## Zhigao Hu

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7456181/publications.pdf

Version: 2024-02-01

| 192             | 3,861              | 32                  | 48                  |
|-----------------|--------------------|---------------------|---------------------|
| papers          | citations          | h-index             | g-index             |
| 193<br>all docs | 193 docs citations | 193<br>times ranked | 5117 citing authors |

| #  | Article                                                                                                                                                                                                     | lF               | CITATIONS         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 1  | Unipolar barrier photodetectors based on van der Waals heterostructures. Nature Electronics, 2021, 4, 357-363.                                                                                              | 26.0             | 292               |
| 2  | Vapomechanically Responsive Motion of Microchannelâ€Programmed Actuators. Advanced Materials, 2017, 29, 1702231.                                                                                            | 21.0             | 138               |
| 3  | Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Science Advances, 2021, 7, .                                            | 10.3             | 121               |
| 4  | Effect of oxygen defects on ferromagnetic of undoped ZnO. Journal of Applied Physics, 2011, 110, 013901.                                                                                                    | 2.5              | 99                |
| 5  | Efficient and Holeâ€Transportingâ€Layerâ€Free CsPbl <sub>2</sub> Br Planar Heterojunction Perovskite<br>Solar Cells through Rubidium Passivation. ChemSusChem, 2019, 12, 983-989.                           | 6.8              | 79                |
| 6  | Airâ€Stable Lowâ€Symmetry Narrowâ€Bandgap 2D Sulfide Niobium for Polarization Photodetection. Advanced Materials, 2020, 32, e2005037.                                                                       | 21.0             | 68                |
| 7  | Structural, electronic band transition and optoelectronic properties of delafossite CuGa1â^'xCrxO2 (0) Tj ETQq1 1 18463.                                                                                    | 0.78431<br>6.7   | 4 rgBT /Ove<br>66 |
| 8  | Growth of Bi2O3 Ultrathin Films by Atomic Layer Deposition. Journal of Physical Chemistry C, 2012, 116, 3449-3456.                                                                                          | 3.1              | 62                |
| 9  | Copper ferrites@reduced graphene oxide anode materials for advanced lithium storage applications. Scientific Reports, 2017, 7, 8903.                                                                        | 3.3              | 62                |
| 10 | Largeâ€Scale Growth and Fieldâ€Effect Transistors Electrical Engineering of Atomicâ€Layer SnS <sub>2</sub> . Small, 2019, 15, e1904116.                                                                     | 10.0             | 58                |
| 11 | Tuning Coupling Behavior of Stacked Heterostructures Based on MoS2, WS2, and WSe2. Scientific Reports, 2017, 7, 44712.                                                                                      | 3.3              | 56                |
| 12 | Superior adsorption and photoinduced carries transfer behaviors of dandelion-shaped Bi2S3@MoS2: experiments and theory. Scientific Reports, 2017, 7, 42484.                                                 | 3.3              | 52                |
| 13 | High Responsivity and External Quantum Efficiency Photodetectors Based on Solution-Processed Ni-Doped CuO Films. ACS Applied Materials & Samp; Interfaces, 2020, 12, 11797-11805.                           | 8.0              | 51                |
| 14 | Enhanced carrier separation in ferroelectric In <sub>2</sub> Se <sub>3</sub> /MoS <sub>2</sub> van der Waals heterostructure. Journal of Materials Chemistry C, 2020, 8, 11160-11167.                       | 5.5              | 44                |
| 15 | Intrinsic evolutions of optical functions, band gap, and higher-energy electronic transitions in VO2 film near the metal-insulator transition region. Applied Physics Letters, 2011, 99, .                  | 3.3              | 43                |
| 16 | A type-II GaSe/GeS heterobilayer with strain enhanced photovoltaic properties and external electric field effects. Journal of Materials Chemistry C, 2020, 8, 89-97.                                        | 5.5              | 42                |
| 17 | Structure, Optical, and Room-Temperature Ferromagnetic Properties of Pure and Transition-Metal-(Cr,) Tj ETQq1 I Chemistry C, 2010, 114, 11951-11957.                                                        | l 0.78431<br>3.1 | 4 rgBT /Ove<br>41 |
| 18 | Interface Modification for Planar Perovskite Solar Cell Using Room-Temperature Deposited Nb <sub>2</sub> O <sub>5</sub> as Electron Transportation Layer. ACS Applied Energy Materials, 2018, 1, 2000-2006. | 5.1              | 41                |

| #  | Article                                                                                                                                                                                                                                                                       | IF                     | Citations |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|
| 19 | <i>In situ</i> carbon encapsulation of vertical MoS <sub>2</sub> arrays with SnO <sub>2</sub> for durable high rate lithium storage: dominant pseudocapacitive behavior. Nanoscale, 2018, 10, 741-751.                                                                        | <b>5.</b> 6            | 41        |
| 20 | Titanium-induced structure modification for thermal stability enhancement of a GeTeTi phase change material. RSC Advances, 2015, 5, 24966-24974.                                                                                                                              | 3.6                    | 40        |
| 21 | Direct Observation of Landau Level Resonance and Mass Generation in Dirac Semimetal Cd <sub>3</sub> As <sub>2</sub> Thin Films. Nano Letters, 2017, 17, 2211-2219.                                                                                                            | 9.1                    | 40        |
| 22 | Highly durable and cycle-stable lithium storage based on MnO nanoparticle-decorated 3D interconnected CNT/graphene architecture. Nanoscale, 2018, 10, 13140-13148.                                                                                                            | 5 <b>.</b> 6           | 40        |
| 23 | Temperature dependence of phonon modes, dielectric functions, and interband electronic transitions in Cu2ZnSnS4 semiconductor films. Physical Chemistry Chemical Physics, 2012, 14, 9936.                                                                                     | 2.8                    | 38        |
| 24 | Temperature dependence of electronic transitions and optical properties in multiferroic BiFeO3 nanocrystalline film determined from transmittance spectra. Applied Physics Letters, 2010, 97, .                                                                               | 3.3                    | 37        |
| 25 | Photoluminescence and low-threshold lasing of ZnO nanorod arrays. Optics Express, 2012, 20, 14857.                                                                                                                                                                            | 3.4                    | 37        |
| 26 | Enhanced performance of carbon-based planar CsPbBr3 perovskite solar cells with room-temperature sputtered Nb2O5 electron transport layer. Solar Energy, 2019, 191, 263-271.                                                                                                  | 6.1                    | 37        |
| 27 | Optical properties of pulsed laser deposited rutile titanium dioxide films on quartz substrates determined by Raman scattering and transmittance spectra. Applied Physics Letters, 2008, 93, 181910.                                                                          | 3.3                    | 36        |
| 28 | Electronic transition and electrical transport properties of delafossite CuCr1â^'xMgxO2 (0 â‰â€‰x â9 films prepared by the sol-gel method: A composition dependence study. Journal of Applied Physics, 2013, 114, 163526.                                                     | ‰â€‰12<br>2 <b>.</b> 5 | 2%)<br>36 |
| 29 | Enhanced Photoelectrochemical Activity of ZnO-Coated TiO2 Nanotubes and Its Dependence on ZnO Coating Thickness. Nanoscale Research Letters, 2016, 11, 104.                                                                                                                   | 5.7                    | 35        |
| 30 | A novel Sn particles coated composite of SnO /ZnO and N-doped carbon nanofibers as high-capacity and cycle-stable anode for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 819, 153036.                                                                        | 5 <b>.</b> 5           | 34        |
| 31 | Optoelectronic properties and polar nano-domain behavior of sol–gel derived K <sub>0.5</sub> Na <sub>0.5</sub> Nb <sub>1∳x</sub> Mn <sub>x</sub> O <sub>3∳δ</sub> nanocrystalline films with enhanced ferroelectricity. Journal of Materials Chemistry C, 2015, 3, 8225-8234. | <b>5.</b> 5            | 33        |
| 32 | Manipulations from oxygen partial pressure on the higher energy electronic transition and dielectric function of VO <sub>2</sub> films during a metalâ€"insulator transition process. Journal of Materials Chemistry C, 2015, 3, 5033-5040.                                   | 5 <b>.</b> 5           | 33        |
| 33 | Superior and Reversible Lithium Storage of SnO <sub>2</sub> /Graphene Composites by Silicon Doping and Carbon Sealing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20824-20837.                                                                                       | 8.0                    | 33        |
| 34 | Significantly enhanced lithium storage by in situ grown CoS2@MoS2 core–shell nanorods anchored on carbon cloth. Chemical Engineering Journal, 2021, 420, 127714.                                                                                                              | 12.7                   | 33        |
| 35 | Enhanced photoelectrochemical activity of vertically aligned ZnO-coated TiO2 nanotubes. Applied Physics Letters, 2014, 104, 053114.                                                                                                                                           | 3.3                    | 31        |
| 36 | Electronic structures and excitonic transitions in nanocrystalline iron-doped tin dioxide diluted magnetic semiconductor films: an optical spectroscopic study. Physical Chemistry Chemical Physics, 2011, 13, 6211.                                                          | 2.8                    | 30        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IF               | CITATIONS          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 37 | Temperature-dependent Raman scattering and multiple phase coexistence in relaxor ferroelectric Pb(In1â^•2Nb1â^•2)O3-Pb(Mg1â^•3Nb2â^•3)O3-PbTiO3 single crystals. Journal of Applied Physics, 2013, 114, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5              | 30                 |
| 38 | Structural distortion, phonon behavior and electronic transition of Aurivillius layered ferroelectric CaBi2Nb2â^'W O9 ceramics. Journal of Alloys and Compounds, 2015, 653, 168-174.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 <b>.</b> 5     | 30                 |
| 39 | Temperature dependent phonon evolutions and optical properties of highly <i>c</i> -axis oriented CuGaO2 semiconductor films grown by the sol-gel method. Applied Physics Letters, 2011, 99, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.3              | 29                 |
| 40 | Probing Effective Outâ€ofâ€Plane Piezoelectricity in van der Waals Layered Materials Induced by Flexoelectricity. Small, 2019, 15, e1903106.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.0             | 29                 |
| 41 | Temperature and concentration dependent crystallization behavior of Ge <sub>2</sub> Sb <sub>2</sub> Te <sub>5</sub> phase change films: tungsten doping effects. RSC Advances, 2014, 4, 57218-57222.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.6              | 28                 |
| 42 | High-capacity and long-life lithium storage boosted by pseudocapacitance in three-dimensional MnO–Cu–CNT/graphene anodes. Nanoscale, 2018, 10, 2944-2954.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 <b>.</b> 6     | 28                 |
| 43 | Composition dependence of dielectric function in ferroelectric BaCoxTi1â^'xO3 films grown on quartz substrates by transmittance spectra. Applied Physics Letters, 2008, 92, 081904.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3              | 27                 |
| 44 | External Electric Field Manipulations on Structural Phase Transition of Vanadium Dioxide Nanoparticles and Its Application in Field Effect Transistor. Journal of Physical Chemistry C, 2011, 115, 23558-23563.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.1              | 26                 |
| 45 | Mixed-Dimensional Van der Waals Heterostructure Photodetector. ACS Applied Materials & Samp; Interfaces, 2020, 12, 18674-18682.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.0              | 26                 |
| 46 | Composition Dependence of Microstructure, Phonon Modes, and Optical Properties in Rutile TiO <sub>2</sub> :Fe Nanocrystalline Films Prepared by a Nonhydrolytic Solâ^'Gel Route. Journal of Physical Chemistry C, 2010, 114, 15157-15164.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.1              | 25                 |
| 47 | Effects from <i>A</i> -site substitution on morphotropic phase boundary and phonon modes of (Pb1â€"1.5 <i>x</i> A <i>X</i> AAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5              | 25                 |
| 48 | Robust three-dimensional porous rGO aerogel anchored with ultra-fine $\hat{l}$ ±-Fe2O3 nanoparticles exhibit dominated pseudocapacitance behavior for superior lithium storage. Journal of Alloys and Compounds, 2020, 816, 152627.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>5.</b> 5      | 25                 |
| 49 | Ultrabroadband Tellurium Photoelectric Detector from Visible to Millimeter Wave. Advanced Science, 2022, 9, e2103873.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.2             | 25                 |
| 50 | Annealing time modulated the film microstructures and electrical properties of P-type CuO field effect transistors. Applied Surface Science, 2019, 481, 632-636.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.1              | 24                 |
| 51 | Electric field and temperature-induced phase transition in Mn-doped Na1/2Bi1/2TiO3-5.0 at.%BaTiO3 single crystals investigated by micro-Raman scattering. Applied Physics Letters, 2014, 104, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.3              | 23                 |
| 52 | Temperature-dependent lattice dynamics and electronic transitions in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>0.93</mml:mn><mml:mi mathvariant="normal">P</mml:mi><mml:mtext>b</mml:mtext><mml:mo>(</mml:mo><mml:mrow><mml:msu .<="" 2015,="" 91,="" b,="" physical="" review="" td=""><td>b&gt; &lt;3:2<br/>mml:m</td><td>ni&gt;<del>2</del>3</td></mml:msu></mml:mrow></mml:math>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b> <3:2<br>mml:m | ni> <del>2</del> 3 |
| 53 | Phase transitions and phonon thermodynamics in giant piezoelectric Mn-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">K</mml:mi><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><m< td=""><td>ub 3 2<br/></td><td>mi</td></m<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:math> | ub 3 2<br>       | mi                 |
| 54 | Simultaneously achieving large energy density and high efficiency in NaNbO <sub>3</sub> â€"(Sr,Bi)TiO <sub>3</sub> â€"Bi(Mg,Zr)O <sub>3</sub> relaxor ferroelectric ceramics for dielectric capacitor applications. Journal of Materials Chemistry A, 2022, 10, 13907-13916.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.3             | 23                 |

| #  | Article                                                                                                                                                                                                                                                                                                                                       | IF                 | CITATIONS              |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|
| 55 | Ultraviolet-infrared dielectric functions and electronic band structures of monoclinic VO2 nanocrystalline film: Temperature-dependent spectral transmittance. Journal of Applied Physics, 2011, 110, 013504.                                                                                                                                 | 2.5                | 22                     |
| 56 | Abnormal temperature dependence of interband electronic transitions in relaxor-based ferroelectric $(1\hat{a}^2x)Pb(Mg1/3Nb2/3)O3\hat{a}^2xPbTiO3$ (x=0.24 and 0.31) single crystals. Applied Physics Letters, 2011, 98, .                                                                                                                    | 3.3                | 22                     |
| 57 | Spin-phonon interactions of multiferroic Bi4Ti3O12-BiFeO3 ceramics: Low-temperature Raman scattering and infrared reflectance spectra investigations. Journal of Applied Physics, 2014, 115, .                                                                                                                                                | 2.5                | 22                     |
| 58 | Origin of Improved Photoelectrochemical Water Splitting in Mixed Perovskite Oxides. Advanced Energy Materials, 2018, 8, 1801972.                                                                                                                                                                                                              | 19.5               | 22                     |
| 59 | Inherent optical behavior and structural variation in Na0.5Bi0.5TiO3-6%BaTiO3 revealed by temperature dependent Raman scattering and ultraviolet-visible transmittance. Applied Physics Letters, 2014, 104, .                                                                                                                                 | 3.3                | 21                     |
| 60 | Efficient carbon-based planar CsPbBr3 perovskite solar cells with Li-doped amorphous Nb2O5 layer. Journal of Alloys and Compounds, 2020, 842, 155984.                                                                                                                                                                                         | 5.5                | 21                     |
| 61 | Coexistence of Ferroelectric Phases and Phonon Dynamics in Relaxor Ferroelectric Na <sub>0.5</sub> Bi <sub>0.5</sub> TiO <sub>3</sub> Based Single Crystals. Journal of the American Ceramic Society, 2016, 99, 2408-2414.                                                                                                                    | 3.8                | 20                     |
| 62 | The electro-optic mechanism and infrared switching dynamic of the hybrid multilayer VO2/Al:ZnO heterojunctions. Scientific Reports, 2017, 7, 4425.                                                                                                                                                                                            | 3.3                | 20                     |
| 63 | Manipulating Behaviors from Heavy Tungsten Doping on Interband Electronic Transition and Orbital Structure Variation of Vanadium Dioxide Films. ACS Applied Materials & Emp; Interfaces, 2018, 10, 30548-30557.                                                                                                                               | 8.0                | 20                     |
| 64 | Transition-Metal Substitution-Induced Lattice Strain and Electrical Polarity Reversal in Monolayer WS <sub>2</sub> . ACS Applied Materials & Interfaces, 2020, 12, 18650-18659.                                                                                                                                                               | 8.0                | 20                     |
| 65 | Intrinsic evolutions of dielectric function and electronic transition in tungsten doping Ge2Sb2Te5 phase change films discovered by ellipsometry at elevated temperatures. Applied Physics Letters, 2015, 106, .                                                                                                                              | 3.3                | 19                     |
| 66 | Exploring lattice symmetry evolution with discontinuous phase transition by Raman scattering criteria: The single-crystalline <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:m< td=""><td>ni) <b>Ij</b>ÆTQo</td><td>10 <b>0</b>90 rgBT /C</td></mml:m<></mml:mrow></mml:msub></mml:math> | ni) <b>Ij</b> ÆTQo | 10 <b>0</b> 90 rgBT /C |
| 67 | model system. Physical Review B, 2019, 100, . Ferroelectric and dipole control of band alignment in the two dimensional InTe/In <sub>2</sub> Se <sub>3</sub> heterostructure. Journal of Physics Condensed Matter, 2020, 32, 055703.                                                                                                          | 1.8                | 19                     |
| 68 | Enhanced Crystallization Behaviors of Silicon-Doped Sb2Te Films: Optical Evidences. Scientific Reports, 2016, 6, 33639.                                                                                                                                                                                                                       | 3.3                | 17                     |
| 69 | Free-anchored Nb <sub>2</sub> O <sub>5</sub> @graphene networks for ultrafast-stable lithium storage. Nanotechnology, 2018, 29, 185401.                                                                                                                                                                                                       | 2.6                | 17                     |
| 70 | Decoding Phases of Matter by Machine-Learning Raman Spectroscopy. Physical Review Applied, 2019, 12, .                                                                                                                                                                                                                                        | 3.8                | 17                     |
| 71 | Enhanced photovoltaic response of lead-free ferroelectric solar cells based on (K,Bi)(Nb,Yb)O <sub>3</sub> films. Physical Chemistry Chemical Physics, 2020, 22, 3691-3701.                                                                                                                                                                   | 2.8                | 17                     |
| 72 | Optically Modulated HfS <sub>2</sub> -Based Synapses for Artificial Vision Systems. ACS Applied Materials & Samp; Interfaces, 2021, 13, 50132-50140.                                                                                                                                                                                          | 8.0                | 17                     |

| #  | Article                                                                                                                                                                                                                                                                                                       | IF                                     | CITATIONS  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------|
| 73 | Applications of Nickelâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Energy and Sustainability Research, 2022, 3, .                                                                                                                                                                       | 5.8                                    | 17         |
| 74 | Electronic properties of nanocrystalline LaNiO3 and La0.5Sr0.5CoO3 conductive films grown on silicon substrates determined by infrared to ultraviolet reflectance spectra. Applied Physics Letters, 2009, 94, 221104.                                                                                         | 3.3                                    | 16         |
| 75 | Evolution of orientation degree, lattice dynamics and electronic band structure properties in nanocrystalline lanthanum-doped bismuth titanate ferroelectric films by chemical solution deposition. Dalton Transactions, 2011, 40, 7967.                                                                      | 3.3                                    | 16         |
| 76 | Abnormal electronic transition variations of lanthanum-modified lead zironate stannate titanate ceramics near morphotropic phase boundary: A spectroscopic evidence. Applied Physics Letters, 2012, 101, .                                                                                                    | 3.3                                    | 16         |
| 77 | Fabrication of Cu <sub>2</sub> ZnSnS <sub>4</sub> absorbers by sulfurization of Snâ€rich precursors. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1493-1497.                                                                                                                      | 1.8                                    | 16         |
| 78 | Enhanced Fröhlich interaction of semiconductor cuprous oxide films determined by temperatureâ€dependent Raman scattering and spectral transmittance. Journal of Raman Spectroscopy, 2013, 44, 142-146.                                                                                                        | 2.5                                    | 16         |
| 79 | Lowâ€temperature sintering and electrical properties of Sr <sub>2</sub> Nb <sub>2</sub> O <sub>7</sub> piezoceramics by CuO addition. Journal of the American Ceramic Society, 2017, 100, 2397-2401.                                                                                                          | 3.8                                    | 16         |
| 80 | Blue luminescent amorphous carbon nanoparticles synthesized by microplasma processing of folic acid. Plasma Processes and Polymers, 2018, 15, 1700088.                                                                                                                                                        | 3.0                                    | 16         |
| 81 | Annealing effects on sulfur vacancies and electronic transport of MoS2 films grown by pulsed-laser deposition. Applied Physics Letters, 2019, 115, .                                                                                                                                                          | 3.3                                    | 16         |
| 82 | Temperature and pressure manipulation of magnetic ordering and phonon dynamics with phase transition in multiferroic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>GdFeO</mml:mi><mml:mn>3<td>ıml:mn&gt;<!--</td--><td>mml:msub&gt;&lt;</td></td></mml:mn></mml:msub></mml:math> | ıml:mn> </td <td>mml:msub&gt;&lt;</td> | mml:msub>< |
| 83 | Flexo-photoelectronic effect in n-type/p-type two-dimensional semiconductors and a deriving light-stimulated artificial synapse. Materials Horizons, 2021, 8, 1985-1997.                                                                                                                                      | 12.2                                   | 16         |
| 84 | Effects of LaNiO3 bottom electrode on structural and dielectric properties of CaCu3Ti4O12 films fabricated by sol-gel method. Applied Physics Letters, 2008, 92, 042901.                                                                                                                                      | 3.3                                    | 15         |
| 85 | Temperature-dependent dielectric functions and interband critical points of relaxor lead hafnate-modified PbSc <sub>1/2</sub> Ta <sub>1/2</sub> O <sub>3</sub> ferroelectric ceramics by spectroscopic ellipsometry. Applied Physics Letters, 2013, 102, 151908.                                              | 3.3                                    | 15         |
| 86 | Temperature Dependence of Phonon Modes, Optical Constants, and Optical Band Gap in Two-Dimensional ReS2 Films. Journal of Physical Chemistry C, 2018, 122, 29464-29469.                                                                                                                                       | 3.1                                    | 15         |
| 87 | Composition Dependence of Optical Properties and Band Structures in p-Type Ni-Doped CuO Films: Spectroscopic Experiment and First-Principles Calculation. Journal of Physical Chemistry C, 2019, 123, 27165-27171.                                                                                            | 3.1                                    | 15         |
| 88 | Two-dimensional mesoporous sensing materials. Chinese Chemical Letters, 2020, 31, 521-524.                                                                                                                                                                                                                    | 9.0                                    | 15         |
| 89 | New Pressure Stabilization Structure in Two-Dimensional PtSe <sub>2</sub> . Journal of Physical Chemistry Letters, 2020, 11, 7342-7349.                                                                                                                                                                       | 4.6                                    | 15         |
| 90 | 2D Transition Metal Dichalcogenide with Increased Entropy for Piezoelectric Electronics. Advanced Materials, 2022, 34, e2201630.                                                                                                                                                                              | 21.0                                   | 15         |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                | IF                                         | CITATIONS         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|
| 91  | Electronic transitions of the transparent delafossite-type CuGa <sub>1â°'x</sub> Cr <sub>x</sub> O <sub>2</sub> system: first-principles calculations and temperature-dependent spectral experiments. Journal of Materials Chemistry C, 2017, 5, 183-191.                                                                                                                                                                                              | 5.5                                        | 14                |
| 92  | Doping effect on the phase transition temperature in ferroelectric SrBi <sub>2â^'<i>x</i>kkob&gt;Nd<i><sub>x</sub></i>Nb<sub>2</sub>O<sub>9</sub> layerâ€structured ceramics: a microâ€Raman scattering study. Journal of Raman Spectroscopy, 2012, 43, 583-587.</sub>                                                                                                                                                                                 | 2.5                                        | 13                |
| 93  | Relationship between negative thermal expansion and lattice dynamics in a tetragonal PbTiO <sub>3</sub> –Bi(Mg <sub>1/2</sub> Ti <sub>1/2</sub> )O <sub>3</sub> perovskite single crystal. RSC Advances, 2016, 6, 3159-3164.                                                                                                                                                                                                                           | 3.6                                        | 13                |
| 94  | Spectral assignments in the infrared absorption region and anomalous thermal hysteresis in the interband electronic transition of vanadium dioxide films. Physical Chemistry Chemical Physics, 2016, 18, 6239-6246.                                                                                                                                                                                                                                    | 2.8                                        | 13                |
| 95  | Three-dimensional porous Co <sub>3</sub> O <sub>4</sub> â€"CoO@GO composite combined with N-doped carbon for superior lithium storage. Nanotechnology, 2019, 30, 425404.                                                                                                                                                                                                                                                                               | 2.6                                        | 13                |
| 96  | Ferroelectric-Modulated MoS <sub>2</sub> Field-Effect Transistors as Multilevel Nonvolatile Memory. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44902-44911.                                                                                                                                                                                                                                                                                   | 8.0                                        | 13                |
| 97  | Sandwiched CdS/Au/ZnO Nanorods with Enhanced Ultraviolet and Visible Photochemical and Photoelectrochemical Properties via Semiconductor and Metal Cosensitizing. Journal of Physical Chemistry C, 2020, 124, 10941-10950.                                                                                                                                                                                                                             | 3.1                                        | 13                |
| 98  | High Quality <i>P</i> -Type Mg-Doped β-Ga <sub>2</sub> O <sub>3â€"Î′</sub> Films for Solar-Blind Photodetectors. IEEE Electron Device Letters, 2022, 43, 580-583.                                                                                                                                                                                                                                                                                      | 3.9                                        | 13                |
| 99  | Structure evolution mechanism of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Na</mml:mi><mml:mi>mathvariant="normal"&gt;W</mml:mi><mml:mi><mml:mi></mml:mi></mml:mi>000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000</mml:msub></mml:mrow></mml:math>                                                         | nrow> <m< td=""><td>ml:mn&gt;0.5</td></m<> | ml:mn>0.5         |
| 100 | Enhanced exciton emission behavior and tunable band gap of ternary W(S <sub>x</sub> Se <sub>1â^x</sub> ) <sub>2</sub> monolayer: temperature dependent optical evidence and first-principles calculations. Nanoscale, 2018, 10, 11553-11563.                                                                                                                                                                                                           | 5.6                                        | 12                |
| 101 | P–N conversion of charge carrier types and high photoresponsive performance of composition modulated ternary alloy W(SxSe1â~'x)2 field-effect transistors. Nanoscale, 2020, 12, 15304-15317.                                                                                                                                                                                                                                                           | 5.6                                        | 12                |
| 102 | Phase diagram with an antiferroelectric/ferroelectric phase boundary in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>AgNbO</mml:mi><nergy-storage .<="" 104,="" 2021,="" and="" b,="" by="" ceramics="" dynamics="" electronic="" lattice="" physical="" review="" td="" transitions.=""><td>nm<b>8r⊉</b>n&gt;3</td><td><!--<b-->mi@nl:mn&gt;<!--</td--></td></nergy-storage></mml:msub></mml:mrow></mml:math> | nm <b>8r⊉</b> n>3                          | <b mi@nl:mn> </td |
| 103 | Phonon mode and phase transition behaviors of (1-x)PbSc1/2Ta1/2O3-xPbHfO3 relaxor ferroelectric ceramics determined by temperature-dependent Raman spectra. Applied Physics Letters, 2011, 99, 041902.                                                                                                                                                                                                                                                 | 3.3                                        | 11                |
| 104 | Temperature dependent phonon Raman scattering of Heusler alloy Co2MnxFe1â^'xAl/GaAs films grown by molecular-beam epitaxy. RSC Advances, 2012, 2, 9899.                                                                                                                                                                                                                                                                                                | 3.6                                        | 11                |
| 105 | Metallic attenuated total reflection infrared hollow fibers for robust optical transmission systems. Applied Physics Letters, 2014, 105, .                                                                                                                                                                                                                                                                                                             | 3.3                                        | 11                |
| 106 | Evaluation of lattice dynamics, infrared optical properties and visible emissions of hexagonal GeO <sub>2</sub> films prepared by liquid phase deposition. Journal of Materials Chemistry C, 2017, 5, 12792-12799.                                                                                                                                                                                                                                     | 5 <b>.</b> 5                               | 11                |
| 107 | Phonon behaviors and dielectric functions in Bi 0.5 Na 0.5 TiO 3 â€based ceramics by Raman scattering and optical ellipsometry. Journal of the American Ceramic Society, 2018, 102, 2791.                                                                                                                                                                                                                                                              | 3.8                                        | 11                |
| 108 | Facile fabrication of 3D porous MnO@GS/CNT architecture as advanced anode materials for high-performance lithium-ion battery. Nanotechnology, 2018, 29, 315403.                                                                                                                                                                                                                                                                                        | 2.6                                        | 11                |

| #   | Article                                                                                                                                                                                                                                                | IF             | Citations |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 109 | Controllable fabrication of Bi2O3 nanoparticles by atomic layer deposition on TiO2 films and application in photodegradation. Solar Energy Materials and Solar Cells, 2020, 204, 110218.                                                               | 6.2            | 11        |
| 110 | Strong charge-density-wave order of large-area 2D metallic VSe2 nanosheets discovered by temperature-dependent Raman spectra. Applied Physics Letters, 2020, 116, 033102.                                                                              | 3.3            | 11        |
| 111 | CuO: Synthesis in a Highly Excited Oxygen-Copper Plasma and Decoration of ZnO Nanorods for Enhanced Photocatalysis. Journal of Physical Chemistry C, 2021, 125, 9119-9128.                                                                             | 3.1            | 11        |
| 112 | Improved electric behaviors of the Pt/Bi $1\hat{a}$ °xLaxFe0.92Mn0.08O3/n+-Si heterostructure for nonvolatile ferroelectric random-access memory. Journal of Materials Chemistry C, 2013, 1, 6252.                                                     | 5.5            | 10        |
| 113 | Intrinsic relationship between electronic structures and phase transition of SrBi2â^'xNdxNb2O9 ceramics from ultraviolet ellipsometry at elevated temperatures. Journal of Applied Physics, 2014, 115, 054107.                                         | 2.5            | 10        |
| 114 | Effects of deposition methods and processing techniques on band gap, interband electronic transitions, and optical absorption in perovskite CH3NH3Pbl3 films. Applied Physics Letters, 2017, 111, .                                                    | 3.3            | 10        |
| 115 | Full three-dimensional morphology evolution of amorphous thin films for atomic layer deposition. AIP Advances, 2018, 8, .                                                                                                                              | 1.3            | 10        |
| 116 | A novel composite of SnO nanoparticles and SiO2@N-doped carbon nanofibers with durable lifespan for diffusion-controlled lithium storage. Journal of Alloys and Compounds, 2022, 897, 162703.                                                          | 5.5            | 10        |
| 117 | Annealing behaviors of structural, interfacial and optical properties of HfO2 thin films prepared by plasma assisted reactive pulsed laser deposition. Journal of Materials Research, 2010, 25, 680-686.                                               | 2.6            | 9         |
| 118 | Diversity of electronic transitions and photoluminescence properties in nanocrystalline Mn/Fe-doped tin dioxide semiconductor films: An effect from oxygen pressure. Journal of Applied Physics, 2011, 110, 123502.                                    | 2.5            | 9         |
| 119 | Temperature dependent photoluminescence properties of needle-like ZnO nanostructures deposited on carbon nanotubes. Applied Physics A: Materials Science and Processing, 2011, 105, 463-468.                                                           | 2.3            | 9         |
| 120 | Electronic transitions and dielectric functions of relaxor ferroelectric Pb(In1â^•2Nb1â^•2)O3-Pb(Mg1â^•3Nb2â^•3)O3-PbTiO3 single crystals: Temperature dependent spectroscopic stu Applied Physics Letters, 2014, 104, .                               | dy <b>s.</b> 3 | 9         |
| 121 | Lattice Dynamics, Dielectric Constants, and Phase Diagram of Bismuth Layered Ferroelectric Bi <sub>3</sub> Ti <sub>1â^²<i>x</i></sub> W <sub><i>x</i></sub> NbO <sub>9+Î</sub> Ceramics. Journal of the American Ceramic Society, 2016, 99, 3610-3615. | 3.8            | 9         |
| 122 | <i>In Situ</i> Exploration of Thermal-Induced Domain Evolution with Phase Transition in LiNbO <sub>3</sub> -Modified K <sub>0.5</sub> Na <sub>0.5</sub> NbO <sub>3</sub> Single Crystal. Journal of Physical Chemistry C, 2017, 121, 14322-14329.      | 3.1            | 9         |
| 123 | Interlayer coupling and the phase transition mechanism of stacked MoS <sub>2</sub> /TaS <sub>2</sub> heterostructures discovered using temperature dependent Raman and photoluminescence spectroscopy. RSC Advances, 2018, 8, 21968-21974.             | 3.6            | 9         |
| 124 | Probing electromechanical behaviors by datacube piezoresponse force microscopy in ambient and aqueous environments. Nanotechnology, 2019, 30, 235701.                                                                                                  | 2.6            | 9         |
| 125 | Influence of CsPbBr3/TiO2 interfaces deposited with magnetron sputtering and spin-coating methods on the open voltage deficit and efficiency of all-inorganic CsPbBr3 planar solar cells. Journal of Alloys and Compounds, 2021, 860, 157900.          | 5.5            | 9         |
| 126 | ZnS Covering of ZnO Nanorods for Enhancing UV Emission from ZnO. Journal of Physical Chemistry C, 2021, 125, 13732-13740.                                                                                                                              | 3.1            | 9         |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                  | IF                                      | CITATIONS          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------|
| 127 | Strain and electric field tunable electronic and optical properties in antimonene/C3N van der Waals heterostructure. Solid State Sciences, 2021, 122, 106771.                                                                                                                                                                                                            | 3.2                                     | 9                  |
| 128 | Feasible Way to Achieve Multifunctional (K, Na)NbO <sub>3</sub> -Based Ceramics: Controlling Long-Range Ferroelectric Ordering. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60227-60240.                                                                                                                                                                         | 8.0                                     | 9                  |
| 129 | Enhancement effects of interlayer orbital hybridization in Janus MoSSe and tellurene heterostructures for photovoltaic applications. Physical Review Materials, 2021, 5, .                                                                                                                                                                                               | 2.4                                     | 9                  |
| 130 | Temperature dependent Raman scattering and far-infrared reflectance spectra of MgO modified Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ceramics: A composition effect. Journal of Applied Physics, 2014, 116, 093513.                                                                                                                                                              | 2.5                                     | 8                  |
| 131 | Spin-manipulated phonon dynamics during magnetic phase transitions in triangular lattice antiferromagnet CuCr <sub>1â^3x</sub> Mg <sub>x</sub> O <sub>2</sub> semiconductor films. RSC Advances, 2016, 6, 27136-27142.                                                                                                                                                   | 3.6                                     | 8                  |
| 132 | Lattice dynamics, phase transition, and tunable fundamental band gap of photovoltaic (K,Ba)(Ni,Nb) <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mrow><mml:mn>3</mml:mn><mml:mo>â^'</mml:mo><mml:mi>δ<td>nml:mi&gt;<!--</td--><td>mml:mrow&gt; &lt;</td></td></mml:mi></mml:mrow></mml:msub></mml:math> | nml:mi> </td <td>mml:mrow&gt; &lt;</td> | mml:mrow> <        |
| 133 | Controllable interlayer space effects of layered potassium triniobate nanoflakes on enhanced pH dependent adsorption-photocatalysis behaviors. Scientific Reports, 2018, 8, 6616.                                                                                                                                                                                        | 3.3                                     | 8                  |
| 134 | Self-assembly of a lateral quasi-Ohmic CuInSe2/InSe isotype heterojunction for flexible devices by pulsed laser deposition. Applied Physics Letters, 2019, $115$ , .                                                                                                                                                                                                     | 3.3                                     | 8                  |
| 135 | Precursor solution temperature dependence of the optical constants, band gap and Urbach tail in organic–inorganic hybrid halide perovskite films. Journal Physics D: Applied Physics, 2019, 52, 045103.                                                                                                                                                                  | 2.8                                     | 8                  |
| 136 | Electrical characteristics and carrier injection mechanisms of atomic layer deposition synthesized n-SnO <sub>2</sub> /p-Si heterojunction. Materials Research Express, 2019, 6, 035909.                                                                                                                                                                                 | 1.6                                     | 8                  |
| 137 | Asymmetric Au Electrodes-Induced Self-Powered Organic–Inorganic Perovskite Photodetectors. IEEE Transactions on Electron Devices, 2021, 68, 1149-1154.                                                                                                                                                                                                                   | 3.0                                     | 8                  |
| 138 | High Conductance Margin for Efficient Neuromorphic Computing Enabled by Stacking Nonvolatile van der Waals Transistors. Physical Review Applied, 2021, 16, .                                                                                                                                                                                                             | 3.8                                     | 8                  |
| 139 | Manganese doping effects on interband electronic transitions, lattice vibrations, and dielectric functions of perovskite-type Ba0.4Sr0.6TiO3 ferroelectric ceramics. Applied Physics A: Materials Science and Processing, 2012, 106, 877-884.                                                                                                                            | 2.3                                     | 7                  |
| 140 | Electronic structure and optical responses of nanocrystalline BiGaO3 films: A combination study of experiment and theory. Journal of Applied Physics, 2014, 115, .                                                                                                                                                                                                       | 2.5                                     | 7                  |
| 141 | Difference analysis model for the mismatch effect and substrate-induced lattice deformation in atomically thin materials. Physical Review B, $2018$ , $98$ , .                                                                                                                                                                                                           | 3.2                                     | 7                  |
| 142 | <i>In situ</i> exploration of the thermodynamic evolution properties in the type II interface from the WSe <sub>2</sub> â€"WS <sub>2</sub> lateral heterojunction. Nanotechnology, 2018, 29, 435703.                                                                                                                                                                     | 2.6                                     | 7                  |
| 143 | Effects of composition and temperature on the exciton emission behaviors of Mo(S <sub> <i>x</i>) Tj ETQq1 1 C 2020, 31, 155703.</sub>                                                                                                                                                                                                                                    | ).784314 i<br>2.6                       | rgBT /Overloc<br>7 |
| 144 | PLD-derived Ge2Sb2Te5 phase-change films with extreme bending stability for flexible device applications. Applied Physics Letters, 2020, 116, .                                                                                                                                                                                                                          | 3.3                                     | 7                  |

| #   | Article                                                                                                                                                                                                                                                                               | IF                | CITATIONS                |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|
| 145 | Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity. Npj 2D Materials and Applications, 2021, 5, .                                                                                                                    | 7.9               | 7                        |
| 146 | Flexible Organic Thin-Film Transistors With High Mechanical Stability on Polyimide Substrate by Chemically Plated Silver Electrodes. IEEE Transactions on Electron Devices, 2021, 68, 5120-5126.                                                                                      | 3.0               | 7                        |
| 147 | Constructing polymers towards ultrathin nanosheets with dual mesopores and intrinsic photoactivity. Chemical Communications, 2020, 56, 3191-3194.                                                                                                                                     | 4.1               | 7                        |
| 148 | Tunable Multiâ€Bit Nonvolatile Memory Based on Ferroelectric Fieldâ€Effect Transistors. Advanced Electronic Materials, 2022, 8, .                                                                                                                                                     | 5.1               | 7                        |
| 149 | The A-site driven phase transition procedure of (Pb <sub>0.97 (Pb<sub>0.97</sub>La<sub>0.02</sub>)(Zr<sub>0.42</sub>Sn<sub>0.40</sub>Ti<sub>0.18</sub>)O<sub>3&lt; ceramics: An evidence from electronic structure variation. Applied Physics Letters, 2013, 103, 192910.</sub></sub> | sub>              | 6                        |
| 150 | Boosted adsorption–photocatalytic activities and potential lithium intercalation applications of layered potassium hexaniobate nano-family. RSC Advances, 2017, 7, 28105-28113.                                                                                                       | 3.6               | 6                        |
| 151 | Carbonized polydopamine wrapping layered KNb3O8 nanoflakes based on alkaline hydrothermal for enhanced and discrepant lithium storage. Journal of Alloys and Compounds, 2018, 749, 803-810.                                                                                           | 5.5               | 6                        |
| 152 | Phase transition of Bi5Ti3FeO15 ceramics discovered by Raman spectroscopy and <i>in situ</i> synchrotron XRD under stress field. Applied Physics Letters, 2020, 117, .                                                                                                                | 3.3               | 6                        |
| 153 | Large Enhancement and Its Mechanism of Ultraviolet Emission from ZnO Nanorod Arrays at Room and Low Temperatures by Covering with Ti Coatings. Journal of Physical Chemistry C, 2020, 124, 4827-4834.                                                                                 | 3.1               | 6                        |
| 154 | Flux periodic oscillations and phase-coherent transport in GeTe nanowire-based devices. Nature Communications, 2021, 12, 754.                                                                                                                                                         | 12.8              | 6                        |
| 155 | Auâ€Decorated ZnO Nanorod Powder and Its Application in Photodegradation of Organic Pollutants in the Visible Region. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000737.                                                                               | 1.8               | 6                        |
| 156 | $\mbox{\ensuremath{\mbox{\scriptsize ci>}}}\mbox{\ensure-temperature}$ phase diagrams in antiferroelectric $\mbox{\ensuremath{\mbox{\scriptsize ci>}}}\mbox{\ensuremath{\mbox{\scriptsize ceramics}}}$ . Applied Physics Letters, 2021, 119, .                                        | 3.3               | 6                        |
| 157 | WS2-decorated ZnO nanorods and enhanced ultraviolet emission. Materials Letters, 2022, 306, 130880.                                                                                                                                                                                   | 2.6               | 6                        |
| 158 | Raman scattering measurements of phonon anharmonicity in the delafossite CuGa 1―x Cr x O 2 (0 ≠x â‰) Tj                                                                                                                                                                               | j <u>E</u> TQq0 0 | 0 <sub>6</sub> rgBT /Ove |
| 159 | Interband electronic transitions and phase transformation of multiferroic Bilâ^'xLaxFelâ^'yTiyO3 ceramics revealed by temperature-dependent spectroscopic ellipsometry. Journal of Applied Physics, 2013, 114, 233509.                                                                | 2.5               | 5                        |
| 160 | The intermediate temperature <i>T</i> * revealed in relaxor polymers. Applied Physics Letters, 2014, 104, .                                                                                                                                                                           | 3.3               | 5                        |
| 161 | Localized states evolution and nitrides separation before crystallization in nitrogen incorporated GeTe: Evidence from ellipsometric spectra. Applied Physics Letters, 2017, 110, 161906.                                                                                             | 3.3               | 5                        |
| 162 | Preparation and characterization of narrow bandgap ferroelectric (K,Ba)(Ni,Nb)O <sub>3â^'<i>δ</i></sub> films for mesoporous all-oxide solar cells. New Journal of Physics, 2019, 21, 013011.                                                                                         | 2.9               | 5                        |

| #   | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Proximityâ€Effectâ€Induced Superconductivity in Nb/Sb 2 Te 3 â€Nanoribbon/Nb Junctions. Annalen Der Physik, 2020, 532, 2000273.                                                                                                                            | 2.4 | 5         |
| 164 | Temperature dependent transport properties of p-Pb1â^'xMnxSe films. Journal of Applied Physics, 2010, 108, .                                                                                                                                               | 2.5 | 4         |
| 165 | Optical phonon behaviors and unstable polar mode in transparent conducting Ba <sub>1â^'x</sub> La <sub>x</sub> SnO <sub>3</sub> films from temperature dependent far-infrared reflectance spectra. RSC Advances, 2014, 4, 34987.                           | 3.6 | 4         |
| 166 | Effects of crystal orientation on electronic band structure and anomalous shift of higher critical point in VO <sub>2</sub> thin films during the phase transition process. Journal Physics D: Applied Physics, 2015, 48, 485302.                          | 2.8 | 4         |
| 167 | Passivated Emitter and Rear Cell Silicon Solar Cells with a Front Polysilicon Passivating Contacted Selective Emitter. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100057.                                                                  | 2.4 | 4         |
| 168 | Temperature dependence of ultrafast carrier dynamics in intrinsic and nitrogen-doped 6H-SiC crystals. Applied Physics A: Materials Science and Processing, 2012, 109, 643-648.                                                                             | 2.3 | 3         |
| 169 | InN superconducting phase transition. Scientific Reports, 2019, 9, 12309.                                                                                                                                                                                  | 3.3 | 3         |
| 170 | Electronic bandgap manipulation of monolayer WS2 by vertically coupled insulated Mg(OH)2 layers. Journal of Alloys and Compounds, 2019, 785, 156-162.                                                                                                      | 5.5 | 3         |
| 171 | Pseudocapacitive Li-ion storage boosts high-capacity and long-life performance in multi-layer CoFe2O4/rGO/C composite. Nanotechnology, 2019, 30, 045401.                                                                                                   | 2.6 | 3         |
| 172 | Lattice vibration characteristics in layered InSe films and the electronic behavior of field-effect transistors. Nanotechnology, 2020, 31, 335702.                                                                                                         | 2.6 | 3         |
| 173 | Structural, Electronic Band Transition and Optoelectronic Properties of p-Type Transparent<br>Conductive CuCr <sub>1–<i>x</i></sub> Ni <sub><i>x</i></sub> O <sub>2</sub> Semiconductor Films.<br>Journal of Physical Chemistry C, 2021, 125, 26139-26149. | 3.1 | 3         |
| 174 | Transparent polycrystalline monoclinic HfO2 dielectrics prepared by plasma assisted pulsed laser deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 011506.                                                     | 2.1 | 2         |
| 175 | Dramatic influence of Dy3+ doping on strain and domain structure in lead-free piezoelectric 0.935(Na1/2Bi1/2)TiO3â°°0.065BaTiO3 ceramics. AIP Advances, 2015, 5, 127118.                                                                                   | 1.3 | 2         |
| 176 | Temperature-dependent phonon mode and interband electronic transition evolutions of $\hat{l}\mu$ -InSe films derived by pulsed laser deposition. Applied Physics Letters, 2020, 117, 102101.                                                               | 3.3 | 2         |
| 177 | Embedded Double Oneâ€Dimensional Composites of WO 3 @Nâ€Doped Carbon Nanofibers for Superior and Stabilized Lithium Storage. ChemElectroChem, 2022, 9, .                                                                                                   | 3.4 | 2         |
| 178 | Designing Monoclinic Heterophase Coexistence for the Enhanced Piezoelectric Performance in Ternary Lead-Based Relaxor Ferroelectrics. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10535-10545.                                                     | 8.0 | 2         |
| 179 | Phase change behavior improvement of Sb2Te3 films by Si doping: Raman scattering evidence at elevated temperatures. AIP Advances, 2022, 12, .                                                                                                              | 1.3 | 2         |
| 180 | Thermotropic phase transitions in Pb1â^'xSrx(Al1/3Nb2/3)0.1(Zr0.52Ti0.48)0.9O3 ceramics: Temperature dependent dielectric permittivity and Raman scattering. AIP Advances, 2015, 5, 067122.                                                                | 1.3 | 1         |

| #   | Article                                                                                                                                                                                                                                                       | IF   | Citations |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Optical evidences for an intermediate phase in relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3single crystals. AIP Advances, 2016, 6, 025106.                                                                                                  | 1.3  | 1         |
| 182 | A novel technique for probing phase transitions in ferroelectric functional materials: Condensed matter spectroscopy. Science China Technological Sciences, 2016, 59, 1537-1548.                                                                              | 4.0  | 1         |
| 183 | Electric-Double-Layer Oriented Field-Screening Effect on High-Resolution Electromechanical Imaging in Conductive Solutions. Physical Review Applied, 2019, 12, .                                                                                              | 3.8  | 1         |
| 184 | Probing Nanoscale Electromechanical Behaviors of Relaxor Ferroelectrics in Highly Conductive Liquid Environments. Physical Review Applied, 2019, 11, .                                                                                                        | 3.8  | 1         |
| 185 | Efficient and Holeâ€Transportingâ€Layerâ€Free CsPbI 2 Br Planar Heterojunction Perovskite Solar Cells through Rubidium Passivation. ChemSusChem, 2019, 12, 960-960.                                                                                           | 6.8  | 1         |
| 186 | Thermal Conductivity of Large-Area Polycrystalline MoSe2 Films Grown by Chemical Vapor Deposition. ACS Omega, 2021, 6, 30526-30533.                                                                                                                           | 3.5  | 1         |
| 187 | Influence of composition on structure, morphology and dielectric properties of BixAlyOz composite films synthesized by atomic layer deposition. AIP Advances, 2017, 7, 045120.                                                                                | 1.3  | 0         |
| 188 | Cover Picture: Plasma Process. Polym. 1â^•2018. Plasma Processes and Polymers, 2018, 15, 1870003.                                                                                                                                                             | 3.0  | 0         |
| 189 | Exploration of a Ca1â^'x(NaCe)x/2Bi4Ti3.98(WNb)0.01O15 ceramic intermediate phase by temperature-dependent spectroscopic ellipsometry and Raman scattering. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 061211. | 1.2  | 0         |
| 190 | 2D Materials: Probing Effective Outâ€ofâ€Plane Piezoelectricity in van der Waals Layered Materials Induced by Flexoelectricity (Small 46/2019). Small, 2019, 15, 1970250.                                                                                     | 10.0 | 0         |
| 191 | Static characteristics of CMOS digital circuit based on transition metal dichalcogenide transistors. AIP Advances, 2019, 9, 085031.                                                                                                                           | 1.3  | 0         |
| 192 | 10.1063/1.5025008.1., 2018,,.                                                                                                                                                                                                                                 |      | 0         |