation of fatty acid methyl esters over palladium on carbon-based monoliths. Catalysis Today, 2007, 128, 13-17.	4.4	47
281	Polyethyleneimine (PEI) functionalized ceramic monoliths as enzyme carriers: Preparation and performance. Journal of Molecular Catalysis B: Enzymatic, 2008, 50, 20-27.	1.8	47
282	Heterogeneously Catalyzed Continuousâ€Flow Hydrogenation Using Segmented Flow in Capillary Columns. ChemCatChem, 2011, 3, 1155-1157.	3.7	47
283	Chloromethylation as a functionalisation pathway for metal–organic frameworks. CrystEngComm, 2012, 14, 4109.	2.6	47
284	The Molecular Pathway to ZIFâ€7 Microrods Revealed by In Situ Timeâ€Resolved Small―and Wideâ€Angle Xâ€Ra Scattering, Quickâ€Scanning Extended Xâ€Ray Absorption Spectroscopy, and DFT Calculations. Chemistry - A European Journal, 2013, 19, 7809-7816.	ay 3.3	47
285	Relevance of the Mo-precursor state in H-ZSM-5 for methane dehydroaromatization. Catalysis Science and Technology, 2018, 8, 916-922.	4.1	47
286	Xenon Recovery by DD3R Zeolite Membranes: Application in Anaesthetics. Angewandte Chemie - International Edition, 2019, 58, 15518-15525.	13.8	47
287	Characterization and performance of Pt-USY in the SCR of NOx with hydrocarbons under lean-burn conditions. Applied Catalysis B: Environmental, 2001, 29, 285-298.	20.2	46
288	Monolithic Catalysts and Reactors. Advances in Catalysis, 2011, 54, 249-327.	0.2	46

#	Article	IF	CITATIONS
289	Kinetics of propane dehydrogenation over Pt–Sn/Al ₂ O ₃ . Catalysis Science and Technology, 2013, 3, 962-971.	4.1	46
290	Adsorption Forms of CO ₂ on MIL-53(Al) and NH ₂ -MIL-53(Al) As Revealed by FTIR Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 23584-23595.	3.1	46
291	Efficient Electrochemical Production of Syngas from CO ₂ and H ₂ O by using a Nanostructured Ag/gâ€C ₃ N ₄ Catalyst. ChemElectroChem, 2016, 3, 1497-1502.	3.4	46
292	Catalyst loss and retention during alkali-catalysed carbon gasification in CO2. Carbon, 1991, 29, 929-941.	10.3	45
293	Structured reactors for enzyme immobilization: advantages of tuning the wall morphology. Chemical Engineering Science, 2004, 59, 5027-5033.	3.8	45
294	Porous Metal–Organic Framework CUK-1 for Adsorption Heat Allocation toward Green Applications of Natural Refrigerant Water. ACS Applied Materials & Interfaces, 2019, 11, 25778-25789.	8.0	45
295	Defect-free high-silica CHA zeolite membranes with high selectivity for light gas separation. Journal of Membrane Science, 2019, 586, 34-43.	8.2	45
296	Manufacture of dense CAU-10-H coatings for application in adsorption driven heat pumps: optimization and characterization. CrystEngComm, 2015, 17, 5911-5920.	2.6	44
297	Influence of Filler Pore Structure and Polymer on the Performance of MOFâ€Based Mixedâ€Matrix Membranes for CO ₂ Capture. Chemistry - A European Journal, 2018, 24, 7949-7956.	3.3	44
298	Alkali-catalyzed carbon gasification in CO/CO2 mixtures: An extended model for the oxygen exchange and gasification reaction. Journal of Catalysis, 1987, 107, 173-180.	6.2	43
299	Kinetics of the alkali-carbonate catalysed gasification of carbon: 3. H2O gasification. Fuel, 1994, 73, 723-730.	6.4	43
300	The effect of NOx and CO on the rate of transition metal oxide catalyzed carbon black oxidation: An exploratory study. Applied Catalysis B: Environmental, 1998, 17, 205-220.	20.2	43
301	Catalyst performance testing: the influence of catalyst bed dilution on the conversion observed. Chemical Engineering Journal, 2002, 90, 173-183.	12.7	43
302	Preparation and characterisation of carbon-coated monoliths for catalyst supports. Carbon, 2002, 40, 1079-1088.	10.3	43
303	Isobutane dehydrogenation in a DD3R zeolite membrane reactor. Chemical Engineering Journal, 2011, 166, 368-377.	12.7	43
304	Dual-bed catalytic system for NOx–N2O removal: a practical application for lean-burn deNOx HC-SCR. Applied Catalysis B: Environmental, 2000, 25, 191-203.	20.2	42
305	Kinetics of cinnamaldehyde hydrogenation–concentration dependent selectivity. Catalysis Today, 2001, 66, 381-387.	4.4	42
306	Separation of kinetics and mass-transport effects for a fast reaction: the selective hydrogenation of functionalized alkynes. Catalysis Today, 2003, 79-80, 315-321.	4.4	42

#	Article	IF	CITATIONS
307	Natural gas purification with a DDR zeolite membrane; permeation modelling with maxwell-stefan equations. Studies in Surface Science and Catalysis, 2007, 170, 1021-1027.	1.5	42
308	Polymer–Metal Organic Framework Composite Films as Affinity Layer for Capacitive Sensor Devices. ACS Sensors, 2016, 1, 1188-1192.	7.8	42
309	One-component permeation maximum: Diagnostic tool for silicalite-1 membranes?. AICHE Journal, 2000, 46, 1096-1100.	3.6	41
310	Diffusivities of light alkanes in a silicalite-1 membrane layer. Microporous and Mesoporous Materials, 2000, 35-36, 267-281.	4.4	41
311	Effect of NO on the SCR of N2O with propane over Fe-zeolites. Applied Catalysis B: Environmental, 2004, 47, 177-187.	20.2	41
312	Influence of support morphology on the detemplation and permeation of ZSM-5 and SSZ-13 zeolite membranes. Microporous and Mesoporous Materials, 2014, 197, 268-277.	4.4	41
313	Facile Method for the Preparation of Covalent Triazine Framework coated Monoliths as Catalyst Support: Applications in C1 Catalysis. ACS Applied Materials & Interfaces, 2017, 9, 26060-26065.	8.0	41
314	Reduction of NOxover alkali metal–carbon systems. Journal of the Chemical Society Chemical Communications, 1984, , 1085-1086.	2.0	40
315	Decomposition of nitrous oxide over ZSM-5 catalysts. Studies in Surface Science and Catalysis, 1996, , 641-650.	1.5	40
316	Equilibrium Adsorption of Light Alkanes in Silicalite-1 by the Inertial Microbalance Technique. Adsorption, 2000, 6, 159-167.	3.0	40
317	MOF@MOF core–shell vs. Janus particles and the effect of strain: potential for guest sorption, separation and sequestration. CrystEngComm, 2013, 15, 6003.	2.6	40
318	Inhibition of a Gold-Based Catalyst in Benzyl Alcohol Oxidation: Understanding and Remediation. Catalysts, 2014, 4, 89-115.	3.5	40
319	A site-sensitive quasi-in situ strategy to characterize Mo/HZSM-5 during activation. Journal of Catalysis, 2019, 370, 321-331.	6.2	40
320	Biofilm growth pattern in honeycomb monolith packings: Effect of shear rate and substrate transport limitations. Catalysis Today, 2005, 105, 448-454.	4.4	39
321	One-Pot Synthesis of High-Flux <i>b</i> -Oriented MFI Zeolite Membranes for Xe Recovery. ACS Applied Materials & Interfaces, 2018, 10, 33574-33580.	8.0	39
322	Modeling of the transient sorption and diffusion processes in microporous materials at low pressure. Catalysis Today, 1999, 53, 189-205.	4.4	38
323	Detemplation of DDR type zeolites by ozonication. Microporous and Mesoporous Materials, 2009, 120, 12-18.	4.4	38
324	The importance of heat effects in the methanol to hydrocarbons reaction over ZSM-5: on the role of mesoporosity on catalyst performance. Catalysis Science and Technology, 2016, 6, 5320-5325.	4.1	38

#	Article	IF	CITATIONS
325	Effect of pretreatment atmosphere on the activity and selectivity of Co/mesoHZSM-5 for Fischer–Tropsch synthesis. New Journal of Chemistry, 2016, 40, 4167-4177.	2.8	38
326	Conceptual design of membrane-based pre-combustion CO2 capture process: Role of permeance and selectivity on performance and costs. Journal of Membrane Science, 2019, 575, 229-241.	8.2	38
327	Surface functionalized N-C-TiO2/C nanocomposites derived from metal-organic framework in water vapour for enhanced photocatalytic H2 generation. Journal of Energy Chemistry, 2021, 57, 485-495.	12.9	38
328	Esterification in a structured catalytic reactor with counter-current water removal. Catalysis Today, 2001, 66, 175-181.	4.4	37
329	Influence of channel geometry on hydrodynamics and mass transfer in the monolith film flow reactor. Catalysis Today, 2001, 69, 153-163.	4.4	37
330	Evaluation of reproducible high flux silicalite-1 membranes: gas permeation and separation characterization. Separation and Purification Technology, 2001, 22-23, 295-307.	7.9	37
331	High-throughput experimentation in catalyst testing and in kinetic studies for heterogeneous catalysis. Catalysis Today, 2003, 81, 457-471.	4.4	37
332	A non-equilibrium thermodynamics approach to model mass and heat transport for water pervaporation through a zeolite membrane. Journal of Membrane Science, 2009, 330, 388-398.	8.2	37
333	Modeling the Loading Dependency of Diffusion in Zeolites: The Relevant Site Model. Journal of Physical Chemistry C, 2009, 113, 17840-17850.	3.1	37
334	Bimetal–organic framework derived multi-heterostructured TiO ₂ /Cu _x O/C nanocomposites with superior photocatalytic H ₂ generation performance. Journal of Materials Chemistry A, 2021, 9, 4103-4116.	10.3	37
335	Formation of intercalate-like structures by heat treatment of K2CO3-carbon in an inert atmosphere. Fuel, 1983, 62, 249-251.	6.4	36
336	Zeolite-based membranes preparation, performance and prospects. Studies in Surface Science and Catalysis, 1996, , 413-454.	1.5	36
337	Gasâ^Liquid Mass Transfer in Benchscale Stirred TanksFluid Properties and Critical Impeller Speed for Gas Induction. Industrial & Engineering Chemistry Research, 2006, 45, 4574-4581.	3.7	36
338	Catalysed ethylbenzene dehydrogenation in CO2 or N2—Carbon deposits as the active phase. Applied Catalysis A: General, 2012, 417-418, 163-173.	4.3	36
339	Structural and elemental influence from various MOFs on the performance of Fe@C catalysts for Fischer–Tropsch synthesis. Faraday Discussions, 2017, 197, 225-242.	3.2	36
340	Structure-activity relationships in metal organic framework derived mesoporous nitrogen-doped carbon containing atomically dispersed iron sites for CO2 electrochemical reduction. Journal of Catalysis, 2019, 378, 320-330.	6.2	36
341	High-Performance Polybenzimidazole Membranes for Helium Extraction from Natural Gas. ACS Applied Materials & Interfaces, 2019, 11, 20098-20103.	8.0	36
342	Prediction of adsorption isotherms from breakthrough curves. Microporous and Mesoporous Materials, 2019, 277, 237-244.	4.4	36

#	Article	IF	CITATIONS
343	A spectroscopic study of the effect of the trivalent cation on the thermal decomposition behaviour of Co-based hydrotalcites. Journal of Materials Chemistry, 2001, 11, 2529-2536.	6.7	35
344	Binary adsorption equilibrium of organics and water on activated carbon. AICHE Journal, 2001, 47, 1885-1892.	3.6	35
345	Carbon-based monolithic supports for palladium catalysts: The role of the porosity in the gas-phase total combustion of m-xylene. Applied Catalysis B: Environmental, 2008, 77, 272-277.	20.2	35
346	Modeling Permeation of CO ₂ /CH ₄ , N ₂ /CH ₄ , and CO ₂ /Air Mixtures across a DD3R Zeolite Membrane. Journal of Physical Chemistry C, 2010, 114, 9379-9389.	3.1	35
347	Monolithic reactors in catalysis: excellent control. Current Opinion in Chemical Engineering, 2013, 2, 346-353.	7.8	35
348	Crystals for sustainability – structuring Al-based MOFs for the allocation of heat and cold. CrystEngComm, 2015, 17, 281-285.	2.6	35
349	Revealing the Transient Concentration of CO ₂ in a Mixedâ€Matrix Membrane by IR Microimaging and Molecular Modeling. Angewandte Chemie - International Edition, 2018, 57, 5156-5160.	13.8	35
350	Cation influence in adsorptive propane/propylene separation in ZIF-8 (SOD) topology. Chemical Engineering Journal, 2019, 371, 848-856.	12.7	35
351	The pressure drop experiment to determine slug lengths in multiphase monoliths. Catalysis Today, 2005, 105, 667-672.	4.4	34
352	Monoliths as Biocatalytic Reactors:Â Smart Gasâ^'Liquid Contacting for Process Intensification. Industrial & Engineering Chemistry Research, 2005, 44, 9646-9652.	3.7	34
353	Detection of agglomeration and gradual particle size changes in circulating fluidized beds. Powder Technology, 2010, 202, 24-38.	4.2	34
354	Selectivity of the Fischer–Tropsch process: deviations from single alpha product distribution explained by gradients in process conditions. Catalysis Science and Technology, 2013, 3, 2210.	4.1	34
355	Evidence for a chemical clock in oscillatory formation of UiO-66. Nature Communications, 2016, 7, 11832.	12.8	34
356	Carbon/H-ZSM-5 composites as supports for bi-functional Fischer–Tropsch synthesis catalysts. Catalysis Science and Technology, 2016, 6, 2633-2646.	4.1	34
357	N ₂ 0 Decomposition over Liquid Ion-Exchanged Fe-BEA Catalysts: Correlation Between Activity and the IR Intensity of Adsorbed NO at 1874 cm ⁻¹ . Catalysis Letters, 2004, 93, 113-120.	2.6	33
358	Detecting and Counteracting Agglomeration in Fluidized Bed Biomass Combustion. Energy & Fuels, 2009, 23, 157-169.	5.1	33
359	Process intensification of tubular reactors: Considerations on catalyst hold-up of structured packings. Catalysis Today, 2013, 216, 111-116.	4.4	33
360	Enhancing promoting effects in g-C3N4-Mn+/CeO2-TiO2 ternary composites: Photo-handling of charge carriers. Applied Catalysis B: Environmental, 2015, 176-177, 687-698.	20.2	33

#	Article	IF	CITATIONS
361	Assessing the Surface Area of Porous Solids: Limitations, Probe Molecules, and Methods. Langmuir, 2016, 32, 12664-12675.	3.5	33
362	Kinetics of the CO oxidation by O2 and N2O over Cu-Cr/Al2O3. AICHE Journal, 1992, 38, 385-396.	3.6	32
363	Highly dispersed Pt+ on Ti Ce(1â^')O2 as an active phase in preferential oxidation of CO. Applied Catalysis B: Environmental, 2016, 180, 169-178.	20.2	32
364	In Silico Screening of Metal–Organic Frameworks for Adsorption-Driven Heat Pumps and Chillers. ACS Applied Materials & Interfaces, 2018, 10, 27074-27087.	8.0	32
365	Highâ€Silica CHA Zeolite Membrane with Ultraâ€High Selectivity and Irradiation Stability for Krypton/Xenon Separation. Angewandte Chemie - International Edition, 2021, 60, 9032-9037.	13.8	32
366	Trade-Off Between NOx and N2O in Fluidized-Bed Combustion of Coals. Energy & Fuels, 1995, 9, 743-752.	5.1	31
367	Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field. Physical Chemistry Chemical Physics, 2014, 16, 16060-16066.	2.8	31
368	Ruthenium particle size and cesium promotion effects in Fischer–Tropsch synthesis over high-surface-area graphite supported catalysts. Catalysis Science and Technology, 2017, 7, 1235-1244.	4.1	31
369	Sensitive and Reversible Detection of Methanol and Water Vapor by In Situ Electrochemically Grown CuBTC MOFs on Interdigitated Electrodes. Small, 2017, 13, 1604150.	10.0	31
370	Novel high performance poly(<i>p</i> -phenylene benzobisimidazole) (PBDI) membranes fabricated by interfacial polymerization for H ₂ separation. Journal of Materials Chemistry A, 2019, 7, 8929-8937.	10.3	31
371	Hydrodynamics and mass transfer issues in a countercurrent gas-liquid internally finned monolith reactor. Chemical Engineering Science, 1999, 54, 2381-2389.	3.8	30
372	One-pot catalyst preparation: combined detemplating and Fe ion-exchange of BEA through Fenton's chemistry. Chemical Communications, 2005, , 2178-2180.	4.1	30
373	Structured Reactors for Enzyme Immobilization. Chemical Engineering Research and Design, 2006, 84, 390-398.	5.6	30
374	Deuteration study to elucidate hydrogenolysis of benzylic alcohols over supported palladium catalysts. Journal of Catalysis, 2007, 246, 344-350.	6.2	30
375	Adsorption of hexane isomers on MFI type zeolites at ambient temperature: Understanding the aluminium content effect. Microporous and Mesoporous Materials, 2013, 170, 26-35.	4.4	30
376	The role of rhodium in the mechanism of the water–gas shift over zirconia supported iron oxide. Journal of Catalysis, 2014, 313, 34-45.	6.2	30
377	Thermodynamics of the metathesis of propene into ethene and 2-butene. Journal of Chemical Thermodynamics, 1983, 15, 147-152.	2.0	29
378	Transient kinetic techniques for detailed insight in gas-solid reactions. Energy & Fuels, 1992, 6, 494-497.	5.1	29

#	Article	IF	CITATIONS
379	On why do different carbons show different gasification rates: A transient isotopic CO2 gasification study. Carbon, 1994, 32, 1223-1231.	10.3	29
380	Highly reproducible high-flux silicalite-1 membranes: optimization of silicalite-1 membrane preparation. Separation and Purification Technology, 2001, 22-23, 223-229.	7.9	29
381	Potential application of monolith packed columns as bioreactors, control of biofilm formation. Biotechnology and Bioengineering, 2006, 93, 238-245.	3.3	29
382	Intensifying the Fischer–Tropsch Synthesis by reactor structuring – A model study. Chemical Engineering Journal, 2012, 207-208, 865-870.	12.7	29
383	Making coke a more efficient catalyst in the oxidative dehydrogenation of ethylbenzene using wide-pore transitional aluminas. Journal of Molecular Catalysis A, 2014, 381, 179-187.	4.8	29
384	The interaction of H2O, CO2, H2 and CO with the alkali-carbonate/carbon system: a thermogravimetric study. Fuel, 1991, 70, 205-214.	6.4	28
385	Permeation and separation of light hydrocarbons through a silicalite-1 membrane. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 57, 145-153.	0.1	28
386	Carbon coating of ceramic monolithic substrates. Studies in Surface Science and Catalysis, 1998, 118, 175-183.	1.5	28
387	Direct N2O decomposition over ex-framework FeMFI catalysts. Role of extra-framework species. Catalysis Communications, 2002, 3, 19-23.	3.3	28
388	Electrochemical characterization of iron sites in ex-framework FeZSM-5. Journal of Electroanalytical Chemistry, 2002, 519, 72-84.	3.8	28
389	Fast gas–liquid–solid reactions in monoliths: A case study of nitro-aromatic hydrogenation. Catalysis Today, 2005, 105, 421-428.	4.4	28
390	Selective hydrogenation of fatty acid methyl esters on palladium catalysts supported on carbon-coated monoliths. Carbon, 2006, 44, 173-176.	10.3	28
391	Modeling the Loading Dependency of Diffusion in Zeolites: the Relevant Site Model Extended to Mixtures in DDR-Type Zeolite. Journal of Physical Chemistry C, 2009, 113, 21856-21865.	3.1	28
392	Benefit of Microscopic Diffusion Measurement for the Characterization of Nanoporous Materials. Chemical Engineering and Technology, 2009, 32, 1494-1511.	1.5	28
393	Selective sensor utilizing a thin monolayer of b-oriented silicalite-1 crystals–magneto-elastic ribbon assembly. Analyst, The, 2009, 134, 2118.	3.5	28
394	Performance of hydroxy sodalite membranes as absolute water selective materials under acidic and basic conditions. Journal of Membrane Science, 2010, 356, 1-6.	8.2	28
395	Dynamic desorption of CO2 and CH4 from amino-MIL-53(Al) adsorbent. Adsorption, 2013, 19, 1235-1244.	3.0	28
396	Oxidative dehydrogenation of ethylbenzene to styrene over alumina: effect of calcination. Catalysis Science and Technology, 2013, 3, 519-526.	4.1	28

#	Article	IF	CITATIONS
397	Dynamic Release–Immobilization of a Homogeneous Rhodium Hydroformylation Catalyst by a Polyoxometalate Metal–Organic Framework Composite. ChemCatChem, 2015, 7, 3243-3247.	3.7	28
398	Separation of CO 2 /CH 4 mixtures over NH 2 -MIL-53—An experimental and modelling study. Chemical Engineering Science, 2015, 124, 96-108.	3.8	28
399	Sulfonated Porous Aromatic Frameworks as Solid Acid Catalysts. ChemCatChem, 2016, 8, 961-967.	3.7	28
400	Synthesis and gas adsorption properties of mesoporous silica-NH2-MIL-53(Al)Âcore–shell spheres. Microporous and Mesoporous Materials, 2016, 225, 116-121.	4.4	28
401	Formulation and catalytic performance of MOF-derived Fe@C/Al composites for high temperature Fischer–Tropsch synthesis. Catalysis Science and Technology, 2018, 8, 210-220.	4.1	28
402	Quantifying the impact of dispersion, acidity and porosity of Mo/HZSM-5 on the performance in methane dehydroaromatization. Applied Catalysis A: General, 2019, 574, 144-150.	4.3	28
403	High Stability of Methanol to Aromatic Conversion over Bimetallic Ca,Ca-Modified ZSM-5. ACS Catalysis, 2022, 12, 3189-3200.	11.2	28
404	Breakthrough of Shallow Activated Carbon Beds Under Constant and Pulsating Flow. AIHA Journal: A Journal for the Science of Occupational and Environmental Health and Safety, 2003, 64, 173-180.	0.4	27
405	Innovations in the synthesis of Fe-(exchanged)-zeolites. Catalysis Today, 2005, 110, 255-263.	4.4	27
406	Ceramic membranes modified with catalytic oxide films as ensembles of catalytic nanoreactors. Kinetics and Catalysis, 2006, 47, 25-34.	1.0	27
407	Coated-Wall Reactor ModelingCriteria for Neglecting Radial Concentration Gradients. 1. Empty Reactor Tubes. Industrial & Engineering Chemistry Research, 2007, 46, 3863-3870.	3.7	27
408	Tuning the support adsorption properties of Pd/SiO2 by silylation to improve the selective hydrogenation of aromatic ketones. Journal of Catalysis, 2008, 257, 55-63.	6.2	27
409	Heat transport in structured packings with two-phase co-current downflow. Chemical Engineering Journal, 2012, 185-186, 250-266.	12.7	27
410	Impact of small promoter amounts on coke structure in dry reforming of methane over Ni/ZrO ₂ . Catalysis Science and Technology, 2020, 10, 3965-3974.	4.1	27
411	In situ FT—IR study of copper—chromium oxide catalysts in CO oxidation. Journal of Molecular Catalysis, 1992, 74, 193-205.	1.2	26
412	A DRIFTS study of the interaction of alkali metal oxides with carbonaceous surfaces. Carbon, 1999, 37, 401-410.	10.3	26
413	Magnetic properties of Co–Al, Ni–Al, and Mg–Al hydrotalcites and the oxides formed upon their thermal decomposition. Journal of Materials Chemistry, 2002, 12, 2370-2375.	6.7	26
414	Modeling of fast pulse responses in the Multitrack: an advanced TAP reactor. Chemical Engineering Science, 2002, 57, 1835-1847.	3.8	26

#	Article	IF	CITATIONS
415	Heat transport in structured packings with co-current downflow of gas and liquid. Chemical Engineering Science, 2010, 65, 420-426.	3.8	26
416	Control of interpenetration of copper-based MOFs on supported surfaces by electrochemical synthesis. CrystEngComm, 2016, 18, 4018-4022.	2.6	26
417	Potentials of internally finned monoliths as a packing for multifunctional reactors. Chemical Engineering Science, 1999, 54, 1359-1365.	3.8	25
418	Carbon coated monolithic catalysts in the selective oxidation of cyclohexanone. Catalysis Today, 2001, 69, 283-290.	4.4	25
419	Zeolite BEA catalysed esterification of hexanoic acid with 1-octanol: Kinetics, side reactions and the role of water. Applied Catalysis A: General, 2009, 358, 141-145.	4.3	25
420	Synthesis, characterisation and catalytic performance of a mesoporous tungsten silicate: W-TUD-1. Applied Catalysis A: General, 2013, 468, 150-159.	4.3	25
421	Induced Chirality in a Metal–Organic Framework by Postsynthetic Modification for Highly Selective Asymmetric Aldol Reactions. ChemCatChem, 2014, 6, 2211-2214.	3.7	25
422	Next Generation Automotive DeNO _{<i>x</i>} Catalysts: Ceria What Else?. ChemCatChem, 2016, 8, 102-105.	3.7	25
423	Numerical optimization of a structured tubular reactor for Fischer–Tropsch synthesis. Chemical Engineering Journal, 2016, 283, 1465-1483.	12.7	25
424	A transient kinetic study of carbon monoxide oxidation over copper-based catalysts for automotive pollution control. Catalysis Today, 1994, 20, 409-422.	4.4	24
425	Concentration-dependent diffusion of isobutane in silicalite-1 studied with the ZLC technique. Chemical Engineering Science, 2004, 59, 3827-3835.	3.8	24
426	Liquid residence time distribution in the film flow monolith reactor. AICHE Journal, 2005, 51, 122-133.	3.6	24
427	Tuning the morphology of monolith coatings. Applied Catalysis A: General, 2007, 319, 267-271.	4.3	24
428	b-Oriented MFI membranes prepared from porous silica coatings. Microporous and Mesoporous Materials, 2009, 120, 165-169.	4.4	24
429	Detemplation of [B]MFI zeolite crystals by ozonication. Microporous and Mesoporous Materials, 2009, 120, 35-38.	4.4	24
430	Intensification of co-current gas–liquid reactors using structured catalytic packings: A multiscale approach. Catalysis Today, 2009, 147, S138-S143.	4.4	24
431	Toward a Transferable Set of Charges to Model Zeolitic Imidazolate Frameworks: Combined Experimental–Theoretical Research. Journal of Physical Chemistry C, 2013, 117, 466-471.	3.1	24
432	On the stability of conventional and nano-structured carbon-based catalysts in the oxidative dehydrogenation of ethylbenzene under industrially relevant conditions. Carbon, 2014, 77, 329-340.	10.3	24

#	Article	IF	CITATIONS
433	Towards High Performance Metal–Organic Framework–Microporous Polymer Mixed Matrix Membranes: Addressing Compatibility and Limiting Aging by Polymer Doping. Chemistry - A European Journal, 2018, 24, 12796-12800.	3.3	24
434	Characterization of CuOî—,ZnOî—,Al2O3 methanol synthesis catalysts using temperature programmed reduction and thermal stability. Thermochimica Acta, 1984, 72, 111-116.	2.7	23
435	Improvement of Thermal Stability of Porous Titania Films Prepared by Electrostatic Sol-Spray Deposition (ESSD). Chemistry of Materials, 2003, 15, 1283-1288.	6.7	23
436	Silicalite-1 coating on Pt/TiO2 particles by a two-step hydrothermal synthesis. Microporous and Mesoporous Materials, 2005, 83, 244-250.	4.4	23
437	Adsorption of CO ₂ on MIL-53(Al): FTIR evidence of the formation of dimeric CO ₂ species. Chemical Communications, 2016, 52, 1494-1497.	4.1	23
438	Single and Multi-Component Transport through Metal-Supported MFI Zeolite Membranes. , 1993, , 425-436.		23
439	Reactive stripping in pilot scale monolith reactors—application to esterification. Chemical Engineering and Processing: Process Intensification, 2005, 44, 695-699.	3.6	22
440	On the Driving Force of Methanol Pervaporation through a Microporous Methylated Silica Membrane. Industrial & Engineering Chemistry Research, 2007, 46, 4091-4099.	3.7	22
441	A diffusion study of small hydrocarbons in DDR zeolites by micro-imaging. Microporous and Mesoporous Materials, 2013, 180, 219-228.	4.4	22
442	Unveiling the mechanism of selective gate-driven diffusion of CO2 over N2 in MFU-4 metal–organic framework. Dalton Transactions, 2014, 43, 9612-9619.	3.3	22
443	Interplay of Linker Functionalization and Hydrogen Adsorption in the Metal–Organic Framework MIL-101. Journal of Physical Chemistry C, 2014, 118, 19572-19579.	3.1	22
444	Understanding the Inhibiting Effect of BTC on CuBTC Growth through Experiment and Modeling. Crystal Growth and Design, 2017, 17, 5603-5607.	3.0	22
445	Aromatization of Ethylene – Main Intermediate for MDA?. ChemCatChem, 2020, 12, 544-549.	3.7	22
446	Steam gasification kinetics and burn-off behaviour for a bituminous coal derived char in the presence of H2. Fuel Processing Technology, 1993, 36, 235-242.	7.2	21
447	Selective catalytic reduction of no with NH3 over activated carbons. I: Effect of origin and activation procedure on activity. Carbon, 1994, 32, 897-904.	10.3	21
448	Determination of adsorption and diffusion parameters in zeolites through a structured approach. Chemical Engineering Science, 2004, 59, 2477-2487.	3.8	21
449	Case studies for selective agglomeration detection in fluidized beds: Application of a new screening methodology. Powder Technology, 2010, 203, 148-166.	4.2	21
450	Establishing hierarchy: the chain of events leading to the formation of silicalite-1 nanosheets. Chemical Science, 2016, 7, 6506-6513.	7.4	21

#	Article	IF	CITATIONS
451	Tail gas catalyzed N2O decomposition over Fe-beta zeolite. On the promoting role of framework connected AlO6 sites in the vicinity of Fe by controlled dealumination during exchange. Applied Catalysis B: Environmental, 2017, 203, 218-226.	20.2	21
452	Thermodynamics of the geometrical isomerization of 2-butene and 2-pentene. Journal of Chemical Thermodynamics, 1983, 15, 137-146.	2.0	20
453	Carbon monoxide oxidation over platinum powder: A comparison of TAP and step-response experiments. Applied Catalysis A: General, 1997, 151, 247-266.	4.3	20
454	Structured catalysts for the acylation of aromatics. Topics in Catalysis, 2000, 13, 275-280.	2.8	20
455	Alkaline leaching for synthesis of improved Fe-ZSM5 catalysts. Catalysis Communications, 2006, 7, 100-103.	3.3	20
456	Modelling kinetics and deactivation for the selective hydrogenation of an aromatic ketone over Pd/SiO2. Chemical Engineering Science, 2007, 62, 5322-5329.	3.8	20
457	Zeolite Beta membranes for the separation of hexane isomers. Microporous and Mesoporous Materials, 2010, 128, 194-202.	4.4	20
458	The role of RWGS in the dehydrogenation of ethylbenzene to styrene in CO2. Applied Catalysis A: General, 2012, 423-424, 59-68.	4.3	20
459	Benzimidazole linked polymers (BILPs) in mixed-matrix membranes: Influence of filler porosity on the CO2/N2 separation performance. Journal of Membrane Science, 2018, 566, 213-222.	8.2	20
460	Stability of carbon-supported catalysts in an oxidizing environment. Carbon, 1992, 30, 577-585.	10.3	19
461	Preparation and characterisation aspects of carbon-coated monoliths. Catalysis Today, 2001, 69, 357-363.	4.4	19
462	Asymmetry effects in membrane catalysis. Catalysis Today, 2006, 118, 7-11.	4.4	19
463	Methodology for the Screening of Signal Analysis Methods for Selective Detection of Hydrodynamic Changes in Fluidized Bed Systems. Industrial & Engineering Chemistry Research, 2009, 48, 3158-3166.	3.7	19
464	Synthesis of Anisotropic Gold Nanoparticles by Electrospraying into a Reductive-Surfactant Solution. Chemistry of Materials, 2010, 22, 1656-1663.	6.7	19
465	Anchoring of Diphenylphosphinyl Groups to NH ₂ â€MILâ€53 by Postâ€Synthetic Modification. European Journal of Inorganic Chemistry, 2015, 2015, 4648-4652.	2.0	19
466	NOx reduction in the Di-Air system over noble metal promoted ceria. Applied Catalysis B: Environmental, 2018, 231, 200-212.	20.2	19
467	Characterization of coal pyrolysis by means of differential scanning calorimetry. 1. Quantitative heat effects in an inert atmosphere. Fuel Processing Technology, 1987, 15, 45-57.	7.2	18
468	Characterization of alkali carbonate catalysts for carbon gasification with 180 labeled CO2. Carbon, 1988, 26, 41-48.	10.3	18

#	Article	IF	CITATIONS
469	Axial Mixing in Monolith Reactors:Â Effect of Channel Size. Industrial & Engineering Chemistry Research, 2005, 44, 2046-2057.	3.7	18
470	Carbon coated monoliths as support material for a lactase from Aspergillus oryzae: Characterization and design of the carbon carriers. Carbon, 2006, 44, 3053-3063.	10.3	18
471	Application of staged O2 feeding in the oxidative dehydrogenation of ethylbenzene to styrene over Al2O3 and P2O5/SiO2 catalysts. Applied Catalysis A: General, 2014, 476, 204-214.	4.3	18
472	Selective Coke Combustion by Oxygen Pulsing During Mo/ZSMâ€5 atalyzed Methane Dehydroaromatization. Angewandte Chemie, 2016, 128, 15310-15314.	2.0	18
473	Toward Optimal Metal–Organic Frameworks for Adsorption Chillers: Insights from the Scaleâ€Up of MILâ€101(Cr) and NH ₂ â€MILâ€125. Energy Technology, 2020, 8, 1900617.	3.8	18
474	Assessment of the CO2-carbon gasification catalyzed by calcium. A transient isotopic study. Carbon, 1994, 32, 423-430.	10.3	17
475	Hydrodynamics of gas-liquid countercurrent flow in internally finned monolithic structures. Chemical Engineering Science, 1997, 52, 3893-3899.	3.8	17
476	Elucidation of the Surprising Role of NO in N2O Decomposition over FeZSM-5. Kinetics and Catalysis, 2003, 44, 639-647.	1.0	17
477	Dispersion and Distribution of Ruthenium on Carbon-Coated Ceramic Monolithic Catalysts Prepared by Impregnation. Catalysis Letters, 2003, 90, 181-186.	2.6	17
478	Separation modeling of linear and branched C6 alkane permeation through silicalite-1 membranes. Separation and Purification Technology, 2003, 32, 223-230.	7.9	17
479	Enhancement of Catalyst Performance Using Pressure Pulses on Macroporous Structured Catalysts. Industrial & Engineering Chemistry Research, 2007, 46, 8574-8583.	3.7	17
480	Carbon–ceramic composites for enzyme immobilization. Microporous and Mesoporous Materials, 2007, 99, 216-223.	4.4	17
481	Asymmetric effects in catalytic membranes. Kinetics and Catalysis, 2007, 48, 132-135.	1.0	17
482	Simple modification of macroporous alumina supports for the fabrication of dense NaA zeolite coatings: Interplay of electrostatic and chemical interactions. Microporous and Mesoporous Materials, 2011, 146, 69-75.	4.4	17
483	Stereochemistry in metathesis of n-alkenes using heterogeneous oxide catalysts. Journal of the Chemical Society Faraday Transactions I, 1982, 78, 2583.	1.0	16
484	Adsorption of Butane Isomers and SF6on Kureha Activated Carbon:Â 1. Equilibrium. Langmuir, 2004, 20, 5277-5284.	3.5	16
485	Shape-selective diisopropylation of naphthalene in H-Mordenite: Myth or reality?. Journal of Catalysis, 2010, 270, 60-66.	6.2	16
486	Preliminary Design of a Vacuum Pressure Swing Adsorption Process for Natural Gas Upgrading Based on Aminoâ€Functionalized MILâ€53. Chemical Engineering and Technology, 2015, 38, 1183-1194.	1.5	16

#	Article	IF	CITATIONS
487	High-temperature Fischer-Tropsch synthesis over FeTi mixed oxide model catalysts: Tailoring activity and stability by varying the Ti/Fe ratio. Applied Catalysis A: General, 2017, 533, 38-48.	4.3	16
488	Xenon Recovery by DD3R Zeolite Membranes: Application in Anaesthetics. Angewandte Chemie, 2019, 131, 15664-15671.	2.0	16
489	Preparation of thin porous titania films on stainless steel substrates for heat exchange (HEX) reactors. Separation and Purification Technology, 2003, 32, 387-395.	7.9	15
490	Evaluation of deactivation mechanisms of Pd-catalyzed hydrogenation of 4-isobutylacetophenone. Journal of Catalysis, 2007, 248, 249-257.	6.2	15
491	Kinetics of the high temperature water–gas shift over Fe2O3/ZrO2, Rh/ZrO2 and Rh/Fe2O3/ZrO2. Chemical Engineering Journal, 2015, 263, 427-434.	12.7	15
492	Synthesis, characterization and performance of bifunctional catalysts for the synthesis of menthol from citronellal. RSC Advances, 2017, 7, 12041-12053.	3.6	15
493	Base free transfer hydrogenation using a covalent triazine framework based catalyst. CrystEngComm, 2017, 19, 4166-4170.	2.6	15
494	Methanation of CO over alkali metal–carbon catalysts. Journal of the Chemical Society Chemical Communications, 1984, , 278-279.	2.0	14
495	Modelling the transient kinetics of heterogeneous catalysts. CO-oxidation over supported Cr and Cu. Chemical Engineering Science, 1994, 49, 4375-4390.	3.8	14
496	Synthesis of mechanically strong and thermally stable spherical alumina catalyst supports for the process of methane dimerization in a fluidized bed. Catalysis Today, 1995, 24, 269-271.	4.4	14
497	Gas–liquid mass transfer in an internally finned monolith operated countercurrently in the film flow regime. Chemical Engineering Science, 1999, 54, 5119-5125.	3.8	14
498	Modelling sorption and diffusion in activated carbon: a novel low pressure pulse-response technique. Carbon, 2001, 39, 2113-2130.	10.3	14
499	A TEOM-MS study on the interaction of N2O with a hydrotalcite-derived multimetallic mixed oxide catalyst. Applied Catalysis A: General, 2002, 225, 87-100.	4.3	14
500	Characterization of Iron Species in Ex-Framework FeZSM-5 by Electrochemical Methods. Catalysis Letters, 2002, 78, 303-312.	2.6	14
501	Effect of NO on the catalytic removal of N2O over FeZSM-5. Friend or foe. Catalysis Communications, 2003, 4, 333-338.	3.3	14
502	Micropore accessibility of large mordenite crystals. Microporous and Mesoporous Materials, 2006, 92, 145-153.	4.4	14
503	CHAPTER 10. MOFs as Nano‐reactors. RSC Catalysis Series, 0, , 310-343.	0.1	14
504	Fundamental Understanding of the Di-Air System: The Role of Ceria in NO x Abatement. Topics in Catalysis, 2016, 59, 854-860.	2.8	14

#	Article	IF	CITATIONS
505	Harvesting the photoexcited holes on a photocatalytic proton reduction metal–organic framework. Faraday Discussions, 2017, 201, 71-86.	3.2	14
506	Characterization of coal pyrolysis by means of differential scanning calorimetry. 2. Quantitative heat effects in a H2 and in a CO2 atmosphere. Fuel Processing Technology, 1989, 23, 63-74.	7.2	13
507	The formation of PCDDs and PCDFs in the catalysed combustion of carbon: implications for coal combustion. Fuel, 1993, 72, 343-347.	6.4	13
508	Sorbent development for continuous regenerative H ₂ S removal in a rotating monolith reactor. Canadian Journal of Chemical Engineering, 1996, 74, 713-718.	1.7	13
509	Adsorption of Butane Isomers and SF6on Kureha Activated Carbon:Â 2. Kinetics. Langmuir, 2004, 20, 1704-1710.	3.5	13
510	Intrinsic channel maldistribution in monolithic catalyst support structures. Chemical Engineering Journal, 2005, 109, 89-96.	12.7	13
511	Diffusion in zeolites: Extension of the relevant site model to light gases and mixtures thereof in zeolites DDR, CHA, MFI and FAU. Separation and Purification Technology, 2010, 73, 151-163.	7.9	13
512	Consequences of secondary zeolite growth on catalytic performance in DMTO studied over DDR and CHA. Catalysis Science and Technology, 2017, 7, 300-309.	4.1	13
513	A thermally/chemically robust and easily regenerable anilato-based ultramicroporous 3D MOF for CO ₂ uptake and separation. Journal of Materials Chemistry A, 2021, 9, 25189-25195.	10.3	13
514	Multivariate sodalite zeolitic imidazolate frameworks: a direct solvent-free synthesis. Chemical Science, 2022, 13, 842-847.	7.4	13
515	Effect of the adsorption isotherm on one- and two-component diffusion in activated carbon. Carbon, 1997, 35, 1415-1425.	10.3	12
516	The Delft silicalite-1 membrane: peculiar permeation and counter-intuitive separation phenomena. Journal of Molecular Catalysis A, 1998, 134, 201-208.	4.8	12
517	Modelling of reactive stripping in monolith reactors. Catalysis Today, 2005, 105, 414-420.	4.4	12
518	Room temperature detemplation of zeolites through H2O2-mediated oxidation. Chemical Communications, 2005, , 2744.	4.1	12
519	Stacking of Film-Flow Monoliths for Improved Performance in Reactive Stripping. Industrial & Engineering Chemistry Research, 2005, 44, 9556-9560.	3.7	12
520	Experimental and Theoretical Study of Reactive Stripping in Monolith Reactors. Industrial & Engineering Chemistry Research, 2007, 46, 4149-4157.	3.7	12
521	Metal-TUD-1 Catalyzed Aerobic Oxidation of Cyclohexane: A Comparative Study. Australian Journal of Chemistry, 2009, 62, 360.	0.9	12
522	Micro-imaging of transient guest profiles in nanoporous host systems of cylindrical symmetry. Journal of Chemical Physics, 2012, 137, 164704.	3.0	12

#	Article	IF	CITATIONS
523	Influence of force field parameters on computed diffusion coefficients of CO2 in LTA-type zeolite. Microporous and Mesoporous Materials, 2012, 158, 64-76.	4.4	12
524	Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation. Review of Scientific Instruments, 2013, 84, 124101.	1.3	12
525	Effect of rhodium on the water–gas shift performance of Fe2O3/ZrO2 and CeO2/ZrO2: Influence of rhodium precursor. Catalysis Today, 2015, 242, 168-177.	4.4	12
526	Transport Properties of Mixed-Matrix Membranes: A Kinetic Monte Carlo Study. Physical Review Applied, 2019, 12, .	3.8	12
527	Rapid fabrication of MOF-based mixed matrix membranes through digital light processing. Materials Advances, 2021, 2, 2739-2749.	5.4	12
528	Kinetics of Catalysed and Uncatalysed Coal Gasification. , 1986, , 291-360.		11
529	lsotopic steady-state and step-response study on carbon gasification catalyzed by calcium. Carbon, 1995, 33, 1147-1154.	10.3	11
530	Comments on "Infrared emission spectroscopic studies of the thermal transformation of Mg-, Ni- and Co-hydrotalcite catalysts―[Appl. Catal. A: Gen. 184 (1999) 61–71]. Applied Catalysis A: General, 2000, 204, 265-267.	4.3	11
531	Ion exchanged Fe-FER through H2O2-assisted decomplexation of organic salts. Chemical Communications, 2005, , 1525-1527.	4.1	11
532	Coke formation in the oxidative dehydrogenation of ethylbenzene to styrene by TEOM. Catalysis Science and Technology, 2014, 4, 3879-3890.	4.1	11
533	Sixâ€Coordinate Groupâ€13 Complexes: The Role of dâ€Orbitals and Electronâ€Rich Multiâ€Center Bonding. Angewandte Chemie - International Edition, 2015, 54, 12034-12038.	13.8	11
534	On the thermal stabilization of carbon-supported SiO2 catalysts by phosphorus: Evaluation in the oxidative dehydrogenation of ethylbenzene to styrene and a comparison with relevant catalysts. Applied Catalysis A: General, 2016, 514, 173-181.	4.3	11
535	Fabrication of Defect-Free P84® Polyimide Hollow Fiber for Gas Separation: Pathway to Formation of Optimized Structure. Membranes, 2020, 10, 4.	3.0	11
536	Catalytic Gasification. , 1986, , 181-195.		11
537	A packed-bed balance reactor for gas adsorption and gas-solid reactions under elevated pressures. Journal of Physics E: Scientific Instruments, 1982, 15, 1064-1067.	0.7	10
538	Burn-off behaviour in alkali-catalysed CO2 gasification of bituminous coal char: A comparison of TGA and fixed-bed reactor. Fuel Processing Technology, 1991, 28, 5-17.	7.2	10
539	NO Reduction over Alumina-Supported Cu and Cu–Cr Studied with the Step–Response Method. Journal of Catalysis, 1997, 170, 168-180.	6.2	10
540	Hydrodynamic properties of a novel â€~open wall' monolith reactor. Catalysis Today, 2005, 105, 385-390.	4.4	10

#	Article	IF	CITATIONS
541	Coated-Wall Reactor ModelingCriteria for Neglecting Radial Concentration Gradients. 2. Reactor Tubes Filled with Inert Particles. Industrial & Engineering Chemistry Research, 2007, 46, 3871-3876.	3.7	10
542	Metal Organic Framework: Design of Hydrophilic Metal Organic Framework Water Adsorbents for Heat Reallocation (Adv. Mater. 32/2015). Advanced Materials, 2015, 27, 4803-4803.	21.0	10
543	Measurement of C,H,N-release from coals during pyrolysis. Fuel, 1988, 67, 1190-1196.	6.4	9
544	Improving Flooding Performance for Countercurrent Monolith Reactors. Industrial & Engineering Chemistry Research, 2004, 43, 4848-4855.	3.7	9
545	Analysis of gas adsorption in Kureha active carbon based on the slit–pore model and Monte-Carlo simulations. Molecular Simulation, 2006, 32, 513-522.	2.0	9
546	Hydrogel coated monoliths for enzymatic hydrolysis of penicillin G. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 815-824.	3.0	9
547	Hysteresis during COâ€oxidation activity measurements on carbonâ€supported copper/chromium catalysts. Recueil Des Travaux Chimiques Des Pays-Bas, 1990, 109, 112-116.	0.0	9
548	An <i>in situ</i> reactivation study reveals the supreme stability of γ-alumina for the oxidative dehydrogenation of ethylbenzene to styrene. Catalysis Science and Technology, 2018, 8, 3733-3736.	4.1	9
549	Hydrodechlorination of 1,2-dichloropropane over Pt-Cu/C catalysts: Coke formation determined by a novel technique-TEOM. Studies in Surface Science and Catalysis, 2001, 139, 21-28.	1.5	9
550	Kinetics of the alkali-metal-carbonate-catalyzed gasification of carbon. 2. The water-gas-shift reaction. Industrial & Engineering Chemistry Research, 1991, 30, 1760-1770.	3.7	8
551	Catalytic Automotive Pollution Control Without Noble Metals. Studies in Surface Science and Catalysis, 1991, 71, 353-369.	1.5	8
552	Methane formation in H2,CO mixtures over carbon-supported potassium carbonate. Journal of Catalysis, 1992, 134, 525-535.	6.2	8
553	Catalytic oxidation of model soot by chlorine based catalysts. Studies in Surface Science and Catalysis, 1998, 116, 645-654.	1.5	8
554	Adsorption of 1,2-Dichloropropane on Activated Carbon. Journal of Chemical & Engineering Data, 2001, 46, 662-664.	1.9	8
555	Flooding Performance of Square Channel Monolith Structures. Industrial & Engineering Chemistry Research, 2002, 41, 6759-6771.	3.7	8
556	Transport Limitations during Phase Transfer Catalyzed Ethyl-Benzene Oxidation: Facts and Fictions of "Halide Catalysis― ACS Catalysis, 2012, 2, 1421-1424.	11.2	8
557	Metal–Organic Framework Capillary Microreactor for Application in Click Chemistry. ChemCatChem, 2016, 8, 1692-1698.	3.7	8
558	Overcoming the Engineering Constraints for Scaling-Up the State-of-the-Art Catalyst for Tail-Gas N ₂ O Decomposition. Industrial & Engineering Chemistry Research, 2018, 57, 939-945.	3.7	8

2.0

6

#	Article	IF	CITATIONS
559	Integrated Vacuum Stripping and Adsorption for the Efficient Recovery of (Biobased) 2-Butanol. Industrial & Engineering Chemistry Research, 2019, 58, 296-305.	3.7	8
560	From amorphous to crystalline: Transformation of silica membranes into silicalite-1 (MFI) zeolite layers. Microporous and Mesoporous Materials, 2019, 276, 52-61.	4.4	8
561	Anomalous carbon dioxide gasification behaviour of high temperature coal chars. Fuel Processing Technology, 1993, 36, 243-250.	7.2	7
562	High vacuum cell for high temperature in-situ infrared studies of heterogeneous catalysts. Vibrational Spectroscopy, 1993, 4, 245-250.	2.2	7
563	Effect of the Support in de-NOx HC-SCR Over Transition Metal Catalysts. Reaction Kinetics and Catalysis Letters, 2000, 70, 199-206.	0.6	7
564	Design of an Industrial Adsorption Process with Activated Carbon for the Removal of Hexafluoropropylene from Wet Air. Industrial & Engineering Chemistry Research, 2001, 40, 3171-3180.	3.7	7
565	Adsorption on Kureha Activated Carbon: Isotherms and Kinetics. Adsorption, 2005, 11, 637-641.	3.0	7
566	Combined Hydrogenation and Isomerization Combined Hydrogenation and Isomerization under Diffusion Limiting Conditions. Industrial & Engineering Chemistry Research, 2005, 44, 9668-9675.	3.7	7
567	Synthesis and Permeation Properties of Silicalite-1/Carbon Membranes. Industrial & Engineering Chemistry Research, 2007, 46, 3997-4006.	3.7	7
568	A convection-based single-parameter model for heat transport in multiphase tubular reactors packed with closed cross flow structures. Chemical Engineering Journal, 2013, 233, 265-273.	12.7	7
569	Revisiting the synthesis of Au/TiO2 P25 catalyst and application in the low temperature water–gas shift under realistic conditions. Catalysis Today, 2015, 244, 19-28.	4.4	7
570	Designing new catalysts for synthetic fuels: general discussion. Faraday Discussions, 2017, 197, 353-388.	3.2	7
571	Zeolite Membranes – The Importance of Support Analysis. Chemie-Ingenieur-Technik, 2022, 94, 23-30.	0.8	7
572	Fuel—Gas injection to reduce N2O emissions from the combustion of coal in a fluidized bed. Combustion and Flame, 1996, 107, 103-113.	5.2	6
573	In-target production of high specific radioactivity [150]nitrous oxide by deuteron irradiation of nitrogen gas. Applied Radiation and Isotopes, 2000, 52, 77-85.	1.5	6
574	Metal-Organic Frameworks: Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure-Performance Relationships in CO2/CH4Separation Over NH2-MIL-53(Al)@PI (Adv. Funct.) Tj ETQq0 0 C	rgBT9Ove	erlæck 10 Tf 5
575	Comment on "Efficient Conversion of Methane to Aromatics by Coupling Methylation Reaction― ACS Catalysis, 2017, 7, 4485-4487.	11.2	6

576 Highâ€Silica CHA Zeolite Membrane with Ultraâ€High Selectivity and Irradiation Stability for Krypton/Xenon Separation. Angewandte Chemie, 2021, 133, 9114-9119.

#	Article	IF	CITATIONS
577	An integrated approach to the key parameters in methanol-to-olefins reaction catalyzed by MFI/MEL zeolite materials. Chinese Journal of Catalysis, 2022, 43, 1879-1893.	14.0	6
578	Reduction of NO by Propene Over Pt, Pd and Rh-Based ZSM-5 Under Lean-Burn Conditions. Reaction Kinetics and Catalysis Letters, 2000, 69, 385-392.	0.6	5
579	Co-based ex-HTlc for the decomposition of N2O: Tailoring catalysts for active and stable operation. Studies in Surface Science and Catalysis, 2000, , 1445-1450.	1.5	5
580	Preparation of mesoporous highly dispersed Pd-Pt catalysts for deep hydrodesulfurization. Studies in Surface Science and Catalysis, 2000, , 1019-1026.	1.5	5
581	Reactive Stripping in Structured Catalytic Reactors: Hydrodynamics and Reaction Performance. , 2005, , 233-264.		5
582	Zeolite based separation of light olefin and paraffin mixtures. Studies in Surface Science and Catalysis, 2005, 158, 979-986.	1.5	5
583	Preparation and performance of H-SOD membranes: a new synthesis procedure and absolute water separation. Studies in Surface Science and Catalysis, 2007, 170, 1028-1035.	1.5	5
584	Investigating mass transport in zeolite pores by tuning the framework polarity. Studies in Surface Science and Catalysis, 2007, , 942-948.	1.5	5
585	Fenton detemplation of ordered (meso)porous materials. Studies in Surface Science and Catalysis, 2007, 170, 648-654.	1.5	5
586	Tuning the framework polarity in MFI membranes by deboronation: Effect on mass transport. Microporous and Mesoporous Materials, 2009, 125, 39-45.	4.4	5
587	Minimization of Chemicals Use during Adsorptive Recovery of Succinic Acid. Industrial & Engineering Chemistry Research, 2010, 49, 3794-3801.	3.7	5
588	Numerical Validation of a Simplified Engineering Approach for Heat Transfer in a Closed-Cross-Flow Structured Tubular Reactor. Industrial & Engineering Chemistry Research, 2014, 53, 16579-16585.	3.7	5
589	Au Capping Agent Removal Using Plasma at Mild Temperature. Catalysts, 2016, 6, 179.	3.5	5
590	Suppression of the Aromatic Cycle in Methanol-to-Olefins Reaction over ZSM-5 by Post-Synthetic Modification Using Calcium. ChemCatChem, 2016, 8, 3005-3005.	3.7	5
591	Selective CO 2 Sorption Using Compartmentalized Coordination Polymers with Discrete Voids**. Chemistry - A European Journal, 2021, 27, 4653-4659.	3.3	5
592	Dual-bed Catalytic System for the Selective Reduction of NOx with Propene. Chemical Engineering and Technology, 2000, 23, 721-725.	1.5	4
593	Increasing the selectivity of the Fischer Tropsch process by periodic operation. Computer Aided Chemical Engineering, 2001, , 699-704.	0.5	4
594	Pressure Drop of Taylor Flow in Capillaries: Impact of Slug Length. , 2003, , 519.		4

Pressure Drop of Taylor Flow in Capillaries: Impact of Slug Length. , 2003, , 519. 594

#	Article	IF	CITATIONS
595	Modelling of n-hexane and 3-methylpentane permeation through a silicalite-1 membrane. Studies in Surface Science and Catalysis, 2004, 154, 1935-1943.	1.5	4
596	Intensification of gas phase catalytic processes in nano-channels of ceramic catalytic membranes. Desalination, 2006, 199, 161-163.	8.2	4
597	Kureha activated carbon characterized by the adsorption of light hydrocarbons. Studies in Surface Science and Catalysis, 2007, , 287-294.	1.5	4
598	Reconciling the Relevant Site Model and dynamically corrected Transition State Theory. Chemical Physics Letters, 2010, 495, 77-79.	2.6	4
599	The Impact of MOF Flexibility Using an Amino Functionalized MOF in Mixed Matrix Membranes for CO2 Separation. Procedia Engineering, 2012, 44, 2121-2123.	1.2	4
600	Performance of Manganese-based Sorbents in High-Temperature Coal Gas Desulfurization. , 1998, , 243-267.		4
601	Permeation and separation behaviour of a silicalite (MFI) membrane. Studies in Surface Science and Catalysis, 1995, 98, 215-216.	1.5	3
602	30-O-02-Characterization and performance of ex-framework FeZSM-5 in catalytic N2O decomposition. Studies in Surface Science and Catalysis, 2001, , 172.	1.5	3
603	4th International conference on structured catalysts and reactors, ICOSCAR-4, Beijing, China, September 25–27, 2013. Catalysis Today, 2013, 216, 1.	4.4	3
604	Innentitelbild: Electronic Metal-Support Interactions in Single-Atom Catalysts (Angew. Chem. 13/2014). Angewandte Chemie, 2014, 126, 3350-3350.	2.0	3
605	Promotion or additive activity? The role of gold on zirconia supported iron oxide in high temperature water-gas shift. Journal of Molecular Catalysis A, 2016, 420, 115-123.	4.8	3
606	Alumina Supported Manganese Catalysts for Low Temperature Selective Catalytic Reduction of no with NH3. Studies in Surface Science and Catalysis, 1993, , 2705-2708.	1.5	2
607	Thermostability of copper-chromium oxide catalysts on alumina support promoted by lanthanum and cerium. Studies in Surface Science and Catalysis, 1995, , 1145-1152.	1.5	2
608	A radiotracer method for measuring the rate of metal volatilisation losses from catalysts. Applied Radiation and Isotopes, 1997, 48, 1521-1524.	1.5	2
609	Kinetics of the Wet Oxidation of Phenol over an Fe/Activated Carbon Catalyst. International Journal of Chemical Reactor Engineering, 2007, 5, .	1.1	2
610	Sulfur as a Selectivity Modifier in a Highly Active Rh/Fe ₂ O ₃ /ZrO ₂ Catalyst for Water–Gas Shift. ChemCatChem, 2014, 6, 2240-2243.	3.7	2
611	A Transient Kinetic Study of the Co-Oxidation Over a Cu-Cr-Catalyst. , 1993, , 473-482.		2
612	Gas injection as a measure to reduce N2O emissions from fluidized bed combustion of coal. Coal Science and Technology, 1995, 24, 1915-1918.	0.0	1

#	Article	IF	CITATIONS
613	Potential of Monolithic Reactors in Catalysis; Multiphase Applications. Materials Research Society Symposia Proceedings, 1998, 549, 3.	0.1	1
614	Highly Active and Stable Pt-USY in the Low-Temperature de-NOx HC-SCR. Reaction Kinetics and Catalysis Letters, 2000, 71, 33-40.	0.6	1
615	18-O-04 - A novel adsorbent for the separation of propane/propene mixtures. Studies in Surface Science and Catalysis, 2001, , 144.	1.5	1
616	Catalysis Engineering on Three Levels. International Journal of Chemical Reactor Engineering, 2003, 1, .	1.1	1
617	Quality enhancement of NaA zeolite membranes. Studies in Surface Science and Catalysis, 2004, , 612-619.	1.5	1
618	Modeling and Design of Monolith Reactors for Three-Phase Processes. Chemical Industries, 2005, , 435-478.	0.1	1
619	Tooling up Heterogeneous Catalysis through Fenton's Chemistry. Detemplation and functionalization of micro- And mesoporous materials Studies in Surface Science and Catalysis, 2006, 162, 37-46.	1.5	1
620	Shaping Covalent Triazine Framework for the Hydrogenation of Carbon Dioxide to Formic Acid. ChemCatChem, 2016, 8, 2173-2173.	3.7	1
621	Novel photocatalysts: general discussion. Faraday Discussions, 2017, 197, 533-546.	3.2	1
622	Catalytic Reaction Engineering. , 2017, , 221-269.		1
623	N2O decomposition on hydrotalcite based catalysts. A mechanistic approach. , 1999, , 343-348.		1
624	Breakthrough of Shallow Activated Carbon Beds Under Constant and Pulsating Flow. AIHA Journal: A Journal for the Science of Occupational and Environmental Health and Safety, 2003, 64, 173-180.	0.4	1
625	95. The effect of heat treatment on alkali carbonate/ carbon systems. Carbon, 1984, 22, 214.	10.3	Ο
626	The characterization of †fly-chars' from coal combustion; the effect of temperature and rank on reactivity, texture and composition. Fuel Processing Technology, 1990, 24, 391-398.	7.2	0
627	Correlation of Bulk and Surface Thermodynamics of Some Transition Metal Oxides; Application to Exhaust Gas Catalysts. Studies in Surface Science and Catalysis, 1993, , 2693-2696.	1.5	0
628	CONTRIBUTION OF CATALYSIS TOWARDS THE REDUCTION OF ATMOSPHERIC AIR POLLUTION: CO2, CFCs, N2O, OZONE. Catalytic Science Series, 1999, , 219-256.	0.0	0
629	Formal reply to letter to the editor â€ [~] Comments on the modeling of a fore void volume in a TAP reactor'. Chemical Engineering Science, 2001, 56, 3927.	3.8	0
630	Two-Phase Segmented Flow in Capillaries and Monolith Reactors. Chemical Industries, 2005, , 393-434.	0.1	0

#	Article	IF	CITATIONS
631	Monoliths as Biocatalytic Reactors: Smart Gas—Liquid Contacting for Process Intensification. ChemInform, 2006, 37, no.	0.0	0
632	The Focused Action of Surface Tension Versus the Brute Force of Turbulence– Scaleable Microchannel-Based Process Intensification using Monoliths. , 0, , 149-164.		0
633	Preface to the Special Issue in Honor of Jacob A. Moulijn. Industrial & Engineering Chemistry Research, 2007, 46, 3859-3862.	3.7	0
634	Femtosecond Pump – Probe Spectroscopy Reveals the Photo-excited State and Charge Transfer of a Photocatalytic Metal-Organic Framework. , 2014, , .		0
635	Hydrocarbon conversion in the production of synthetic fuels: general discussion. Faraday Discussions, 2017, 197, 473-489.	3.2	0
636	Chemical Kinetics of Catalyzed Reactions. , 2017, , 191-220.		0
637	Einblicke in die Verteilung von CO ₂ â€Molekülen und deren zeitliche Entwicklung durch Mikroâ€Bildgebung mittels IR‧pektroskopie und molekulardynamische Modellierung. Angewandte Chemie, 2018, 130, 5250-5255.	2.0	0
638	Catalytic Reactor Engineering $\hat{a} \in$ " Novel Concepts in Production and in Catalyst Testing. , 2000, , 283-300.		0
639	Dual-Bed Catalytic System for Removal of NOx-N2O in Lean-Burn Engine Exhausts. , 2002, , 229-243.		0
640	Thermal decomposition of layered Co-Al hydrotalcite An in situ study. , 2003, , 631-638.		0
641	KINETICS AND MECHANISM OF THE ALKALI CATALYSED GASIFICATION OF CARBON. , 1991, , 295-298.		0
642	Determination of Coal Behavior for Practical Coal Conversion Processes. , 1992, , 75-84.		0
643	Chapter 13. Zeolite Membranes in Catalysis. RSC Catalysis Series, 2017, , 481-518.	0.1	0
644	Nanosheets of non-layered aluminium metal–organic frameworks through a surfactant-assisted method. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e352-e353.	0.1	0
645	CHAPTER 8. Photocatalysis: Past Achievements and Future Trends. RSC Green Chemistry, 0, , 227-269.	0.1	Ο